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Pingru Li1,2 and Xiuyu Yun1,2

1Haikou Marine Geological Survey Center, China Geological Survey, Haikou, China, 2Haikou Key
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Introduction: Coastal shallow marine sediments serve as important sinks for

trace metals and are crucial indicators of anthropogenic pollution. The Wanning

area of Hainan Island has experienced rapid coastal development and intensified

aquaculture, raising concerns about metal contamination.

Methods: In this study, 57 surface sediment samples were collected from the

coastal shallow sea of the Wanning area. The concentrations of seven trace

metals (As, Hg, Cu, Zn, Cd, Pb, and Cr) were determined. Pollution levels were

evaluated using the Nemero multifactor pollution index, and source

apportionment was conducted through the Positive Matrix Factorization

(PMF) model.

Results: The average concentrations of As, Hg, Cu, Zn, Cd, Pb, and Cr were 11.40,

0.037, 11.36, 51.69, 0.10, 24.53, and 45.86 mg/kg, respectively, which generally

comply with China’s Class I Marine Sediment Quality Standard. While the overall

pollution level was low, localized hotspots of As, Cu, Cr, and Pb were identified.

The PMF model identified four major pollution sources: aquaculture-related fish

medicine (Factor 1, 17.9%), urban wastewater and farm feed (Factor 2, 30.5%),

agricultural pesticide use (Factor 3, 17.3%), and maritime transportation (Factor

4, 34.3%).

Discussion: The results indicate that the primary contributors to trace metal

pollution in the Wanning coastal area are human activities, including maritime

transport, aquaculture, and agriculture. These findings highlight the need for

targeted pollution control measures to ensure sustainable coastal development

and marine environmental protection.
KEYWORDS

coastal shallow-marine sediments, trace metal pollution, source analysis, nemero
multifactor pollution index, positive Matrix Factorization (PMF) model
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1 Introduction

Coastal shallow marine sediments have increasingly attracted

attention from environmental scientists, particularly those in

marine studies, because of their role as major sinks for pollutants

and an important biological habitats (Ma, 1993). Most trace metals

discharged into the marine environment eventually settle in

sediments, making them long-term reservoirs of these

contaminants (Kong et al., 2015; Zhang et al., 2010). In recent

years, intensified human activities—including sewage discharge,

coastal development, transportation, and agricultural practices—

have significantly increased the input of trace metals into coastal

shallow marine sediments. Since trace metals are not easily

degraded or excreted by aquatic organisms, they can accumulate

in their tissues. These metals may then be transferred and

biomagnified through the food chain, ultimately posing a threat

to human health (Jain et al., 2016; Cao et al., 2013). Furthermore,

the diffuse nature of trace metal pollution can diminish coastal

tourism value and severely impact local landscapes and ecosystems,

placing unprecedented pressure on coastal resources. Given the

increasing global focus on coastal sustainability, it is essential to

assess the extent, diffusion, and sources of trace metal pollution in

coastal shallow marine sediments, to provide a valuable reference

for effective pollution control and contribute to integrated coastal

management and sustainable ecological–economic development.

Wanning City, located in the eastern part of Hainan Island, is

an important coastal city in Hainan Province. The ongoing

development of the Hainan Free Trade Port has accelerated

urbanization and agricultural intensification, exerting significant

pressure on environmental quality (Li et al., 2022a; Sun et al., 2022;

Yang et al., 2022; Sun et al., 2022; Wang et al., 2022). The major

industries in Wanning include rubber processing, transportation,

and construction-related activities such as cement manufacturing

and brick production. Agricultural activities primarily involve the

cultivation of rice, tropical fruits, betel nut, and rubber (Fei et al.,

2020; Wu et al., 2021a, Wu et al., 2021b). Fisheries in the area are

primarily characterized by large-scale marine aquaculture

operations. In addition, Wanning serves as a maritime

transportation hub in eastern Hainan. Its urban development

pattern resembles that of many other coastal cities around the

world, and studying the trace metal pollution associated with such

development provides valuable insights for sustainable planning in

other coastal regions.

Trace metal source investigations generally involve two aspects:

source identification and source apportionment. Source

identification refers to the qualitative recognition of trace metal

sources (Shao et al., 2018), such as traditional multivariate statistical

methods. In contrast, source apportionment focuses on quantifying

the contributions of different pollution sources. Common receptor

models include the chemical mass balance (CMB) method (Chen

et al., 2018), factor analysis (Sun et al., 2024; Liu et al., 2023), and

mixed models (Lu et al., 2012; Huang et al., 2018), as well as

machine learning methods based on ensemble learning models,

such as random forests and gradient boosted trees (Wang et al.,

2015; Zhang et al., 2017). The CMB method requires real-time
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monitoring of the pollution sources in the study area and constant

updating of the source composition spectra (Zhang et al., 2015),

which incurs high costs and is subject to human-induced biases.

Although machine learning models are effective at capturing

nonlinear patterns and assessing the importance of environmental

variables, they generally lack the ability to precisely quantify the

contribution of each pollution source. The Positive Matrix

Factorization (PMF) model, by contrast, can quantitatively

estimate source contributions without requiring precise source

profile information, making it a more convenient and efficient

tool for pollution source apportionment (Bu et al., 2020; Li

et al., 2020).

Accordingly, this study employed the PMF model to

quantitatively identify and apportion the sources of trace metals

in sediments. However, previous PMF-based studies typically

focused on the entire study area, making it difficult to spatially

correlate pollution sources with local trace metal levels in sediments

(Huang et al., 2022a, Huang et al., 2022b; Chai et al., 2021; Lv et al.,

2013). To address this limitation, this study applied kriging

interpolation to spatially visualize the PMF-derived factors. The

spatial distribution of pollution sources was then interpreted in

combination with the dominant industrial and agricultural

activities in surrounding towns.
2 Materials and methods

2.1 Overview of the study area

Wanning City is located in the southeastern part of Hainan

Island. It is a typical coastal city in Hainan Province. It borders the

South China Sea to the east, Qionghai City to the north,

Qiongzhong County to the west, and Lingshui County to the

south. As of the end of 2024, Wanning City had a resident

population of 558,300, with 12 towns under the city’s jurisdiction.

Major transportation routes such as National Highway 223 and the

Eastern Expressway pass throughWanning, connecting Haikou and

Sanya, and Wuchang port and Gangbei port provide access to other

provincial ports. Both land and maritime transportation

are convenient.

Wanning City has a subtropical humid monsoon maritime

climate. The average annual temperature is 24.1°C. The hottest

months are June and July, with an average temperature of 28.5°C.

The coldest month is January, averaging 18.7°C. The annual

temperature range is only 10°C. The mild climate makes it highly

suitable for both aquaculture and tropical agriculture. The Modern

Agricultural Industrial Park in Wanning City is located along the

coast and includes four towns: Shangen, Hele, Wancheng, and

Dong’ao, and it mainly focuses on marine aquaculture, particularly

of the eastern star-spot (Epinephelus akaara) and Seriola

quinqueradiata. The aquaculture output ranks first in Hainan

Province, contributing over 35% of the national production value

in this category. In northern Wanning, particularly in Longgun and

Shangen Towns, the tropical plantation industry is highly

developed; the region produces tropical fruits such as pineapple,
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lychee, and longan. It is also the largest winter pineapple production

base in China, and it has also been recognized as a demonstration

base for premium tropical crop products in the South Asia region.
2.2 Data sources and quality control

2.2.1 Surface sediment sampling methods
In this study, 57 benthic surface sediment samples were

systematically collected from the coastal shallow sea and lagoon

areas of the Wanning region (Figure 1). Upon arrival at each

designated site, surface sediment samples were collected using

either a grab sampler or a box sampler, depending on site

conditions, and the coordinates of each sampling location were

recorded using Global Positioning System (GPS). Surface samples

were collected to a depth of at least 5 cm, with a minimum wet

weight of 2 kg. The samples were filtered to remove excess water

and visible debris, including gravel, wood chips, weeds, plastics, and

biological remains such as shells, and the samples were thoroughly

homogenized, placed in cloth bags lined with polyethylene, and

transported to the laboratory for analysis.

Samples of the overlying water column (1 to 2 m from the

seafloor) were collected at the same time as sediment samples. To

avoid contamination, precautions were taken to prevent

interference from potential onboard pollution sources. Samples

were taken against the direction of wind and current. Bottom

water samples were avoided in areas enriched with suspended

sediments (generally within 1 m of the seafloor), and water

disturbed by the ship’s propellers was avoided. If floating debris

was observed on the water surface, care was taken to prevent it from

entering the sampler; otherwise, the water was re-sampled.

2.2.2 Sample pretreatment and testing
All sample analyses were conducted at the laboratory of the

Haikou Marine Geological Survey Center, China Geological Survey.

Prior to analysis, the wet samples stored in polyethylene bags

were transferred to clean, pre-numbered porcelain evaporating

dishes and dried in an oven at 80–100°C. During drying, the

samples were stirred frequently with a glass rod and crushed to

accelerate moisture loss: the dried samples were then spread on

clean polyethylene sheets to manually remove gravel and large

biological debris. Approximately 100 g of each dried sample was

placed into a 500-mL agate bowl. Agate balls were then added, and

the samples were ground using a ball mill until the entire sample

passed through a 160-mesh sieve (96 mm). The number and size of

agate balls, as well as the grinding time, were pre-optimized through

preliminary tests. No further sieving was conducted after grinding.

After thorough grinding and homogenization, the sample was

reduced using the quartering method, then 10–20 g of the

prepared sample was placed into labeled sample bags (including

station number and sample layer information) for analysis.

According to the national standard methods of chemical

analysis of seabed sediment (GB/T 20260-2006), elements such as

Cu, Zn, Cd, Pb, and Cr were analyzed using inductively coupled

plasma mass spectrometry (ICP-MS), and the detection limits were
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0.80 mg/kg for Cu, 3.73 mg/kg for Zn, 0.0467 mg/kg for Cd, 2.73

mg/kg for Pb, and 3.40 mg/kg for Cr. Arsenic (As) was measured

using hydride-generation atomic fluorescence spectrometry, with a

detection limit of 0.05 mg/kg. Mercury (Hg) was determined using

cold vapor atomic fluorescence spectrometry, with a detection limit

of 0.003 mg/kg. For quality control, certified reference materials

(CRMs) were analyzed after every 20 samples. Parallel duplicates

and blanks were also tested simultaneously. The results of the

CRMs are shown in Supplementary Tables S1 and S2 (see

Supplementary Materials).

Sediment grain size was determined in the laboratory using

both sieve analysis and laser diffraction methods. Analytical

precision was monitored using internal check samples. Internal

check samples accounted for 10%–20% of total samples for sieve

analysis and 5%–10% for the laser method. The allowable error

range followed the specifications outlined in Marine Surveys Part 8:

Marine Geological and Geophysical Surveys (GB/T 12763.8-2007).

Samples exceeding this range were reanalyzed.

Water quality parameters, including temperature, salinity, and pH,

were measured on-site using a multi-parameter water quality analyzer,

with appropriate calibration and parallel sampling performed to ensure

accuracy. Quality control involved blank tests, parallel samples, sample

retention, and re-testing, as well as instrument calibration. Water

temperature was measured on-site using a thermometer, with

calibration performed for quality assurance.
2.3 Evaluation methods

2.3.1 Evaluation model for surface sediment
environmental quality

(1) Single-factor pollution index

The single-factor pollution index Pki is a dimensionless

parameter used to evaluate the degree of contamination by

individual trace metals in sediments. It serves as a simple and

effective tool for assessing environmental quality and the influence

of anthropogenic activities (Chai et al., 2021). The Pki classification

criteria are presented in Table 1 (Chai et al., 2021; Wang et al.,

2022b). Pki =
Cki
Ci  

where Pki is the single-factor pollution index for

metal i; Cki is the measured concentration of metal i in the sediment;

and Ci is the corresponding background concentration of metal i

(the geochemical baseline value for Chinese shallow marine

sediments). The single-factor pollution index was categorized into

five classes: safe (Pki≤1), warning threshold (1< Pki≦2), slight
pollution (2< Pki≦3), moderate pollution (3< Pki≦5), and severe

pollution (Pki>5).

(2) Nemero multifactor pollution index

The Nemero multifactor pollution index is a widely used method

in pollution evaluation developed based on the single-factor pollution

index, which is commonly used in soil pollution. The Nemero

multifactor pollution index considers both the mean and maximum

values of the single-factor pollution index, thereby reflecting the

comprehensive impact of each pollutant on soil quality, especially

highlighting the role of high-concentration pollutants (Zhao et al.,

2020), and the specific calculation formula is as follows:
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PNi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(P2iavg + P2

imax)

2

s

where Piavg   is the mean value of the single pollution index of i

sample; Pimax   is the maximum value of the single pollution index of i

sample; PNi   is the comprehensive pollution index of i samples. The

pollution degree of trace metals was determined according to the

calculated values. The grading evaluation criteria are shown in Table 2.

(3) Pollutant percentage in Surface sediment

The percentage of each pollutant can be used to determine its

relative contribution to the overall pollution level. Ranking

pollutants by their percentage contributions, from highest to

lowest, reflects their respective influence on total contamination

(Fu et al., 2023).

Pollutant percentage in soil( % )

=
the   pollution   index   of   pollutant
the   sum   of   pollution   indices

� 100
2.3.2 Analysis of pollution sources
The PMF model is a receptor-based source apportionment

method grounded in the least squares principle and

recommended by the U.S. Environmental Protection Agency
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(USEPA) (Paatero and Tapper, 1994). It has been widely applied

to identify and quantify pollution sources in various environmental

media. It mainly decomposes the trace metal concentration matrix

factors Xij   into, Gik   and   Fkj residuals Eij, at the same time defines

the objective function Q so that its value is minimized to obtain the

optimal factor contribution matrix and the factor source spectrum

matrix, and the specific formulas are as follows:

Xij = o
P

k=1

GikFkj + Eij

Q =o
m

i=1
o
n

j=1

Eij

Uij

 !2

Uij =
5
6
MDL;  Conc≦MDL

Uij =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s � Conc)2 + (0:5�MDL)2

p
,  Conc > MDL

where Xij is the content of the jth trace metal indicator in the ith

sample (mg/kg), Gik is the factor contribution matrix, Fkj is the factor

source spectrummatrix, and the components in G and F are positive, Eij

is the residual difference of the jth tracemetal indicator in the ith sample,

and p is the number of factors; Uij is the uncertainty of the jth trace

metal indicator in the ith sample, MDL is the trace metal instrument

detection limit (mg/kg), s is the error coefficient (taken as 0.1), and

Conc is the mass concentration of trace metal indicator (mg/kg).
3 Results and analysis

3.1 Physicochemical properties of the
environment

3.1.1 Sediment grain size and bathymetry
Sediment grain size serves as an integrated indicator of the

sediment source, transport capacity, and transport pathway, and is

also an important factor affecting the content of trace elements (Liu
TABLE 1 Trace metal pollution index of the sediment in the research area.

Pollution
index

Element Max Min
Mean
value

The proportion of samples with different
pollution levels/% PNi

for
element

Pollutant
percentage/

%Safety
Warning
Threshold

Slight Moderate Severe

Pki

As 5.99 0.20 1.48 36.8 47.4 3.5 8.8 3.5 4.36 11.7

Hg 10.52 0.02 1.48 50.9 29.8 5.3 7.0 7.0 7.51 20.2

Cu 15.27 0.03 0.89 75.4 17.5 5.3 0.0 1.8 10.81 29.1

Zn 2.60 0.08 0.80 64.9 28.1 7.0 0.0 0.0 1.92 5.2

Pb 4.68 0.36 1.23 45.6 45.6 5.3 3.5 0.0 3.42 9.2

Cd 9.25 0.36 1.54 47.4 29.8 8.8 8.8 5.3 6.63 17.8

Cr 3.49 0.07 0.75 77.2 19.3 1.8 1.8 0.0 2.53 6.8

PNi for sampling point 11.01 0.56 2.25 12.3 10.5 38.6 19.3 19.3 / /
TABLE 2 Evaluation and classification standard of sediment Nemero
pollution index method.

Single factor pollution
index (Pki)

Multifactor pollution index
(PNi)

Pki Pollution gradation PNi Pollution gradation

≦1 Safe ≦0.7 Safe

(1, 2] Warning threshold (0.7, 1] Warning threshold

(2, 3] Slight pollution (1, 2] Slight pollution

(3, 5] Moderate pollution (2, 3] Moderate pollution

>5 Severe pollution >3 Severe pollution
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et al., 2012). The surface sediments in the study area are primarily

composed of four types: sand, silt sand, sandy silt, and silt

(Figure 2), with sand and silty sand being the dominant types,

accounting for 63%. The particle size of sediments mainly ranges

between 32 and 250 mm and between 2 and 8 mm, with the 32–250

mm size fraction being the most prevalent, indicating that sediment

grain size in the region is relatively concentrated (Figure 3).

Correlation analysis revealed a significant negative correlation

between sand content and trace metal concentrations in the

sediments of the study area (−0.25< R< −0.6, excluding As). In

contrast, silt content exhibited a significant positive correlation with

trace metal concentrations (0.31 < R < 0.71, excluding As), as did

clay content (0.24 < R < 0.57, excluding As).

An analysis of the relationship between water depth and trace

metal concentrations at sediment sampling sites (Figure 4) showed

a weak negative correlation (−0.35 < R < −0.02) between seawater

depth and sediment trace metal levels in the study area. There is also

a weak negative correlation between seawater depth and sediment

grain size, indicating that grain size decreases with increasing depth.

However, trace metal concentrations in the sediments also decrease

with depth, rather than increase. This suggests that the trace metals

in the sediments originate primarily from anthropogenic activities

near the coast, rather than being inherent to the sediments

themselves. The correlation between As concentrations and both

water depth and grain size shows trends opposite to those of the

other elements, possibly due to the distinct fugacity behavior of As

in marine sediments.
Frontiers in Marine Science 05
3.1.2 Surface water salinity, water temperature,
and pH

The transport and transformation of trace metals in sediments

are closely related to their geochemical behavior and environmental

conditions (Guo et al., 2023). The accumulation patterns of trace

metals are not only influenced by their inherent physical and
FIGURE 1

Distribution of sampling points.
FIGURE 2

Sediment classification map.
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chemical properties, but also significantly affected by environmental

factors such as sediment pH, redox potential, and particle size (Hu

et al., 2021; Wijesiri et al., 2019). During this investigation, surface

seawater parameters including pH, temperature, and salinity above

the sediment sampling sites were measured (Figure 5).

Results showed that pH values ranged from 6.9 to 7.8, with an

average of 7.5, indicating a weakly alkaline environment. Water

temperatures varied from 25.8°C to 28.6°C, averaging 27.5°C.

Salinity ranged from 17.3‰ to 33.3‰, with an average of 26.5‰.

The surface water in the study area exhibited relatively low spatial

variability in pH, salinity, and temperature.
Frontiers in Marine Science 06
3.2 Statistical analysis of trace metal
content

The results of the trace metal content of sediments in the study

area (Table 3) showed that Hg was below the detection limit in 7

samples (12%), Cu in 8 samples (14%), and Cd in 24 samples (42%).

In this study, values below the detection limit were statistically

treated as half the detection limit. The statistical summary indicated

that the concentration ranges (mean values in parentheses) of the

seven trace metal elements were as follows: As: 1.55–46.10 mg/kg

(11.40 mg/kg); Hg: 0.0015–0.2630 mg/kg (0.0370 mg/kg); Cu: 0.40–
FIGURE 3

Sediment grain size distribution curve.
As

0.064 Hg *** * *** *** *** ** *

-0.078 0.18 Cu ** * *

-0.21 0.59 0.38 Zn *** *** *** *** *** ***

-0.045 0.31 0.19 0.55 Pb * * ** *

0.019 0.85 0.16 0.65 0.34 Cd *** *** ** **

-0.21 0.13 0.16 0.48 0.21 0.16 Cr ** *

-0.079 -0.49 -0.29 -0.60 -0.33 -0.48 -0.25 sand *** ***

-0.10 0.56 0.31 0.71 0.41 0.56 0.35 -0.92 slit ***

-0.062 0.38 0.24 0.57 0.33 0.37 0.28 -0.84 0.88 clay

0.040 -0.27 -0.020 -0.20 -0.067 -0.35 -0.038 -0.084 0.026 0.18 water depth

As Hg Cu Zn Pb Cd Cr sand slit clay water

depth

As

Hg

Cu

Zn

Pb

Cd

Cr

sand

slit

clay

water depth

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

* p<=0.05 ** p<=0.01 *** p<=0.001

FIGURE 4

Surface sediment trace metal correlations.
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229.00 mg/kg (13.36 mg/kg); Zn: 5.46–169.00 mg/kg (51.69 mg/kg);

Cd: 0.0234–0.6010 mg/kg (0.1001 mg/kg); Pb: 7.29–93.60 mg/kg

(24.53 mg/kg); and Cr: 4.23–213.00 mg/kg (45.86 mg/kg). The

mean concentrations of Cr and Cd were substantially higher than

those in coastal and southern shallow marine sediments of southern

Hainan Island. Mean concentrations of As, Cu, and Pb were

moderately higher, while those of Hg and Zn were slightly higher

than those in the southern sea area but lower than those in

nearshore sediments of southern Hainan Island.

Compared to Chinese shallow sea sediments, the average

concentrations of Cu, Pb, Zn, and Cr were similar, although the

coefficient of variation for Cu was higher, indicating its greater

tendency to form localized pollution hotspots. In contrast, the mean

concentrations of As, Hg, and Cd were significantly higher than

national averages, and both Hg and Cd had high dispersion

coefficients, suggesting a greater likelihood of forming large-scale

pollution zones. As had a lower dispersion coefficient, indicating its

potential for forming wide low-level contamination zones.

Compared with the quality standard of Chinese marine sediment,

the average value of each element in the study area meets the

standard of marine sediment class I. There are eight sample points

of As that meet the standard of class II; two sample points of Hg

meet the standard of class II; one sample point of Cu meets the

standard of class III and two sample points meet the standard of
Frontiers in Marine Science 07
class II; one sample point of Zn meets the standard of class II; two

sample points of Cd meet the standard of class II; two sample points

of Pb meet the standard of class II; two sample points of Cr meet the

standard of class III and three sample points meet the standard of

class II. These results indicate that trace metal pollution in

Wanning’s shallow marine sediments is generally low, although

localized elevated levels of As, Cu, and Cr require attention.

Compared with U.S. Sediment Quality Guidelines, mean

concentrations of Hg, Cu, Zn, Cd, and Pb were all below the

Threshold Effect Concentration (TEC), while As and Cr were

slightly above TEC but below the Probable Effect Concentration

(PEC). Maximum concentrations of As, Cu, and Cr exceeded the

PEC, whereas maximum values for Hg, Zn, and Pb were between

TEC and PEC. Cd levels remained below TEC throughout. The

distribution of sample exceedances was as follows: As: 2 samples >

PEC (3.5%) and 19 samples between TEC and PEC (33.3%); Cu: 1

sample > PEC (1.8%) and 3 samples between TEC and PEC (5.3%);

Cr: 3 samples > PEC (5.3%) and 27 samples between TEC and PEC

(47.3%); Hg: 3 samples between TEC and PEC (5.3%); Zn: 4

samples between TEC and PEC (7.0%); and Pb: 6 samples

between TEC and PEC (10.5%).

Overall, the ecological risks from trace metals in the study area

appear minimal, with only isolated sites for As, Cu, and Cr

potentially posing adverse ecological effects.
FIGURE 5

Box line plot of temperature, salinity, and pH distribution at sampling points.
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3.3 Characteristics of the spatial
distribution of trace metal content

Inverse Distance Weighting (IDW) was used to characterize the

spatial distribution of seven trace metals in the study area (Figure 6).

The results indicated that high concentrations of As were primarily

distributed in the southern part of Shan’gen Town and the northern

nearshore areas of Lingshui. Hg exhibited elevated concentrations

mainly within the Grandpa Sea Lagoon, with a few high-value points

also observed in the coastal waters near Hele Town. Cu showed only a

single high-value point located in the shallow coastal area of northern

Lingshui. High-value zones of Cd and Zn largely overlapped,

appearing both in the Grandpa Sea Lagoon and in nearby coastal

waters. Pb showed a single high-value point near the estuary of the

Small Sea Lagoon, while Cr concentrations were higher near the

estuaries of both the Grandpa Sea Lagoon and the Sun River.
3.4 Evaluation of trace metal pollution

To further determine the pollution levels of the seven trace

metals in the sediments, both the single-factor pollution index and

the Nemero multifactor pollution index were calculated.

The results of the single-factor pollution index showed that values

ranged from 0.2 to 5.99 for As (mean: 1.48), 0.02 to 10.52 for Hg

(mean: 1.48), 0.03 to 15.27 for Cu (mean: 0.89), 0.08 to 2.60 for Zn

(mean: 0.80), 0.36 to 4.68 for Pb (mean: 1.23), 0.36 to 9.25 for Cd

(mean: 1.54), and 0.07 to 3.49 for Cr (mean: 0.75). Average indices

above 1 but below 2 for Cd, Hg, As, and Pb suggest slight pollution,

while Cu, Zn, and Cr had mean values below 1, indicating generally

clean conditions. However, maximum index values for As, Hg, Cu, Pb,

Cd, and Cr exceeded 3, indicating moderate to severe pollution at

certain locations. The proportion of such sites was 14.1% for Cd, 14.0%

for Hg, 12.3% for As, and 3.3% for Pb (Figure 7). Zn’s maximum index
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was between 2 and 3, indicating only light pollution, with no sample

showing moderate or severe pollution. Overall, relative to Chinese

shallow marine sediments, Cd, Hg, As, and Pb exhibit slight pollution

with localized moderate-to-severe contamination, while Cu and Cr are

mostly clean but show some local moderate-to-severe pollution, and

Zn is lightly polluted throughout. Compared to China’s Class I Marine

Sediment Quality Standards and U.S. TEC guidelines, the overall

pollution level remains low, particularly because background

concentrations in Chinese shallow marine sediments are generally

lower—especially for Hg and Cd.

The Nemero multifactor pollution index values followed the

order: Cu (10.81) > Hg (7.51) > Cd (6.63) > Pb (3.42) > Cr (2.53) >

Zn (1.92). Elements As, Hg, Cu, Pb, and Cd had index values

exceeding 3, indicating heavy pollution compared to Chinese

shallow marine sediments. Cr showed moderate pollution, and Zn

showed light pollution. The average integrated pollution index

across all sites was 2.25, with a minimum of 0.56 and a

maximum of 11.01, indicating moderate overall pollution with

some heavily polluted hotspots. These results are consistent with

the statistical findings of trace metal concentrations in sediments.

The percentage contribution of each element to the overall

pollution was as follows: Cu (29.1%) > Hg (20.2%) > Cd (17.8%) >

As (11.7%) > Pb (9.2%) > Cr (6.8%) > Zn (5.2%).

This shows that Cu, Hg, Cd, and As are the dominant

contributors, accounting for a combined 78.8% of the total

pollution. Pb, Cr, and Zn contributed only 21.2%, suggesting

relatively weak pollution from these elements.

In conclusion, based on the single-factor index, Nemero index,

and pollution percentage, Cu, Hg, Cd, and As are the main

contributors in the study area. Nevertheless, the overall pollution

level remains low when benchmarked against Chinese and U.S.

sediment quality standards. This is because the background levels

used (average concentrations of Chinese shallow marine sediments)

are much lower than these standards.
TABLE 3 Distribution parameters and background values of trace metal content in sediments of the study area.

Statistical parameter As Hg Cu Zn Cd Pb Cr

Minimum value (mg/kg) 1.55 <0.003 <0.8 5.46 <0.0467 7.29 4.23

Maximum value (mg/kg) 46.10 0.2630 229.00 169.00 0.60 93.60 213.00

Average value (mg/kg) 11.40 0.0370 13.36 51.69 0.10 24.53 45.86

Upper quartile (mg/kg) 8.69 0.02 4.63 39.10 0.07 21.70 44.30

Standard deviation 8.62 0.06 30.71 39.63 0.12 14.93 36.69

Dispersion coefficient 0.76 1.49 2.30 0.77 1.18 0.61 0.80

Coastal sediments in southern Hainan Island (He et al., 2017) (mg/kg) 4.67 0.06 10.45 53.72 0.05 22.38 23.42

Marine sediments in southern Hainan Island (Luo et al., 2017)
(mg/kg)

9.74 0.0194 8.33 38.98 0.06 20.69 27.45

Chinese shallow marine sediments Zhao and E. (1993) (mg/kg) 7.7 0.025 15 65 0.065 20 61

Sediment Type I/II/III Quality Standards (GB 18668-2002, 2002)
(mg/kg)

20/65/93 0.2/0.5/1 35/100/200
150/

350/600
0.5/
1.5/5

60/
130/250

80/
150/270

SQGs (MacDonald et al., 2000)
TEC/PEC

9.79
/33.00

0.18
/1.06

31.60
/149.00

121.00
/459.00

0.99
/4.58

35.50
/128.00

43.40
/111.00
fro
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For instance, the average As concentration in Chinese shallow

marine sediment is 0.39 of China’s Class I standard and 0.79 of U.S.

TEC; Hg is 0.13 (China) and 0.14 (U.S.A.); Cu is 0.43 (China) and

0.47 (U.S.A.); Zn is 0.43 (China) and 0.54 (U.S.A.); Cd is 0.13 (China)

and 0.07 (U.S.A.); Pb is 0.33 (China) and 0.56 (U.S.A.); Cr is 0.76

(China) and 1.41 (U.S.A.). Therefore, Cu, As, Pb, and Cr are of

greater concern when assessed against national sediment standards.
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3.5 Analysis of trace metal sources

3.5.1 Correlation analysis
Pearson correlation analysis is effective in revealing the

relationships among trace metal elements and provides insights

into their potential sources (Huang et al., 2022a, Huang et al.,

2022b). A significant positive correlation between elements
FIGURE 6

Spatial distribution of trace metal elements.
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indicates similar sources and geochemical behaviors (e.g.,

enrichment and transport), whereas negative correlations suggest

different origins (Chai et al., 2021). As shown in Figure 5, the

correlations between As and Hg or Cd are weak, and there is a

significant negative correlation between As and Cu, Zn, Pb, and Cr,

indicating that As originates from sources different from those of

the other elements in the study area. Highly significant positive

correlations (p ≤ 0.001) are observed among Hg, Zn, and Cd, with

the correlation coefficient between Hg and Cd reaching 0.85,

suggesting similar sources and geochemical behavior between

these two elements, but different from other metals. Cd shows a

significant positive correlation with Zn and Hg, but its correlation

with Cu, Pb, Cr, and As is weak, indicating that Cd likely originates

from different sources than those elements. Cu, Pb, Zn, and Cr

exhibit significant positive correlations (p ≤ 0.001), with correlation

coefficients around 0.5, suggesting similar sources, consistent with

findings from intertidal sediments in Sanya Entertainment Island

(Meng et al., 2025). Zn is significantly correlated with Cr, Pb, Cu,

Cd, and Hg, indicating a wide range of sources and multi-origin

characteristics for Zn in the study area.

3.5.2 Source analysis of trace metals in sediments
based on PMF modeling

The PMF model was employed to identify the potential sources

of seven trace metals in the shallow coastal surface sediments of the
Frontiers in Marine Science 10
study area. The model was run 25 times, and four factors were

extracted based on the lowest and most stable Q values obtained

during the iterations. All signal-to-noise ratios (S/N) exceeded 4,

and the fitting coefficients (R²) for Cu, Cr, and Pb were relatively

low, likely due to the presence of several outliers. In contrast, the

fitting coefficients (R²) for As, Hg, Zn, and Cd all exceeded 0.9

(Table 4), indicating that the PMF model produced reliable results.

The presence of outliers, such as the maximum Cu value being 572

times higher than the minimum, reflects localized severe pollution,

which negatively affected the model’s overall fit. These outliers were

retained in the analysis to preserve data integrity. The source

contributions of the seven trace metals are shown in Figures 8

and 9. In addition, to further clarify the sources represented by each

PMF factor, the spatial distribution of factor contributions was

visualized using kriging interpolation (Figure 10), and the potential

pollution sources were inferred based on local industrial,

agricultural, and transportation activities.

Factor 1 is primarily characterized by high loadings of Hg, Cd,

Pb, Cu, Zn, and As, with Hg being the dominant contributor at

87.4%. The average concentration of Hg in the study area exceeds

the background levels of Chinese shallow marine sediments. The

high dispersion coefficient and elevated maximum values suggest

that Hg accumulation in the study area is closely associated with

anthropogenic activities, resulting in significant local enrichment.

The spatial distribution of elevated Hg concentrations aligns well
FIGURE 7

Stacked histogram of single factor pollution index in the study area.
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with the loading pattern of Factor 1. Generally, fossil fuel

combustion, industrial emissions, and wastewater discharge are

the main sources of Hg (Chai et al., 2021; Wang et al., 2022c).

The discharge of wastewater, atmospheric deposition of Hg-

containing particulates, and surface runoff all contribute to Hg

enrichment in sediments (Li et al., 2022; Rydberg et al., 2008; Fei

et al., 2022; Ren et al., 2021; Sun et al., 2019; Zhang et al., 2021). Hg

is also among the most commonly detected toxic trace metals in

mariculture sediments (Wang et al., 2021). Mercury-containing fish

medications, including calomel, mercurous nitrate, mercury acetate,

and mercury pyridine acetate, as well as the use of fertilizers, also

contribute to Hg pollution (Madrid et al., 2002). In the study area,

Factor 1 is predominantly distributed in the lagoon of the Grandpa
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Sea and the nearshore waters of the Small Sea lagoon—key

mariculture zones in Wanning City. This pattern is consistent

with observations in the Sandu Bay aquaculture area along the

northeastern coast of Fujian Province (Li, 2008). Mercury-

containing fish medications, widely used in aquaculture before

their ban in 2002, can persist in aquatic environments for

extended periods and gradually accumulate in sediments. Thus,

Factor 1 likely originates from the historical extensive use of

mercury-based fish medications in aquaculture. Given mercury’s

high toxicity—capable of causing autoimmune disorders, as well as

lung and kidney failure—a strict ban on mercury-containing fish

medications is essential to safeguard aquatic food safety.

Factor 2 is mainly characterized by Cd, Cr, Pb, Zn, and Cu, with

Cd being the dominant contributor at 73.24%. The median

concentration of Cd in the study area is similar to that of Chinese

shallow sea sediments, while the mean value is slightly higher. The

high dispersion and a maximum value 10 times greater than the

national background indicate localized severe Cd pollution. This

suggests that severe Cd pollution is confined to a small area, likely

caused by anthropogenic activities. The spatial distribution of

anomalously high Cd, Cr, and Pb concentrations corresponds well

with Factor 2. Previous studies have identified Cd as a key indicator

of agricultural activities (Chen et al., 2022a; Wang et al., 2022a; Wei

et al., 2022). Cd is abundant not only in inorganic fertilizers like

phosphate fertilizers, but also in feed additives frequently used in

aquaculture (Zi et al., 2021). China’s mariculture industry has long

relied on high-density, high-input practices. With a typical feed
TABLE 4 Fitting results for measurements using the predicted values of
the PMF model.

Metal Intercept Slope SE R2

As 0.02 0.98 0.04 1.00

Hg 0.00 0.99 0.00 1.00

Cu 0.79 0.04 0.36 0.13

Zn 0.98 0.80 0.84 0.94

Pb 1.83 0.39 0.92 0.29

Cd 0.00 0.91 0.00 0.99

Cr 2.98 0.36 1.94 0.32
FIGURE 8

Contribution of PMF-modeled source factors to sediment trace metals.
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conversion rate of only 59%, approximately 40% of the feed remains

and settles into the sediments (Huang et al., 2005). Consequently,

sources such as aquaculture feed, agricultural fertilizers, wastewater

discharge, atmospheric emissions, and materials from ship

corrosion and paint peeling can all contribute to Cd accumulation

(Jia et al., 2020; Feng et al., 2021; Chen et al., 2022b; Sapkota et al.,

2008; Zhang et al., 2012; Dean et al., 2007; Yi et al., 2011). Factor 2 is

widely distributed throughout the study area, particularly in the

expansive shallow coastal zone between the estuaries of the Grandpa

Sea Lagoon and the Sun River. This region falls primarily under the

jurisdiction of Dong’ao Town, which, in recent years, has actively

developed mariculture and livestock farming. Efforts have been

made to establish the “Dong’ao Goose” industrial brand, resulting in

a high concentration of aquaculture and livestock farms. The Cd

enrichment in Factor 2 is therefore likely due to the extensive use of

feed and its long-term accumulation. The Sun River serves as the

primary outlet for municipal wastewater in Wanning City, with

numerous sewage treatment facilities along its basin. Thus, the mild

but persistent Cd anomaly near its estuary is likely caused by urban

sewage discharge. Therefore, Factor 2 likely originates from a

combination of urban sewage and feed inputs from aquaculture

operations. Given the long-term accumulation potential of trace

metals, enhanced monitoring of Cd pollution is warranted. Rational
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and efficient feeding practices should be adopted, along with the

implementation of stricter wastewater treatment measures.

Factor 3 is characterized by loadings of As, Hg, Cd, Pb, Cu, and

Cr, with arsenic (As) being the dominant element, contributing

79.5%. Both the mean and median concentrations of As in the study

area exceed those found in Chinese shallow marine sediments. The

low dispersion coefficient indicates the widespread presence of low-

level As pollution across the study area, likely influenced by

anthropogenic activities. The spatial distribution of elevated As

concentrations closely aligns with that of Factor 3. Previous studies

have shown that As is commonly found in high concentrations in

fertilizers and pesticides (Fan, 2018; Liu et al., 2020). Additionally,

compounds such as calcium arsenate and sodium arsenate are often

used in herbicides and pesticides (Huang et al., 2022a, Huang et al.,

2022b). Therefore, prolonged and intensive use of fertilizers,

herbicides, and pesticides can lead to As accumulation and

subsequent soil contamination. Arsenic from contaminated soils

may be transported to nearshore marine environments via surface

runoff and subsurface flow, resulting in As pollution in shallow

marine sediments. In the study area, Factor 3 is predominantly

distributed in the northern marine zone east of Shan’gen Town.

Shan’gen Town is well known for its advanced tropical agriculture,

producing fruits such as pineapple, lychee, and longan. Notably, it
FIGURE 9

The contribution percentage of PMF factors for each metal.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1627805
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2025.1627805
hosts the largest winter pineapple production base in the country.

Therefore, Factor 3 likely originates from the application of

pesticides and herbicides in agricultural practices. Considering the

high toxicity and carcinogenicity of As, careful and scientifically

guided use of pesticides and herbicides is essential.

Factor 4 is primarily characterized by loadings of Cr, Zn, Cu, Pb,

As, andHg, with Cr, Zn, and Cu contributing the most. The individual

contributions of Cr, Zn, Cu, and Pb were 60.94%, 65.43%, 52.08%, and

40.78%, respectively. The spatial distribution of high-value zones for

Zn, Cu, and Cr closely matches that of Factor 4. The mean

concentrations of Cr, Zn, Pb, and Cu are comparable to those in

Chinese shallow marine sediments, with dispersion coefficients below

1 (except for Cu). However, the maximum values are four to five times

higher than the means, indicating localized pollution. This suggests

that these elements are generally less influenced by human activities,

although localized hotspots of contamination are present due to

anthropogenic sources. Some studies have shown that the main

sources of Pb are automobile exhaust (Yang et al., 2020), wear of

metal alloys in engines (Harrison et al., 2003), tire wear (Xiao et al.,

2021), and lead–zinc mine production activities (Chen et al., 2022c).

In addition, leaded gasoline (Krishnakumar et al., 2020;

Chandrasekaran et al., 2020) and ship mooring or excessive tourist

activities (Wang et al., 2020a) can cause Pb pollution. Cr pollution

comes from a wide range of sources, mainly ore mining, steel mill

waste, coal combustion slag dumping, port and harbor terminals,

industrial effluents (Krishnakumar et al., 2020; Wang et al., 2017;

Gutiérrez-Mosquera et al., 2018; Nagarajan et al., 2013; Suresh et al.,

2015; Bramha et al., 2014; Vetrimurugan et al., 2017; Peter et al., 2017),
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and many other sources, which may be related to the fact that most of

the industrially produced materials mostly contain Cr elements. Cu is

widely used in electric power, electronics, energy, petrochemical,

machinery, metallurgy, transportation and emerging industries, and

other fields (Li and Zhang, 2010; Wang et al., 2017; Fu et al., 2014;

Chen et al., 2022d; Huang et al., 2007). Zn is more widely used and

occupies an important position in the national economy. Zinc is

widely used in the manufacture of castings, printing and dyeing

industry, pharmaceutical industry, and rubber industry, including

automotive products, daily-use hardware, paint, paper, car tires,

ceramics, toys, flame retardants, anticorrosives, anti-inflammatory

agents, anti-rust treatment agents, bleach, pesticides, oil, fungicides,

compound nitrogen fertilizers (Zhou et al., 2019), and other areas of

production and life, and its sources are more extensive. Factor 4 is

predominantly distributed in the eastern section of the Grandpa Sea

lagoon, including the Houhai and Wuchang harbor areas. This region

hosts numerous ports and wharves and serves as a major hub for

maritime traffic, such as the Wuchang First-Class Fishing Harbor

in Wanning. Thus, Factor 4 is likely associated with waste

generated from marine transportation activities. These findings

underscore the need for improved waste management practices in

marine transportation.
4 Conclusion

The average concentrations of As, Hg, Cu, Zn, Cd, Pb, and Cr in

surface sediments of the study area comply with China’s Class I
FIGURE 10

PMF factor profiles of sediment trace metal based on spatial distribution.
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Marine Sediment Quality Standard, indicating an overall low level

of contamination. However, localized areas of elevated As, Cu, Cr,

and Pb concentrations suggest the presence of point-source or

small-scale surface pollution that requires further attention.

The dominant sources of trace metal pollution in the study area

were identified as follows: use of mercury-based fish medicine in

aquaculture (Factor 1, 17.9%), feed input and municipal sewage

discharge (Factor 2, 30.5%), pesticide application (Factor 3, 17.3%),

and ship-related marine transportation activities (Factor 4, 34.3%).

To mitigate trace metal accumulation in marine sediments, stricter

regulations should be implemented, including banning mercury-

based fish medicines, optimizing pesticide usage, controlling ship

waste discharges and municipal effluents, and promoting efficient

feeding practices.
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