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Maritime mobile edge computing (MMEC) technology facilitates the deployment

of computationally intensive object detection tasks on Maritime Internet of

Things (MIoT) devices with limited computing resources. However, the

dynamic marine network and environmental interference in feature extraction

adversely affect detection accuracy and cause delay. In this paper, we propose a

cumulative confidence-driven joint scheduling strategy for image detection tasks

in MMEC scenarios. The strategy employs lightweight and full models as the

detection framework. Through an adaptive decision-making scheme for marine

device image recognition, the proposed strategy accumulates results from

different models within the framework to ensure quality of service (QoS). To

obtain a dynamic offloading strategy that minimizes the total system cost of

latency and energy consumption, the problem is divided into two subproblems,

and a chemical reaction optimization algorithm is used to reduce the

computational complexity. Then, a state normalization action project deep

deterministic policy gradient (SNAP-DDPG) algorithm is proposed to handle

environmental dynamics, achieving minimized system cost with satisfied QoS.

The simulation results indicate that, compared to existing algorithms, the

proposed SNAP-DDPG algorithm keeps object detection confidence, with

latency reduced by 34.78%.
KEYWORDS

Marit ime Internet of Things, edge computing, YOLO, task offloading,
reinforcement learning
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1 Introduction

High-precision object detection methods based on neural

networks have been used in the fields of equipment maintenance,

marine life monitoring, and security in Maritime Internet of Things

(MIoT) (Liu et al., 2023a; Zhao et al., 2025; Lu et al., 2021; Liu et al.,

2023b). These applications generate large amounts of real-time data

that require low-latency processing to facilitate time-sensitive

decision-making. Consequently, stringent requirements are

imposed on both maritime communication infrastructure and

edge device computational capabilities (Munusamy et al., 2023).

To address this challenge, the development of an optimized

detection framework coupled with an intelligent model offloading

strategy presents a viable solution to mitigate computational

constraints on resource-limited mobile devices.

However, as the parameters of NN networks are increasing,

unstable network conditions and limited resources increase the

local computation burden. Thus, selecting a suitable network

architecture and efficient resource allocation strategy is crucial.

Take the convolutional neural network (CNN)-based You Only

Look Once (YOLO) algorithm as an example. In MIoT scenarios, it

is necessary to balance detection accuracy with latency and energy

consumption when making decisions between target detection

network structures and MIoT networks. Generally, deeper and

more complex models achieve higher accuracy at the cost of

higher computational resource consumption (Jiang et al., 2025). A

segmented YOLO architecture can be employed, where an optimal

cut layer is selected, partitioning the model between local and edge

devices, thereby balancing task loads across different nodes (Du

et al., 2022; Xiao et al., 2022)—for example, regarding the model

partitioning problem of edge offloading for heterogeneous devices, a

partitioning and offloading strategy for heterogeneous task server

systems is proposed to reduce the overall latency and energy

consumption in model inference (Liao et al., 2023). Through joint

optimization of model partitioning, the optimal partitioning and

scheduling methods are analyzed (Duan and Wu, 2023).

Reinforcement learning is used for adaptive offloading decisions

in dynamic maritime environments. It assists partitioned CNN

models by offering offloading strategies (Qu et al., 2023).

Although significant progress has been made in NN-based

task offloading strategies, in the practical task collection of MIoT,

object detection accuracy is affected by shooting angles over

consecutive time intervals and the marine environment (Heller

et al., 2022; Chen et al., 2024). We can infer multiple correlated

results by reasoning over multiple different models and

consecutive-frame images. Thus, this paper designs an adaptive

decision-making scheme for device image recognition. Through a

reinforcement learning algorithm, it generates offloading

decisions in the detection model based on accumulated object

detection results, thereby enhancing the role of lightweight models

in detection results.

Specifically, this paper proposes a cumulative confidence-

driven joint scheduling strategy for image detection tasks in

MMEC scenarios. The strategy establishes a detection

framework that integrates lightweight detection models on local
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devices with partially full models on local devices and the

remaining full models on edge devices. The pressure on marine

hardware can be eased by adjusting the offloading points. Given

the impact of object locations and the marine environment on

accuracy, we propose an adaptive decision-making scheme for

marine-device image recognition. It uses accumulated detection

results to identify final targets. We break the NP-hard problem

into two subproblems and use chemical reaction optimization

(CRO) to reduce computational complexity. Then, the optimized

problem is transformed into a Markov decision process (MDP).

We introduce the state normalization action project deep

deterministic policy gradient (SNAP-DDPG) algorithm based on

the DDPG algorithm. It incorporates normalization and action

discretization mechanisms and uses accumulated confidence as a

constraint. This addresses the dimension differences of

environmental variables and increases the convergence rate of

algorithms in marine dynamic environments. The main

contributions are summarized as follows.
1. Aiming at the dynamic MIoT scenario with limited marine

resources and easily changed detection target features, this

paper proposes a cumulative confidence-driven joint

scheduling strategy for image detection tasks in MMEC

scenarios. This scheme can be tailored to customer

demands and marine resources. By switching between

lightweight and full models and aggregating detection

results, it accomplishes object detection tasks.

2. We divide the NP-hard problem into two separate

subproblems. The subproblem of device bandwidth and

allocated computing resources is solved by the CRO

algorithm. This minimizes total costs and reduces the

computational complexity of our offloading decisions.

3. To address how dynamic marine environments and

different environments affect image features, we proposed

the SNAP-DDPG solution. It is based on accumulated

confidence as a constraint condition. By state

normalization and action discretization, the solution

improve s de c i s i on -mak ing e ff e c t i v ene s s and

convergence speed.
The structure of this paper is as follows: Section 2 provides a

comprehensive literature review. Section 3 presents the system

scenario addressed in this paper and establishes a problem model.

Section 4 introduces a DRL-based solution to the adaptive

offloading problem. Section 5 presents simulations and

discussions, and finally, Section 6 is the conclusion.
2 Related works

2.1 Object detection model

The advancement of artificial intelligence has fueled the rapid

development of the Internet of Things. The detection models for

maritime object detection have undergone a significant transition
frontiersin.org
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from traditional image-based methods to deep learning algorithms.

The limited robustness of traditional algorithms in complex and

dynamic marine environments makes them inadequate for

comprehensive detection (Chen et al., 2023). With the

improvement of computing power, deep learning algorithms,

especial ly CNNs, have been widely used in maritime

object detection.

One-stage CNN algorithms like YOLO provide a simpler

classification process that can be directly applied to images (Zhen

et al., 2023). The YOLO series, from YOLOv1 to YOLOv5, has

progressively achieved a better balance between object detection

accuracy and real-time processing (Gai et al., 2023; Wang et al.,

2022; Olorunshola et al., 2023). The YOLO series has also led to

various improved models that are adapted to specific marine

environments—for example, Vignesh et al. applied YOLOv5 and

used the lightweight characteristics of MobileNet to detect sea

cucumbers underwater efficiently (Vignesh and Dhamodaran,

2024). Yang et al. enhanced the excellent stability of the YOLOv5

model in foggy conditions through class balance and data

augmentation techniques (Yang et al., 2024). Zhu et al. improved

the YOLOv5 algorithm by integrating multiple attention

mechanisms and combining it with the DeepSort tracking

algorithm, achieving real-time monitoring and tracking of marine

objects (Zhu and Zhang, 2024).

This paper proposes a universal cumulative confidence-driven

joint scheduling strategy for image detection tasks in MMEC

scenarios based on the ideas above. The strategy can select

appropriate lightweight and full models for different scenarios.

Given that object locations and the marine environment affect

accuracy, we propose an adaptive decision-making scheme for

image recognition of marine devices. It uses accumulated

detection results to identify the final detection targets.
2.2 Task offloading in MMEC system

As a key technology for next-generation networks, MMEC is

crucial in various marine applications. It eases the pressure of

limited computational resources on mobile marine devices, which

struggle to meet the demands of complex CNN models.

Conventional and intelligent offloading decision methods

optimize offloading performance in MMEC environments.

Considering the growing marine activities, Wang et al.

proposed a hybrid Stackelberg-bargaining game approach. It uses

satellite assistance to maximize the utility of marine devices (Wang

et al., 2025). Given the complexity of maritime image processing

tasks, Li et al. examined the influence of video resolution on task

scale and accuracy and decoupled and established an energy

consumption optimization model, offloading tasks to marine edge

servers (Li et al., 2023). Qi et al. proposed a joint optimization

problem, which involves collaboratively making computation

offloading decisions, deploying R-UAVs, and associating S-UAVs

with rescue targets. Additionally, they designed an efficient iterative

algorithm that breaks down the problem into three subproblems for

resolution (Qi et al., 2024).
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Traditional offloading methods lack long-term planning and

ignore long-term decision-making impacts. In dynamic and time-

varying MMEC scenarios, real-time offloading is challenging.

Conversely, intelligent offloading decision-making methods can

dynamically adjust strategies and consider task optimization

globally. Reinforcement learning, iteratively interacting with the

environment, enhances the system’s adaptability and enables

optimal decisions (Shakya et al., 2023; Yan et al., 2022). Xu et al.

proposed an enhanced version of the double-delay deep

deterministic policy gradient algorithm, which aims to improve

QoS in time-varying maritime scenarios (Xu et al., 2024). Cheng

et al. proposed a multi-agent approximate strategy optimization

solution that addresses low-latency challenges in multi-UAV-

assisted mobile edge computing systems (Cheng et al., 2024). Liu

et al. proposed a Deep Q-Network and Deep Deterministic Policy

Gradient algorithm to optimize UAV trajectories and virtual

machine configurations (Liu et al., 2022).

Inspired by existing studies, we propose the SNAP-DDPG

solution, constrained by cumulative confidence. It can

dynamically adapt to the maritime environment in real time,

links customer demands to detection accuracy via accumulated

confidence evaluation, and thus enhances QoS (Table 1).
TABLE 1 List of important notations.

Parameters

tAi Computational latency of the lightweight object detection model for
local device i

tBi Computational latency of the full object detection model for local
device i

tEi (k) Computational delay for object detection for device i during time slot k

eAi Local computational energy consumption of the lightweight object
detection model at device i

eBi Local computational energy consumption of a partially full object
detection model at device i

eTi (k) Transmission offloading energy of device i in time slot k

c(k) Total cost of the system in time slot k

Ki Task completion time requirement for device i

Pi(k) Delay violation penalty of device i at time slot k

qi(k) Lightweight object detection model detects the number of images of
device i at time slot k

W Transmission data size in bit

hT Task confidence requirements

hi(k) Cumulative confidence level of device i at time slot k

t System time slot

Decision variables

ai(k) Number of times device i is offloaded, in time slot k

zTi (k) Proportion of bandwidth of device i at time slot k

z System’s network resource consumption ratio at time slot k
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3 System model

3.1 Edge-assisted intelligent MIoT scenario

We consider using multiple maritime surveillance devices to

collect video data of sea areas to ensure the security of sea areas. In

particular, the available bandwidth B varies with the maritime

environment, being affected by the resource occupation of other

maritime devices and the marine weather (Liu et al., 2023c). As

illustrated in Figure 1, the detection system comprises several marine

monitoring devices I = 1, 2,⋯, i,⋯, Ij jf g deployed in the MMEC

environment, a remote edge server, a user terminal, and a data center.

An improved YOLOv5 algorithm framework with a lightweight

objective detection model and a full objective detection model is

developed on the local devices and the edge server (shown in Figure 1).

Marine monitoring devices: Each monitoring device generates an

independent task and each task can be offloaded to the server. Each task

has different data samples. The devices have the capability to collect real-

time data from a predefined perspective within theMMEC environment

and subsequently extract the captured videos into consecutive frames.

Local devices: Each local device carries a lightweight model and

a part of the full model to execute object detection tasks for the

images transmitted from the marine monitoring device.

Edge device: Collaborating with local devices, the edge server

hosts another part of the full model to process the intermediate data

from the local devices.

User terminal: The user terminal collects the system status data

and has enough resources to train offloading strategies.
3.2 Business processing model

We consider both the deployment of a lightweight model of

YOLOv5 locally and the offloading of a full YOLOv5 model for

computation between the device and the edge server. The full

YOLOv5 model is partitioned to obtain intermediate data samples
Frontiers in Marine Science 04
locally on the device. These samples are then transmitted to the edge

server for computation offloading. For the lightweight YOLOv5

model, all object detection modules La are executed locally, while for

the full YOLOv5 model, different groups of modules Lc are

offloaded to the edge server for computation, with the remaining

modules Lb being executed locally based on decision-making

(illustrated in Figure 2).

For the sake of simplicity, we assume device i generates an

object detection task at slot k = 1, and the task completion time is

denoted as Ti. The number of time slots is represented as Ki= ⌈Ti/t⌉.
Multiple detections may be generated within a single time slot. t is
the duration of a time slot of the system and k(k ≥ 1) as the integer

index of the time slot.

Given the limited resources of maritime edge devices, this scheme

prioritizes local computing, with edge computing as an auxiliary tool to

enhance the QoS. Let qk represent the execution status of the

lightweight object detection task at the beginning of time slot k,

where qi(k) denotes the number of datasets processed for object

detection by device i during time slot k, with initial state qi(1) = 0.

Furthermore, ak ∈ R Ij j represents the offloading decision vector for

time slot k, which comprises a collection of action states among devices.

The element ai(k) corresponds to the action state of device i ∈ I and

represents the offloading decision variable. ai(k) = 0 indicates that the

lightweight model is executed locally, updating its execution status as

qi(k + 1) = qi(k) + 1. Conversely, when ai(k) > 0 and the number of

targets identified following the execution of the lightweight model

exceeds the offloading decision variable ai(k), the device will offload ai
(k) intermediate data samples to the edge server. In this case, the

execution status is updated as qi(k + 1) = qi(k) − ai(k). If the condition

is not satisfied, the device defaults to executing the local lightweight

model, resulting in qi(k + 1) = qi(k) + 1 (updated in Figure 3).
3.3 Computing model

Let FLOPslrepresent floating point operations (FLOPs) in the

layer l. Let FLOPSi denote floating point operations per second
FIGURE 1

Edge-assisted image-based object detection system. ① Marine monitoring devices taking pictures. ② Transmission offloading decision.
③ Transmission detection results.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1629563
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Sun et al. 10.3389/fmars.2025.1629563
FIGURE 3

qi(k) update process.
FIGURE 2

YOLOv5 object detection framework.
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(FLOPS) of device i. Let tAi denote the computational latency of the

local computation of the lightweight detection model at device i,

given by

tAi = ol∈LaFLOPsl
FLOPSi

  ∀ i ∈ I : (1)

Let tBi denote the local computational delay of the full detection

model for the device i, which is given by

tBi = ol∈LbFLOPsl
FLOPSi

  ∀ i ∈ I, (2)

where l ∈ La, l ∈ Lc denotes the sum of all layers of La, Lc

, respectively.

For the full model, each device is allocated fixed computational

resources on the edge server; the resources are a constant FLOPS0.

tEi (k) is denoted as the computational delay for full for device i

during time slot k, given by

tEi (k) =
ol∈LcFLOPsl

FLOPS0
  ∀ i ∈ I, (3)

where l ∈ Lb denotes the sum of all layers of Lb.

In practice, the computation time of the device must also take

into account the memory and structure of the device itself and the

data transfer between results. The computation time presented in

this paper is an approximate estimation based on model

simplification. However, it does not affect the subsequent

performance analysis and results.
3.4 Communication model

Assuming a constant transmission delay for the wired network

and considering the negligible impact of detection result data on

transmission delay compared to sample data, this paper solely

focuses on the wireless uplink transmission process from marine

monitoring device to APs.

Let W = jvl denote the size (in bits) of the output data in the

middle layer l, where j is the size in bits of one floating point

number and output data in layer l has vlfloating point numbers.

Assume that zT (k) ∈ R Ij j denotes the decision vector for the

allocation of bandwidth during time slot k, and the element zTi (k)

denotes the proportion of bandwidth assigned to device i and

oI
i z

T
i (k) ≤ 1.

The electromagnetic interference over the sea surface that

causes the transmission delay of device i in time slot k via the AP

can be expressed as (Liu et al., 2022):

tTi (k) =
W

½zTi (k) + ϵ�B log2 (1 + pigi
s2 )

  ∀ i ∈ I, (4)

where pi is the transmit power of device i, gi is the constant

transmit power gain of the up link between device i and the AP, s2

is the waveguide channel noise, and the bandwidth used is B, where

ϵ is a very small constant parameter with 0 < ϵ ≪ 1, assuming the

t(1)i = (W=B½log2(1 + pigi=s 2)�).
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3.5 Energy model

The local computational energy consumption of the lightweight

model at device i denoted by eAi is given by

eAi = ki(fi)
3tAi = ki(fi)

2ol∈Laul  ∀ i ∈ I : (5)

The local computational energy consumption of a partially full

model at device i can be demoted by eBi , which is given by

eBi = ki(fi)
3tBi = ki(fi)

2ol∈Lbul  ∀ i ∈ I, (6)

where ki is the energy efficiency factor of device i (Lin

et al., 2021).

The transmission energy loss of offloading an intermediate data

sample from device i to the AP during time slot k is denoted by

eTi (k), which is given by

eTi (k) = pit
T
i (k)  ∀ i ∈ I : (7)
3.6 Cumulative confidence model for
object detection

Consider an object detection task with categories M = {1,…,|

M|}. YOLOv5 object detection framework detects a sequence of

video frames and obtains a vector C of object detection results, C =

(c1,c2,…,cj). j is the total number of video frames extracted. ci is the

result of a video frame detection, i ∈ [1,j], where ci= c{i,m}.

Accumulate the detection results from 1 to j frames to get the

cumulative target detection results for category m expressed as oj,m,

written as Qu et al. (2023)

oj,m =
Pr(Y = m)

Qj
j0=1 Pr(cj0 jY = m)

oM
m=1½Pr(Y = m)

Qj
j0=1 Pr(cj0 Y = m)�j

(8)

In order to better quantify the value of the resulting oj,m, we use

a measure of the confidence level of the cumulative target detection

results in the form of normalized entropy. The confidence level o is:

h(oj,m) = 1 +oM
m=1

oj,mlog2(oj,m)

log2M
, (9)

where h(z) has a value between 0 and 1 (Teerapittayanon et al.,

2016, 2017).

The lightweight model and the full model are accumulated for

the obtained target detection results according to (Equation 9).

Let hk ∈ R Lj j denote the cumulative confidence level of each

device in time slot k, where the element hi(k) denotes the

cumulative confidence level of device i at time slot k and hi(1) =

0: hi(k) is obtained from (Equations 8, 9). For each device i, the

object detection results need to be accumulated over multiple time

slots until the device task requirements are satisfied. hT represents

the task requirements on the device, where hT = (hT (1),hT (2),…,

hT (i),…,hT (I)) is the task threshold vector. hT(i) is the task

threshold for device i. Pi(k) denotes the delay penalty suffered by

device i in time slot k. Ki is the task time limit for device i. Pi(k) is
frontiersin.org
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computed by the following rule: the Pi(k) is 0 when 1 ≤ k ≤ Ki, when

k ≥ Ki, Pi(k) = (k − Ki+ 1)P, if hi(k)< hT, P is the delay penalty factor;

thus, it can be obtained as

Pi(k) =
(k − Ki + 1)+P, if  hi(k) < hT

0, otherwise :

(
(10)
4 Problem formulation and algorithm
design

4.1 Joint offloading and resource allocation
for multi-device cumulative object
detection computation

In object detection tasks, the full model has higher accuracy

than the lightweight model. More data can be offloaded via

additional communication resources to quickly improve the

detection confidence. In this paper, we are concerned with

expressing the network resource consumption as a percentage of

the bandwidth used within the region. z(k) is defined as the

consumption ratio of system network resource in time slot k,

where z(k) ∈ [0,1]. Thus, by refer to Subsection 3.4, we have:

o∀ i∈Iz
T
i (k) ≤ z (k) : (11)

According to Equations 1–4, for local computation edge

computation and the total delay of transmission does not exceed

the length of the designated time slot t, which can be expressed as

follows

ai(k)½tTi (k) + tEi (k) + tBi � ≤ t ,   ∀ i ∈ I

tAi ≤ t ,   ∀ i ∈ I,

(
(12)

to ensure each device’s task is completed within a single time

slot (Bai et al., 2024).

Let y (k) = y i(k),∀ i   ∈ If g be an auxiliary set of binary

decision variables in the corresponding time slot k, where yi(k) =

1 indicates that device i offloads data to the edge server andyi(k) = 0

indicates that the task is completed on device i.

Let ei(k) denote the total energy consumption of device i in time

slot k, including transmission energy and local computation energy,

calculated by (Equations 5–7)

ei(k) = yi(k)ai(k)(e
T
i (k) + eBi (k))+

½1 − yi(k)�eAi   ∀ i ∈ I :
(13)

We consider differences in the focus on network and local

resources in different scenarios. We denote the linear weighting

factor of network and local resources by w1 ∈ (0,1). The total cost of

time slot k is defined as c(k) which can be calculated by Equation 13

c(k) = w1o∀ i∈I ei(k) + (1 − w1)z (k), (14)

When w1 is greater, the system is more inclined to prioritize

local resources. In contrast, when w1 is smaller, the system is more

inclined to prioritize network resources. Thus, our objective is to
Frontiers in Marine Science 07
minimize (Equation 14) across all devices i in the system, as

indicated by

min
zT (k),z (k),ai(k)

oK
k c(k) (15)

s : t : zTi (k), z (k) ∈ ½0, 1�  ∀ i ∈ I (16)

hi(K) ≥ hT (i)  ∀ i ∈ I (17)

K = arg min
k

(hi(k) ≥ hT (i))  ∀ i ∈ I : (18)

Combining the equations above, it can be deduced that the

target problem is a typical MINLP problem, which is also an NP-

Hard problem. (Equation 16) denotes the value ranges of variables

zi
T(k) and z(k). (Equation 16) indicates that the device i completes

the task in slot k in time t. (Equation 11) indicates that the sum of

network resources allocated to all devices must be less than z(k).
(Equation 17) shows that the final task confidence must meet the

threshold. (Equation 18) represents the need to minimize K.

In this paper, the action space is limited. In order to solve the

computational complexity caused by multiple variables, we split the

system completion process into each time slot. Considered as a

subproblem within a certain time slot, we first determine the integer

unloading decision variable akto find the corresponding minimum

energy consumption c(k) and the corresponding z(k) and zT(k) of

the action, which we define as c∗(k), z∗(k), and zT∗(k) (shown by

Subsection 4.2). For the long-term adaptive offloading problem, the

offloading decision of each device is determined based on the

change of network state by transforming the adaptive offloading

problem into MDP, as shown by Subsection 4.3.
4.2 Subproblem of resource allocation

Given the offloading decision vector ak for time slot k, the

optimization problem regarding total cost c(k) is as follows:

min
zT (k),z (k)

c(k) (19)

(Equations 11, 12, 16) (20) where Equation 20 is a

conditional constrain.

The multi-objective combinatorial convex optimization issue

discussed above is solved in this study using heuristic techniques

(Zhou and Hua, 2022; Du et al., 2023). CRO is an effective heuristic

method with fast convergence and a strong global search capability.

It can be readily parallelized, is resilient to changes in parameters,

and is not constrained by the initial solution. Consequently, the

global optimal solution can be found efficiently for difficult

optimization problems by employing CRO (Taylor et al., 2023).

We define the molecular group as X = {X1,X2,…,Xi} and define

an action in the action space as a∗. The corresponding molecular

solution form for the two variables z(k) and zT(k) can be denoted as

Xi= {x1,x2,…xi}, where xi is an atom in the solution space, xi= {0,1}.

We define PE as the potential energy of the molecule, representing

the fitness function c(k), where a lower fitness function represents less
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energy spent by the system. KE is defined as the kinetic energy of the

molecule, representing the degree of activity of the molecule during the

chemical reaction algorithm, i.e., the ability of z(k) and zT(k) to

continue participating in the reaction. We define Nm as the

minimum number of collisions of the system, representing the

number of times a molecule reaches the minimum PE to participate

in the reaction.

We initialize the maximum number of iterations U :Xu
i is the

numerator solution for the u-th iteration and initialize KE and PE.

At each iteration, the next generation of molecules is generated

from the current generation of molecules. There are four basic

operational operators in which the generation takes place, namely,

single molecule collision, single molecule decomposition,

intermolecular collision, and molecule synthesis, as shown in

Figure 4. Each operation operator consumes a certain amount of

KE. Pm is defined as the intermolecular reaction probability. Each

iteration initializes p. If the molecular probability p ≤ pm, a

unimolecular reaction is performed and if p > pm , a

multimolecular reaction is performed.

In a multimolecular reaction, each molecular solution has a

number of collisions N 0. When N 0 > Nm, unimolecular

decomposition takes place, N 0 ≤ Nm, single molecule collision take

place. In a multimolecular reaction, KE > bm, performs molecular

synthesis. KE≤ bm, performs molecular collision. bmis the threshold for
performing molecular synthesis and is a constant. When there exists

PE≤ Pm, the reaction stops and the optimal molecular solution is

obtained. Pm is a constant, i.e., the condition under which the reaction

stops. Otherwise, continue to iterate the process above.

To achieve this, we can determine the optimal z∗(k) and zT∗(k) for
each action in the current time slot. Substituting the solved equations

back into (Equation 15) reduces its computational complexity and

accelerates the convergence of the SNAP-DDPG algorithm.
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4.3 Markov decision process construction

Given z∗(k) and bT∗(k) obtained in Section 4.2, bring in

(Equation 19). (Equation 19) reduces to the ak related adaptive

offloading problem, denoted as

min
ai(k)
oK

k c*(k) (21)

(Equat ions 17 , 18) (22) where Equat ion 22 is a

conditional constrain.

where K is the maximum of time slots in the system, satisfied

with (Equation 18).

(Equation 21) simplifies to a sum of minimum energies with

respect to action ai(k). The system’s total cost is determined by the

current marine environment state, confidence threshold, and device

actions. These actions jointly trigger the system environment to

transition into a new random state. Consequently, this paper

models the problem as an MDP. We establish the MDP which is

denoted as a tuple (S,A,P,R), where S is the state space, A is the

action space, P is the state transfer probability matrix, R is the

reward. The MDP state, action, and reward in this paper are

as follows:
1. State: As images are detected and results are accumulated,

the cumulative confidence of each device is dynamically

changed over time through decision making. In order to

fulfill the task requirements and satisfy the quality of

service, the factors affecting the adaptive decision-making

include hi(k) and k. In addition, the number of lightweight

object detection models executing on each device qi(k)

needs to be considered, represents the state of operation

at the local device. B represents the real-time bandwidth
FIGURE 4

Schematic of the chemical reaction algorithm. (a) Single-molecule collisions. (b) Unimolecular decomposition. (c) Molecular collision. (d) Molecular
synthesis.
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Fron
status of the system, enabling dynamic adjustment

decisions based on the bandwidth condition. Therefore,

the state at time slot k is denoted by sk, given by

sk = ½qi(k),hi(k), k,B� : (23)

2. Action: Devices affect the environment through their

actions. In this paper, the set of actions for all devices

time slot k is an integer offloading decision vector ak = {a1
(k),a2(k),…,ai(k)}, where ai(k) denotes the number of times

device i is offloaded at time slot k. The execution of actions

should satisfy the constraints of qk, as shown in Figure 3.

3. Satisfy the quality of service while minimizing the total cost

and reducing the delay. The rkin time slot k is
rk = −exp(w2c*(k)) −o
i∈I

Pi(k) − o
i∈I

(hT ) −o
i∈I

(hi(k))

 !
, (24)

where w2 represents the degree of focus between cost and delay

and task completion, w2 > 0. c∗(k) is the minimum cost by

Subsection 4.2, and Pi(k) is the delay violation penalty, denoted as

Equation 10.oi∈I(hT ) −oi∈I(hi(k)) is the task completion penalty

for each device between the confidence level at time slot k and the

task metric.
4.4 Deep reinforcement learning solutions

The marine environment features high dynamicity and high-

dimensional states. DDPG employs deep neural networks to

approximate policy and value functions. It can handle high-

dimensional state spaces. Through nonlinear mapping, it extracts

key features to make effective offloading decisions.

4.4.1 Structure SNAP-DDPG
We propose a SNAP-DDPG algorithm to solveMDPs. The SNAP-

DDPG algorithm uses the (ActorCritic) algorithm as the basic

framework of the algorithm, and consists of online, target network

and experience pool D. The DDPG network consists of an online actor

network µ, an online critic network Q and a corresponding target

network µ0 and Q0. The corresponding network parameters are w ,w 0

, q , q 0. For the start of training, the experience pool D is emptied, and

the random initialization parameters w ,w 0, q, q 0.
At the beginning of the DDPG algorithm, starting from time

slot k, the agent of the system obtains the action ak to be taken at

that state by observing the current state of the environment, sk, and

according to the e– greedy strategy.

The values of e range from e0 to 1, e0 is a probability of

exploration of e decreases as the agent continues to be observed,

with a decay factor △e ∈ (0,1), and there is a smooth transition

from the probability of exploration to the probability

of exploitation.

In order to further increase the randomness of learning and to

increase the coverage of learning, a certain amount of random noise
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N is added to the actions. Where the current state action of the

actor network is

ak = m(sk q) +N :j (25)

In order to solve the problem of DDPG’s inability to handle

discrete actions and to solve the problem of order-of-magnitude

differences in the input variables. We propose a SNAP-

DDPG algorithm.

We propose an action mapping approach. Mapping discrete

actions into a continuous action space solves the problem that

DDPG cannot handle discrete actions. During the initial process of

the RL algorithm, we normalize the environment state. The

maximum and minimum values of the training are stored in

temporary memory by batch V training and the scaling factor is

calculated. Addressing order-of-magnitude differences in input

variables and improving training efficiency through normalization

calculations. According to (Equation 23), the environment variable

is set as sk = ½qi(k),hi(k), k,B� as the state at time slot k, and the

difference between the maximum and minimum values of each

variable is used as the scaling factor, fqi(k), fhi(k), fk, fB, to obtain the

normalized environment variable si(k
0) = ½qi(k0),hi(k

0), k0,B0�. The
specific steps of the algorithm are shown in Algorithm 1.
1: Initialize the experience replay buffer D, mini-

batch size N and discount factor g, training episode

length E, training sample length M, the soft update

coefficient t and the learning a,b.

2: Randomly Initialize the weights of actor network w,

the critic networks q, respectively.

3: Let the target network with weights w 0 ←w , q 0 ← q.

4: for episode = 1,2,…,E do

5: simulation parameters of the Object detection

equipment.

6: Read the maximum and minimum value in the

environment and calculate the scale factor fqk , fhk , fk.

7: Receive initial observation state s kof

environment.

8: for k = 1,2,…,M do

9: Normalize state sk to s0
k. select action (Equation

25) and continuousness discrete action sets.

10: Execute action akand observe rk and sk+1.

11: Compare the memory with the state value at the sk+1,

update the maximum and minimum values, and normalize

state sk+1 to s0
k+1.

12: if D is not full then

13: Store transition s0
k,ak ,rk ,s

0
k+1

� �
in D.

14: else

15: Randomly sample a mini-batch of N transitions

s0
k ,ak ,rk ,s

0
k+1

� �
from D, where j =1,2,…,M.

16: Generate action (Equation 25) set (Equation 26).

17: Update the w in Q with (Equation 27), (Equation 28),
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Fron
(Equation 29) and the q in µ with (Equation 30),

(Equation 31).

18: Soft update Q0 and μ0 according to equation

(Equation 32).

19: end if

20: end for

21: end for
Algorithm 1. The SNAP-DDPG algorithm.

4.4.2 Implementation of the SNAP-DDPG

At the beginning of each event, the state of this RL is initialized

to s1 = ½q1,h1, k1,B1�. If all the tasks are full within the specified

period, i.e., the total number of time slots for this event is less than

maxi∈IKi, Pi(k) = 0. When the total number of time slots for the

event is greater than maxi∈IKi. uk indicates the time slot status of

the event, if uk= 1, it means that the event ends at time slot k.

The system notifies each device of the new offloading decision

based on the obtained action. At the end of time slot k, the agent

computes the reward rk (Equation 24) for action ak and observes the

new state sk+1, and with the new cumulative confidence level hk+1
updated by the cumulative object detection scheme on each device,
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the cumulative object detection scheme on each device, the new

cached state qk+1 can be updated based on qk state. Judge the task

completion status at the end of time slot k. If the task is completed,

the system completion signal uk= 1, if the task is not completed, the

system completion signal uk= 0. The communication overhead

between the RL agent and the device can be considered negligible.

The new transition segments (sk, ak, rk, sk+1, uk) are then added

to the empirical memory in the SNAPDDPG, and a small batch ofN
TABLE 2 System parameters in simulation.

Parameters Value

Bandwidth (B) 15 MHz

Noise power (q2) −104 dBm

Transmit power (pi) 20 dBm

Channel gain (gi) 4 × 10−13

Local FLOPS (FLOPSi) 3 × 1011

Edge server FLOPS (FLOPS0) 1 × 1012

Energy efficiency coefficient (ki) 10−28

Bits for a floating-point number (f) 32
FIGURE 5

SNAP-DDPG algorithm structure.
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experience need to be sampled from the memory in order to further

compute the current target Q value, and thus the estimate of Target

critic can be expressed as:

yk = rk + gQ0(sk+1,m
0(sk+1 q 0)

�� ��w 0) (26)

where k is the time slot the current system is in, µ0(sk+1 q 0)j is

the target actor’s action for time slot k + 1, q 0,w 0 are the network

parameters of m0 and Q0, respectively, and g is the discount factor.
Based on the output of online critic Q and the estimate of target

critic Q0 the loss function is obtained as

L(w) = E½(yk − Q(sk, ak w))
2�,�� (27)
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where yk − Q(sk, ak w)j denotes the timing difference error (TD-

error), and then the parameters are updated according to the

minimization loss function, which can be obtained by supervised

learning of the mean-squared error loss (MES) function to find the

gradient, given by

▽w L(w) = E½2(yk − Q(sk, ak w))▽w Q(sk, ak)� :j (28)

Online critic network implements critic network parameters

update according to the gradient rule of neural network, given by

w←w + a▽w L(w), (29)

where a is the learning rate of the online critic network.

Next, updating the actor network using the policy gradient

method, given by

▽q m = ▽a Q(s, a w)j js=sk ,a=m(sk)▽q m(s q)j js=sk : (30)

The parameters of the online actor network are updated by

q← q + b▽q m, (31)

where b is the learning rate of online actor network. For SNAP-

DDPG, the target network parameters are updated every certain

number of steps and a soft update is used to prevent unstable

convergence, the target network parameters are updated, given by

w 0 ← tw + (1 − t)w 0

q 0 ← tq + (1 − t)q 0,

(
(32)

where t ∈ (0,1) denotes the soft update coefficient.
FIGURE 6

Model detection performance comparison.
TABLE 3 Parameters in the SNAP-DDPG algorithm.

Parameters Value

Learning rate for actor (a) 0.001

Learning rate for critic (b) 0.002

Soft replacement (t) 0.01

Memory size (D) 2000

Batch size (N) 32

Optimal reward discount (g) 0.001

Control exploration 0.1
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5 Simulation and discussion

We consider three maritime mobile video collection devices

performing independent tasks within a maritime AP’s coverage. In

our example, YOLOv5s is the full model, and the YOLOv5s-based

MobileNetv3 is the lightweight model (Zhang et al., 2021). Each

device’s classification task involves cumulative confidence operations

on a sequence of video frames until customer requirements are met. It

is assumed that each device has the same task completion time in the

number of time slots. Each device has the same confidence level

requirement for its classification task, hTis set to (0.93,0.95,0.97), and

the other system parameters are shown in Table 2. The selected data set

includes 7,467 water surface images under diverse maritime areas,

climatic conditions, and shooting times. It also covers 14 common

object categories and focuses more on specific scenarios (Zhou et al.,

2021). To train the marine target detection model, we constructed a

dataset with 5,900 training samples, 740 validation samples, and 740

testing samples. The algorithm model is shown in Figure 5.
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Comparing the two models in the system, the full model has

7,022,326 parameters and 214 layers, while the parameter of the

lightweight model decreases to 5,024,100, which improves the

inference speed of the model. The full model and the lightweight

model are trained separately on the established dataset, and the

precision, recall, class average precision, and other metrics can be

obtained by training 200 rounds, as shown in the following Figure 6.

Precision, recall, and mean average precision (mAP) were obtained

through 300 training rounds, as shown in Figure 6. Although the

YOLOv5s full model surpasses the YOLOv5s-based MobileNetv3

lightweight model in the number of model layers, parameters, and

total computational cost (with computational costs of 15.94 FLOPs and

11.61 FLOPs, respectively), it outperforms the latter in terms of

accuracy, recall, and mAP.

In the simulation setup, we set the time slot length as t = 0.1,

and in the case of an ideal network state, two computational

offloads can be performed per time slot. Due to the constraints,

the time slot size in the simulation in this paper is variable with
FIGURE 7

Comparison of the performance of (a) the full model and (b) the lightweight model for different cumulative object detection schemes.
FIGURE 8

Comparing (a) the full model and (b) the lightweight model. The cumulative confidence and cumulative probability of detection vary over time slot.
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respect to device resources but does not affect the subsequent

simulation experiments. In the action space, each element in

action A = (a1(k), a2(k), :, ai(k)), represents the unloaded state of

the corresponding device. In this paper, the 10 discrete
Frontiers in Marine Science 13
unloading actions are as follows: (0,0,0), (0,0,1), (0,0,2), (0,1,0),

(0,1,1), (0,2,0), (1,0,0), (1,0,1), (1,1,0), (2,0,0). We set weight w2 =

1 and delay penalty factor P = 1 in the reward function. Other

Learning parameters are summarized in Table 3. The discrete
FIGURE 9

Reward comparison with different values of h for w1 = 0.70.
FIGURE 10

Performance comparison under different algorithms with h = 0.95.
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action space is adapted to the algorithmic system proposed in

this paper by project ing the discrete act ions into a

continuous interval.

We evaluate the cumulative object detection schemes in the

system and compare lightweight and full model schemes. For the

pig training set produced in this paper, using the full model or the

lightweight model, the object detection is really carried out in the

data samples in j consecutive time periods, and the j object detection
TABLE 4 Task latency for different algorithms.

Algorithms Latency number Latency

SNAP-DDPG 15 0.71 s

DDQN 20 0.95 s

DQN 22 1.05 s

Local 26 1.24 s
FIGURE 11

In a dynamic network, (a) is the number of offloaded tasks when the network is in good condition, varying over time slots (at time slot 5, the
network is under-resourced), and (b) is the number of offloaded tasks when network resources are insufficient, also varying over time slots (at time
slots 6, 7, 10, 11, and 12, the network is under-resourced).
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results are generated. According to the proposed object detection

accumulation scheme, j consecutive object detection results are

accumulated. Assume that a device produces a detection result in a

time slot. In the average method, the confidence levels from 1 to j

are expectation computed to obtain the cumulative confidence level

of time slot j. In the max method, the confidence level with the

largest confidence level before time slot j is selected as the

cumulative confidence level of the current time slot k. The

proposed method is shown in (Equations 9, 8). The results are

shown in Figure 7.

As shown in Figure 7, the average method cannot correlate the

information between images and can only ensure that the average

detection accuracy remains stable and is not affected by accidental

results. Max method will cause a sudden increase in confidence due

to a certain result and also cannot correlate the information

between images. However, the proposed method proposed in this

paper is able to correlate image information in continuous time

slots. The confidence level of the detection models in Figures 7a, b is

close to 1 after round 10. The confidence level of both models is

close to 1 after round 10. After practical verification, it is also

obtained that the detection results of the detected objects are

consistent with the results obtained at the confidence level of the

scheme. By accumulating more target detection results, the

probability of object detection category is improved.

Next, this study will specifically examine the effectiveness of

random cumulative confidence schemes. A set of random consecutive

video frames are placed into both the full model and the lightweight

model to obtain a set of object detection results. As the number of

data samples j increases, the cumulative confidence h(oj,m),
cumulative true class probability oj,m, and true class probability zj,

mof the proposed cumulative detection scheme are shown in Figure 8.

From Figure 8, the accuracy of the lightweight model on the

right is lower than that of the full model on the left. In the setup

validation scenario, the cumulative confidence of Figure 8a tends

to be close to 1 after 10 rounds, and even if there is a wrong

detection in the seventh round of the scenario, the cumulative

confidence is still able to get the correct detection result in the

entire object detection application process, and the cumulative

detection accuracy and cumulative confidence have an upward
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trend. For Figure 8b, the cumulative confidence has converged to 1

after the 6th round only, even if there is a misdetection in the

detection and classification in the 7th round, but it does not affect

the overall detection results. Compared to the lightweight model,

the growth rate of cumulative confidence per round of the full

model in Figure 8a is higher than that of the lightweight model

in Figure 8b.

The selection of actions requires different strategies for various

classification task metrics. Figure 9 represents the total rewards of

each scene during the training process when w1 = 0.70 and hT= 0.93,

0.95, and 0.97, respectively. The task confidence of each device is set

to the same value for ease of analysis. The total reward grows fastest

when hT= 0.93 and converges around 500. In contrast, when hT=
0.95, the total reward converges slower and converges after 700

rounds. Compared to the reward value at hT= 0.93, the system has a

smaller task requirement and a smaller cumulative picture sample

requirement at hT= 0.93. The system reaches convergence with a

smaller total reward. The total reward for hT= 0.97 converges the

worst, with larger penalties for delayed violations before round 1,000,

resulting in lower total reward values, and fluctuating more from

rounds 1,500 to 2,000, before finally stabilizing at around 2,500.

Figure 10 shows the reward performance of DQN, DDQN,

DDPG, SNAP-DDPG, and local-only at h = 0.95. Due to limited

marine local computing resources, local-only offloading needs

many time slots to meet customer confidence requirements, so its

reward is lower than the other three algorithms. Compared to

SNAP-DDPG, DQN and DDQN updates, based on the current

strategy, are prone to interference, leading to local convergence of

around 500 episodes and limiting reward improvement. In contrast,

SNAP-DDPG uses state normalization to reduce input parameter

dimensionality differences and accelerate convergence. Compared

to DDPG, SNAP-DDPG can better explore high-dimensional state

spaces and achieve higher reward. The average running time slots

for each algorithm at h = 0.95 are shown in Table 4.

Figure 11 shows the variations of offloading counts and

cumulative confidence over time slots under different network

conditions. Compared with Figure 11b where the network is

poor, Figure 11a enables faster confidence accumulation by

offloading to invoke the full model. In contrast, in Figure 11b, the
FIGURE 12

The detection results (a) of the lightweight YOLOv5 model are compared with the detection results (b) of the adaptive offloading decisions for
cumulative confidence models.
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offloading strategy fluctuates with the network state and is adjusted

by the SNAP-DDPG algorithm. It maintains local computing

within time slots 6, 7, 10, 11 and 12, resulting in slow confidence

growth and prolonged task completion times.

Figure 12a illustrates the detection results obtained solely

using the lightweight YOLOv5 model. Due to environmental

factors, limitations inherent in the object detection model, and

characteristics of the dataset, instances of missed detections and

false positives may occur in specific video frames. As depicted in

Figure 12b, by employing a cumulative confidence model to

process the same scene, previously missed targets are

subsequently ident ified through the accumulat ion of

confidence scores over time. Conversely, falsely detected

targets fail to meet the required confidence threshold and are

therefore excluded from the detection.
6 Conclusion

For image detection in MMEC scenarios, a cumulative

confidence-driven joint scheduling strategy is proposed. An

adaptive decision-making scheme for marine equipment is

developed, factoring in object locations and the marine

environment. It accumulates results to determine final detection

confidence, supported by the SNAP-DDPG algorithm-based device

policy. The simulation results verify that the framework maintains

object detection confidence while cutting latency by 34.78%,

providing a theoretical basis for CNN-based maritime tasks. In

particular marine settings, the strategy boosts detection accuracy

and cuts false-positive and false-negative rates compared to existing

methods. It shows great potential in MIoT applications such as

maritime target detection and UAV operations, where high

reliability is crucial. Future work will center on designing service-

rating strategies to enhance QoS, optimizing equipment task

requirements in evaluation and segmentation networks, and

incorporating spatial and temporal dimensions into target

detection strategies.
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