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Marine coral sand-claymixtures (MCCM) are widely used as fill materials in offshore

engineering, where their strength characteristics are critical to structural stability

and safety. This study conducted a series of triaxial shear tests under varying

conditions of clay content, reinforcement layers, confining pressure, water

content, and strain to establish a comprehensive strength database for MCCM.

Based on this dataset, multiple predictive models were developed, including

Backpropagation Neural Network (BPNN), Genetic Algorithm optimized BPNN

(GA-BPNN), Particle Swarm Optimization enhanced BPNN (PSO-BPNN), and a

Logical Development Algorithm preprocessed BPNN model (LDA-BPNN). Among

them, the LDA-BPNN model demonstrated superior accuracy and generalization

capabilities compared to traditional optimization algorithms. Sensitivity analysis

identified water content, clay content, and confining pressure as the primary

factors influencing MCCM strength. Furthermore, an explicit empirical formula

derived from the LDA-BPNNmodel was proposed, offering a practical and efficient

tool for engineers without specialized machine learning expertise. These findings

provide valuable technical support for the optimized design and safety assessment

of MCCM materials in marine geotechnical engineering applications.
KEYWORDS

marine coral sand-clay mixture, strength prediction, LDA-BPNN model, machine
learning, empirical formula
1 Introduction

Large-scale marine resource development has been carried out in subtropical and

tropical offshore regions such as the South China Sea and the central Pacific (Lin et al.,

2024; Shi et al.; Wang et al., 2025; Zhao et al., 2022). Numerous marine engineering

structures have been constructed in these areas, often using marine coral sand–clay
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mixtures (MCCM) as the primary fill material (Guo et al.; Prakasha

and Chandrasekaran, 2005; Zhou et al., 2022). However, marine

coral sand has inherently low strength and is highly susceptible to

breakage (Chao et al., 2025; Li et al., 2024; Wu et al., 2021). When

combined with clay, the mechanical strength and stability of

MCCM-based structures are significantly compromised (Lv et al.,

2021; Peng et al., 2022; Xiao et al.; Zhang et al., 2023a). Therefore,

there is an urgent need for a rational and effective method to

reinforce marine engineering structures built with MCCM.

Geogrids are widely recognized for their positive effects on the

strength and deformation characteristics of marine coral sand (Ding

and Ou, 2022a; Ding and Ou, 2022a). However, their application in

reinforcing MCCM has yet to be explored (Gao et al., 2024;

Poorahong et al., 2024; Song et al., 2024). The triaxial test is a

commonly used method for investigating the mechanical behavior

and reinforcement mechanisms of soils (Chen et al., 2024; Cui et al.,

2024). While many studies have examined the mechanical

properties of marine coral sand through triaxial testing, they

often overlook the fact that the actual fill material used in marine

engineering projects is MCCM (Dong et al., 2017; Fan et al., 2025;

Gong et al., 2025; Xu et al., 2020; Zhao et al., 2023b). As a result,

there is a noticeable gap in research on the mechanical behavior and

reinforcement mechanisms of MCCM. Although triaxial tests can

provide reliable experimental data and valuable insights into the

mechanical characteristics of MCCM, they have inherent

limitations (Ding et al., 2024; Zheng et al., 2024b). First, the tests

are time-consuming and costly, making them difficult to implement

extensively in engineering practice (Chao and Fowmes, 2021; Li

et al., 2025). Additionally, the specific type of geogrid used in a

project is often not finalized until the later stages of design, which

limits the practical applicability of experimental results (Chao et al.,

2023; Fan et al., 2023; Wang et al., 2024; Zheng et al., 2024a).

Second, it is challenging to precisely control environmental

conditions such as moisture during testing, which can introduce

uncertainty into the results and compromise the reliability of

subsequent design decisions (Chao et al., 2024c; Xiao et al., 2024;

Zhao et al., 2023a). Marine coral sand has irregular shapes, and

some researchers have proposed using 3D printing technology to

fabricate customized geogrids to meet this demand (Fowmes et al.,

2017). Therefore, there is an urgent need to develop a more efficient

predictive approach that can account for multiple influencing

factors, reduce reliance on costly and time-intensive physical

testing, and maintain high predictive accuracy.

Machine learning techniques have garnered increasing

attention in recent years due to their ability to capture complex

nonlinear relationships among multiple factors, and they have been

progressively applied in the field of marine engineering (Chao et al.,

2021, Chao et al., 2022; Shao et al., 2024). Studies have shown that

machine learning methods offer high accuracy and strong

applicability in predicting the strength of materials such as

marine coral sand (Chao et al., 2023; Huang et al., 2024; Zhang

et al., 2023b). For instance, some researchers have employed genetic

algorithm (GA)-optimized backpropagation neural networks
Frontiers in Marine Science 02
(BPNN) to predict the shear strength of soils, while intelligent

optimization algorithms such as particle swarm optimization (PSO)

have been used to enhance model stability and predictive

performance (Nhu et al., 2020; Pham et al., 2018; Qin et al.,

2025). However, research focusing on the mechanical behavior

modeling of MCCM remains limited. Most existing studies rely

on relatively simple model architectures and basic algorithms,

without fully leveraging the potential of more advanced ensemble

learning techniques (Chao et al., 2024b; Ren et al., 2024). Moreover,

the performance of machine learning models is highly sensitive to

the selection of hyperparameters. Appropriate hyperparameter

tuning plays a crucial role in improving training efficiency

and model generalization (Chao et al., 2024a; Wang et al.,

2023). Therefore, incorporating optimization algorithms for

hyperparameter tuning before model development is essential for

achieving higher prediction accuracy and robustness (Chao et al.,

2022; Xu et al., 2024, Xu et al., 2025). In summary, integrating

advanced machine learning models with efficient optimization

algorithms not only enhances the predictive accuracy of MCCM

mechanical properties but also offers a novel pathway for the rapid

evaluation of complex marine engineering materials.

Traditional optimization algorithms such as particle swarm

optimization (PSO) and genetic algorithms (GA) face limitations

in practical applications, including relatively slow computation

speeds and a tendency to get trapped in local optima (Wang and

Shen, 2018). To address these issues, researchers have developed a

novel heuristic optimization method called the Logical

Development Algorithm (LDA) (Jie et al., 2004). By performing

similarity and dissimilarity operations in parallel, LDA significantly

accelerates the optimization process while effectively preserving

original information, thereby enhancing its global search

capability (Chao et al., 2024a). Studies have demonstrated that

LDA outperforms traditional optimization techniques in improving

estimation accuracy and enhancing the performance of machine

learning models. For instance, when applied to parameter tuning of

wavelet neural networks (WNN) for rock mass parameter

evaluation, LDA showed superior optimization results compared

to GA (Zhang et al., 2022). Similarly, LDA-optimized artificial

neural networks (ANN) have been found to predict wave heights

more accurately than GA-optimized counterparts (Wang et al.,

2018). Therefore, integrating LDA with machine learning models

not only improves prediction accuracy and stability but also offers a

practical and efficient approach for forecasting the strength

of MCCM.

The primary objective of this study is to investigate the strength

behavior of MCCM under varying conditions. Triaxial tests were

conducted on MCCM samples with different clay contents,

numbers of reinforcement layers, confining pressures, and water

contents to obtain stress-strain data. A comprehensive database was

established based on the experimental results, which was then used

to train and evaluate several machine learning models. By

comparing the accuracy and generalization capabilities of these

models, the LDA-optimized backpropagation neural network
frontiersin.org
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(LDA-BPNN) was identified as the most effective. Building on the

LDA-BPNN model, sensitivity analysis was performed, and

empirical formulas were developed to provide practical guidance

for marine engineering applications.
2 Physical test methodology

2.1 Materials

The experimental materials comprised marine coral sand and

kaolin clay. The coral sand was sourced from a reef island in the

South China Sea. To ensure consistency and reliability of the test

results, the collected sand was subjected to a series of preparatory

procedures including oven drying and mechanical sieving. The

particle size fraction retained between 0.074 mm and 2 mm was

selected for use in the experiments. The kaolin clay employed in this

study consisted of particles with a uniform diameter of 10 mm,

ensuring its suitability for mixing and compaction with the sand

matrix. Photographs of the marine coral sand and kaolin clay are

provided in Figure 1, while their corresponding physical properties

are summarized in Table 1. According to the particle size

distribution analysis, the marine coral sand demonstrated a

coefficient of uniformity (Cu) of 3.1 and a coefficient of curvature

(Cc) of 1.2. These values indicate that the sand has a well-

graded distribution.

A triaxial geogrid was manufactured using stereolithography

(SLA)-based 3D printing, as illustrated in Figure 2. The geogrid

features ribs with a width of 1.5 mm and a thickness of 2 mm. The

apertures are designed as equilateral triangles, each with a side

length of 2 mm. To minimize boundary effects during specimen
Frontiers in Marine Science 03
preparation, the overall diameter of the triaxial geogrid was set at

39.1 mm. A comprehensive summary of the geometric and

structural properties of the printed geogrid is presented in Table 2.
2.2 Experimental procedure

In the natural conditions of islands and reefs in the South China

Sea (Gao and Ye, 2024), surface and near-surface marine coral sand

typically remains in an unsaturated state for extended periods,

leading to significantly low shear strength (Chao et al., 2025; Ye

and Gao, 2024). These regions are considered potential target zones

for geogrid-based reinforcement (Gao and Ye, 2024). A thorough

understanding of their mechanical behavior and the establishment of

an effective reinforcement mechanism are essential to ensure the

structural safety and stability of island infrastructure. To explore the

fundamental mechanical response, deformation behavior, and

particle crushing characteristics of marine coral sand–clay mixtures

(MCCM) reinforced with triaxial geogrids, a series of unconsolidated

undrained (UU) triaxial tests were performed. These tests,

summarized in Table 3, examined the influence of several key

factors, including clay content, number of geogrid layers, water

content, and confining pressure.

All tests were carried out using a static-dynamic triaxial testing

apparatus (VJ Tech, UK), as illustrated in Figure 3. For each

specimen, the mass of individual layers was pre-calculated based

on the target water content, followed by accurate weighing and

water adjustment. The MCCM material was thoroughly mixed,

placed into the mold in layers, and compacted to the specified

height. During specimen preparation, the geogrid volume was

accounted for and subtracted to ensure consistent sample density.

After specimen preparation, triaxial compression tests were

performed, with loading continued until an axial strain of 15%

was reached. Upon completion, the specimens were disassembled,

washed, oven-dried, and subjected to sieve analysis to determine the

post-shear particle size distribution of the marine coral sand.
FIGURE 1

Marine coral sand and kaolin clay. (a) Marine coral sand. (b) Kaoling clay.
TABLE 1 Basic physical parameters of marine coral sand.

GS D50/mm Cu Cc emin emax

2.83 1 3.1 1.2 0.99 1.49
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2.3 Impact of clay content variation on the
strength characteristics of MCCM

Based on the experimental results, deviator stress–strain curves

corresponding to the test groups listed in Table 3 were obtained.

Figures 4a–d illustrate the stress–strain responses of dried MCCM

specimens with varying confining pressure. The results indicate that

increasing the confining pressure and the number of geogrid layers,

as well as reducing the clay content, leads to a noticeable rise in peak

deviator stress and a more evident hardening behavior. Notably, the

specimen containing 30% clay, tested under a confining pressure of

200 kPa with two reinforcement layers, exhibited a maximum

deviator stress of 5300.15 kPa at 15% axial strain.
2.4 Impact of water content variation on
the strength characteristics of MCCM

Figure 5 presents the deviator stress–strain curves of MCCM

specimens containing 70% clay and reinforced with a single geogrid

layer under varying moisture conditions. The results show that

specimens with higher water content exhibit lower strength

compared to their dried counterparts. However, it can also be

observed that the strength of MCCM does not decrease

monotonically with increasing water content; instead, it first

declines, then rises, and eventually drops again. This trend

indicates a nonlinear and highly complex relationship between

water content and the strength behavior of MCCM.
Frontiers in Marine Science 04
The observed variation in strength can be attributed to several

factors. Initially, the increase in water content leads to the softening

of the clay particles, causing a decrease in the material’s overall

strength. As the water content continues to increase, the water may

act as a lubricating agent, temporarily improving the internal

structure of the material and enhancing its shear strength.

However, beyond a certain point, excessive water content can

result in the weakening of the cemented bonds between the

particles, leading to a reduction in strength. This non-monotonic

behavior suggests that there may be an optimal water content for

MCCM, where the balance between lubrication and cementation is

most favorable for strength development.
3 Methodology

3.1 Machine learning algorithms

In this study, a machine learning approach based on the Back

Propagation Neural Network (BPNN) is adopted. To enhance the

model’s performance, optimization techniques including Genetic

Algorithm (GA), Particle Swarm Optimization (PSO), and Logical

Development Algorithm (LDA) are incorporated. These methods

offer several advantages, among which three primary benefits are

particularly noteworthy:
1. Each algorithm was constructed through a uniform and

methodical development framework (Kardani et al., 2020).
FIGURE 2

3D printing of geogrid model and entity. (a) Digital model of the triaxial geogrid. (b) 3D-printed triaxial geogrid specimen.
TABLE 2 Physical and mechanical properties of the triaxial geogrid.

Standard
Tensile
modulus

Tensile
strength

Elongation
at break

Flexural
modulus

Impact
strength

Distortion
temperature

ASTM 2,598Mpa 58Mpa 11% 2,755Mpa 30J/m 65°C
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Fron
2. They have been extensively utilized in tackling various

issues within the field of marine engineering (Samui,

2012; Zhou et al., 2017).

3. They are highly effective in capturing the intricate

nonlinear relationships among a wide range of

contributing variables (Liu et al., 2015).
tiers in Marine Science 05
3.1.1 BPNN
The Back Propagation Neural Network (BPNN) is a type of

artificial neural network that processes data through multiple layers

by iteratively adjusting weights and biases (Hecht-Nielsen, 1992). It

receives input variables through the input layer, propagates them to

the hidden layer, where weighted computations and nonlinear
TABLE 3 Experimental scheme.

Number Clay content Confining pressure(kPa) Geogrid layers Water content

T1 30 50、100、150、200 0、1、2 0

T2 50 50、100、150、200 0、1、2 0

T3 70 50、100、150、200 0、1、2 0

T4 70 50、100、150、200 1 9

T5 70 50、100、150、200 1 15

T6 70 50、100、150、200 1 18

T7 70 50、100、150、200 1 21

T8 70 50、100、150、200 1 27

T9 70 50、100、150、200 1 36
FIGURE 3

A static-dynamic triaxial testing apparatus (VJ Tech, UK).
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FIGURE 4

Stress–strain curves of MCCM under different confining pressure. (a) 50 kPa. (b) 100 kPa. (c) 150 kPa. (d) 200 kPa.
FIGURE 5

Stress–strain curves of MCCM under different water contents.
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transformations are performed using activation functions, and

finally produces the predicted output. In this study, the BPNN

model is configured with five input parameters—clay content,

number of reinforcement layers, confining pressure, water

content, and strain—and one output parameter: stress. The model

employs the Log-Log Sigmoid function as the activation function

and is constructed using the newff function, with initial weights and
Frontiers in Marine Science 07
biases optimized to enhance prediction performance as shown

in Figure 6.
3.1.2 GA and PSO
The Genetic Algorithm (GA) is a population-based

optimization technique inspired by the principles of natural
FIGURE 6

The typical structure of BPNN.
FIGURE 7

LDA-BPNN Model Workflow.
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selection (Lambora et al., 2019). It identifies optimal or near-

optimal solutions by simulating evolutionary processes such as

selection, crossover, and mutation. The process begins with a

randomly initialized population, where each individual is

evaluated using a fitness function. High-performing individuals

are selected to reproduce, and genetic diversity is introduced

through crossover and mutation. This iterative process continues

until a predefined stopping criterion—such as a maximum number

of iterations or an acceptable fitness level—is satisfied. GA is

particularly effective in solving complex optimization problems

due to its robust global search capability and adaptability in

nonlinear, high-dimensional spaces.

Particle Swarm Optimization (PSO) is another population-

based heuristic algorithm, inspired by the coordinated behavior of

swarming organisms like birds and fish (Wang et al., 2018). In PSO,

each potential solution is represented as a particle that navigates the

search space, adjusting its velocity and position based on both its

personal best performance and the best experience found by the
Frontiers in Marine Science 08
entire swarm. This mechanism enables the swarm to collectively

converge toward optimal solutions. PSO offers several advantages,

including a simple structure, ease of implementation, no reliance on

gradient information, and strong global optimization ability. It has

been successfully applied in function optimization, neural network

training, and other complex optimization tasks.

3.1.3 LDA
Logical Development Algorithm (LDA) is a supervised

dimensionality reduction technique that transforms input features

into a lower-dimensional space by maximizing the ratio of between-

class variance to within-class variance (Chao et al., 2024a). In

regression-oriented applications, LDA can be used as a

preprocessing step to extract the most relevant and uncorrelated

features, thereby improving model stability, reducing overfitting, and

enhancing prediction accuracy. Its integration with neural networks

helps simplify the input space while retaining essential discriminative

information, contributing to more efficient and robust learning.

The integration of LDA with neural networks enhances its

effectiveness by simplifying the input space while retaining essential

discriminative information. This step enables more efficient

learning, as the neural network can focus on the most relevant

features without being overwhelmed by redundant data. As a result,

the model becomes more robust and capable of handling complex,

high-dimensional datasets with greater ease. Moreover, this

combination of LDA and neural networks contributes to faster

training times, as the reduced dimensionality allows the network to

converge more quickly while still capturing the key patterns in the

data. This synergy ultimately leads to improved overall

performance, especially when dealing with large-scale, noisy, or

imbalanced datasets as shown in Figure 7.
3.2 Model parameter setting

Hyperparameter optimization plays a crucial role in enhancing

the performance of machine learning models, as different

configurations can significantly affect training efficiency and

predictive accuracy. In this study, GA, PSO, and LDA were used

to optimize the hyperparameters of a BPNN to improve overall

model performance.

To ensure efficient convergence and improved accuracy, key

parameters in each optimization algorithm were carefully selected, as

summarized in Table 4. In GA, the population size(pop_num) was set

to 5 to reduce computational overhead while maintaining sufficient

search diversity. The number of generations (gen) was fixed at 100 to

ensure comprehensive exploration. The selection function parameter

(normGeomSelect) was set to 0.05 to increase the probability of

selecting high-fitness individuals. The crossover function (arithXover)

was assigned a value of 3 to enhance diversity, while the mutation

function (nonUnifMutation) was configured as [0.5, 50, 3] to

strengthen global search capabilities and prevent premature

convergence. The optimal solution tolerance (maxGenTerm) was set

to 1e-6, allowing continued search near the optimum and improving

solution stability. In PSO, the learning factors (c1, c2) were set to 1.5 to
TABLE 4 Parameter settings for GA, PSO and LDA optimized BPNN.

Hyperparameter Parameter name Range of values

GA

Population
size(pop_num)

5

Genetic generations(gen) 100

Selection function
parameter

(normGeomSelect)
0.05

Crossover function
parameter (arithXover)

3

Mutation function
parameter

(nonUnifMutation)
[0.5,50,3]

Optimal solution
tolerance(maxGenTerm)

1e-6

PSO

Learning factors (c1, c2) 1.5

Maximum
position (popmax)

1.0

Minimum
position (popmin)

-1.0

Population
size (sizepop)

30

Population update
times (maxgen)

100

Training
iterations (epochs)

150

LDA

Population
size(pop_num)

30

Maximum number of
iterations (max_iter)

50

Mutation factor (F) 0.5

Crossover
probability (CR)

0.9
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balance individual and collective influence on particle velocity. The

position limits were set between -1.0 and 1.0 to constrain the search

space. A population size (sizepop) of 30 was used to maintain a trade-

off between computational cost and global search ability. The number

of population update times (maxgen) was set to 100, and the training

epochs (epochs) for the BPNN were set to 150 to ensure adequate

learning. For LDA, the population size (pop_num) was set to 30 and

the maximum number of iterations (max_iter) to 50. The mutation

factor (F) was set to 0.5 to improve global exploration, and the

crossover probability (CR) was set to 0.9 to enhance diversity within

the solution space. These settings enabled the model to more effectively

capture class separability, thereby improving classification accuracy

after dimensionality reduction. Overall, the well-tuned

hyperparameters allowed GA, PSO, and LDA to significantly

enhance BPNN performance. These optimizations accelerated

convergence, reduced overfitting, and ultimately improved prediction

accuracy, demonstrating strong potential in applications such as

reinforced MCCM strength prediction.

Figure 8 illustrates the RMSE-based performance comparison of

GA, PSO, and LDA during the optimization process. The horizontal

axis represents the number of iterations (0–50), while the vertical

axis denotes the RMSE values, reflecting model prediction error. As

shown, the RMSE values for all three algorithms decrease
Frontiers in Marine Science 09
progressively with the increase in iterations, indicating their

effectiveness in reducing prediction error. Notably, PSO

demonstrates the fastest convergence rate, reaching lower RMSE

values within fewer iterations. This suggests higher search efficiency

in exploring the solution space. Although PSO achieves a rapid

initial drop in RMSE, the rate of decline slows in later iterations,

eventually stabilizing around 5.6. In contrast, GA also shows a sharp

early decrease in RMSE but with a more gradual decline, stabilizing

near 4 after approximately 20 iterations. LDA, on the other hand,

exhibits a slower initial reduction, followed by an accelerated

decrease, ultimately converging to an RMSE close to 1. Overall,

the comparison indicates that while PSO offers faster early

convergence, LDA achieves superior final accuracy and

convergence stability, outperforming both GA and PSO in the

optimization process.
3.3 Establishment of database and data
processing

To investigate the strength of MCCM under various conditions,

a dataset consisting of 900 samples was established. This dataset

includes five variables: clay content, number of reinforcement
FIGURE 8

Number of RMSE iterations for GA, PSO and LDA.
TABLE 5 Statistical table of factors affecting the stress of the MCCM.

Argument Type Minimum value Maximum value Mean value Standard deviation

Clay content(%)

Numerical type

30 70 50 20

Number of reinforcement layers 0 2 1 1

Confining pressure(Kpa) 50 200 125 64.55

Water content(mm) 0 36 21 11.75

Strain(mm) 1 15 8 4.472
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layers, confining pressure, water content, and strain. All input and

output variables were normalized to ensure effective modeling:

x0 =
x − xmin

xmax − xmin
(1)

As shown in Equation 1, where x is the original data value, x0 is
the normalized data value, x min is the smallest value in the data, and

x max is the largest value in the data set.

The summary statistics of the variables in the dataset are

presented in Table 5. The clay content ranges from 30% to 70%,

the number of reinforcement layers includes three levels: 0, 1,

and 2, the confining pressure varies from 50 kPa to 200 kPa, and

the water content includes six levels ranging from 9% to 36%.

Strain values range from 0% to 15%. Data preprocessing steps,

including cleaning, normalization, and dataset splitting, were

conducted to ensure data quality and suitability for machine

learning modeling.
3.4 Predictive performance assessment
index

In the process of model construction and optimization, it is

essential to select appropriate assessment metrics to evaluate the

predictive performance of the model. In this study, two key

assessment indicators are utilized:

1、Root Mean Square Error (RMSE): RMSE represents the

standard deviation of the difference between predicted values and

actual values. A smaller RMSE indicates a lower prediction error,

reflecting a more accurate and reliable model as shown in Equation 2.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − ŷ i)

2

s
(2)

Where n is the number of samples, yi is the observed value, and

fi is the predicted value.

2、Mean Absolute Percentage Error (MAPE): MAPE calculates

the average of the absolute errors between predicted and actual

values, expressed as a percentage of the actual values. A smaller

MAPE indicates a lower prediction error, demonstrating better

model accuracy and performance as shown in Equation 3.

MAPE =
1
no

n

i=1

yi − ŷ i

yi

����
����� 100% (3)

Where n is the number of samples, yi is the observed value, and

ŷ i   is the predicted value.
4 Results and analysis

4.1 Establishment of data sets

In this study, the dataset creation serves as the foundation for

training the machine learning algorithms. A dataset with 5 input

parameters and 1 output parameter was developed to train and
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validate the performance of BPNN, GA-BPNN, PSO-BPNN, and

LDA-BPNN, as illustrated in Figure 9.

A database with 900 datasets was created, containing four key

input parameters: clay content, number of reinforcement layers,

confining pressure, water content, and strain. To assess the model’s

generalization capability, the dataset was split into two subsets: the

training set and the test set. The training set was used to train the

model, while the test set provided the basis for final performance

evaluation. The dataset was divided into 80% for training and 20%

for testing, ensuring a more accurate assessment of the model’s

generalization ability and practical performance. The correlation

analysis of different inputs is shown in Figure 10.
4.2Machine learning predicting
performance

The prediction results obtained from the machine learning

model, based on 900 training and testing samples, are shown in

Figures 11 , 12.

Overall, the predicted values (red hollow circles) produced by each

model generally align with the actual values (purple hollow diamonds),

indicating that all models are capable of effectively fitting the training

data and capturing the nonlinear relationships between the input

features and the target output. However, noticeable differences are

observed in prediction accuracy across the models. The LDA model

(Figure 11h) exhibits the smallest deviation from the actual values,

reflecting its superior fitting performance. In contrast, the BPNN

model (Figure 11b) shows relatively large prediction errors,

particularly for high-peak samples, suggesting that its shallow

architecture is insufficient to model the complex patterns inherent in

the data. Both GA-BPNN (Figure 11d) and PSO-BPNN (Figure 11f)

enhance the baseline BPNN through the integration of optimization

algorithms, resulting in predictions that better match the actual values,

though slight overfitting is still evident in certain samples. Overall, the

LDA model outperforms the other models on both the training and

testing sets, demonstrating more robust learning capability and better

generalization performance.

As shown in Figure 12, when evaluated using the testing dataset,

the LDA model consistently outperforms the other three machine

learning models. Specifically, the LDA model achieves the highest

prediction accuracy, with the lowest RMSE values of 1.24356 and

3.34974 for the testing and training sets, respectively. It also records

the lowest MAPE values—7.15134% for the testing set and 9.10231%

for the training set. In terms of correlation, the LDAmodel attains an

R value of 0.99651 on the testing set, indicating an extremely strong

linear relationship between the predicted and measured values.

By contrast, although the GA-BPNN model benefits from

genetic algorithm optimization and shows improved performance,

it still falls short of the LDA model. GA-BPNN yields RMSE values

of 4.0397 and 8.1878, and MAPE values of 5.5479% and 10.1739%

for the testing and training sets, respectively. The R value of 0.98509

suggests limited ability to capture the underlying data patterns.

The PSO-BPNN model performs relatively poorly, with larger

prediction errors and more scattered residuals, indicating that
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particle swarm optimization fails to significantly enhance the

predictive capability of BPNN. For PSO-BPNN, the RMSE values

are 5.60674 and 8.65794, and MAPE values are 9.51099% and

16.014% for the testing and training sets, respectively, with an R

value of 0.99411.

The original BPNN model exhibits the lowest prediction

accuracy among all models. It produces RMSE values of 5.81524

and 13.0744, and MAPE values of 15.2679% and 21.7309% for the

testing and training sets, respectively. The R value of 0.97887, along
Frontiers in Marine Science 11
with a significant deviation of data points from the fitted line,

suggests that the simple architecture of BPNN lacks the capacity to

represent complex data features effectively.

In summary, the LDA-BPNN model demonstrates superior

performance over GA-BPNN, PSO-BPNN, and BPNN in both the

training and testing phases. It offers higher predictive accuracy and

robustness, particularly on unseen test data. Notably, even under

identical optimization strategies, the predictive capability of the LDA

model is markedly better than that of the other models.
FIGURE 9

Distribution for data in the constructed database. (a) Clay content. (b) Number of reinforcement layers. (c) Confining pressure. (d) Water content. (e) Strain.
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4.3 Sensitivity analysis

Understanding machine learning models is crucial for ensuring

transparency and encouraging broader adoption (Yang et al., 2025).

Feature importance analysis plays a key role in uncovering the

internal logic of these models, offering insights into their decision-

making processes. Among various interpretability approaches, the

SHAP (Shapley Additive Explanations) method has gained

significant traction (Lundberg and Lee, 2017). Based on game

theory, SHAP evaluates all possible feature combinations to assess

their interactions and calculates a SHAP value for each prediction.

This value reflects the individual contribution of each feature to the

model’s output, with positive values indicating an increase and

negative values a decrease in the predicted result.

Figure 13 presents the five most influential features affecting the

output of the LDA model, along with a brief analysis of their

respective impacts. The pie chart illustrates the mean SHAP values

for each feature, where a larger SHAP value denotes a stronger

contribution to the model’s prediction. On the left, the beeswarm

plot offers a more detailed visualization of feature effects. In this

plot, the horizontal axis corresponds to the SHAP value, while the

vertical axis represents the feature value. A high SHAP value

combined with a high feature value suggests a positive correlation

—larger feature values lead to higher predicted outputs. Conversely,

negative SHAP values indicate a negative influence on the model

output. As shown, water content exerts the most significant impact

on strain prediction, with a relative importance of 35.9%, followed

by clay content at 29.5%. In contrast, strain itself contributes the

least, accounting for only 7.8%. The SHAP-based analysis identifies
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water content as the dominant factor influencing the model’s

predictive performance. This can be attributed to its critical role

in governing interparticle contact behavior and pore water pressure

distribution, both of which are key determinants of soil strength and

deformation. Clay content, ranking second in importance,

significantly affects soil fabric and moisture retention. A higher

clay fraction generally implies stronger cohesion and more

pronounced plasticity, which are essential to stress accumulation

and dissipation during the shearing process of MCCM.

These findings highlight the necessity of implementing targeted

optimization strategies that consider the varying influence of different

parameters to ensure the stability and reliability of marine

infrastructure constructed with MCCM as the principal material.
5 Empirical formulas

The previous modeling results indicate that the established

LDA-BPNN model can accurately predict the strength of MCCM.

However, due to the complexity of machine learning models,

practitioners without a background in artificial intelligence may

face challenges in practical applications. To address this issue, this

section proposes an analytical empirical formula designed to

simulate the predictive behavior of the LDA-BPNN model,

thereby enabling a convenient and efficient estimation of MCCM

strength. The BPNN model is a typical feedforward neural network

structure with one hidden layer. Its output can be expressed by the

following formula based on the connection weights and node biases

obtained during training (Goh et al., 2005):
FIGURE 10

Parametric analysis diagram.
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Yn = fsig b0 +o
h

k=1

wk · fsig bk +o
m

i=1
wikXi

 ! !
(4)

The normalized predicted output Yn, ranging from -1 to 1, is

calculated based on the normalized input variables Xi, which includes

clay content (%), number of reinforcement layers, confining pressure
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(kPa), water content (%), and strain (%), through the connection

weights Wik between the ith input node and the kth hidden node,

hidden layer biases bk, weightsWk connecting the hidden nodes to the

output node, output layer bias b0, and the hyperbolic tangent sigmoid

transfer function fsig(x) =
ex−e−x

ex+e−x , where h andm denote the numbers of

hidden nodes and input variables, respectively.
FIGURE 11

Prediction results of training set and test set on test data. (a) BPNN training set. (b) BPNN test set. (c) GA training set. (d) GA test set. (e) PSO training
set. (f) PSO test set. (g) LDA training set. (h) LDA test set.
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The normalized output Yn can be converted into the actual

predicted strength t using the following denormalization formula:

t = 0:5(Yn + 1)(tmax − tmin) + tmin (5)

Here, tmax and tmin represent the maximum and minimum

MCCM strength values in the dataset, respectively.

To facilitate engineering applications, the neural network

structure described above can be further expressed in the

following simplified form:
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Yn = tanh (C1) (6)

C1 = b0 +o
h

k=1

wk · tanh (Ak) (7)

Ak = bk +o
m

i=1
wikXi (8)

All connection weights in the model (Wik, Wk) and bias

parameters (bk, b0) are automatically optimized during training
FIGURE 12

Comparison of R, RMSE, and MAPE across different models. (a) BPNN. (b) GA-BPNN. (c) PSO-BPNN. (d) LDA-BPNN. (e) RMSE and MAPE.
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using the Differential Evolution algorithm. The complete set of

parameters, which can be directly applied in engineering

calculations, is provided in Table 6.

As shown in Equations 4-7, this analytical empirical model

offers strong interpretability and enables rapid prediction of MCCM

strength without relying on machine learning platforms, making it

well-suited for practical engineering scenarios where model

transparency and computational efficiency are critical.
6 Experimental verifications

To assess the applicability of both the machine learning model

and the analytical formula, the proposed empirical model was used

to predict the strength of MCCM under various conditions. A total

of 30 representative test cases were selected, as listed in Table 7.

Based on the specific experimental setups, Equation 4 was used to

estimate the strength of MCCM under different conditions. The

predicted values were then compared with experimental results

from previous studies, as illustrated in Figure 14.

As shown in Figure 14, the empirical formula demonstrates

strong predictive performance for estimating the strength of
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MCCM under various conditions. Overall, the model achieved an

RMSE of 0.56, a MAPE of 2.65%, and a coefficient of determination

(R²) of 0.99798. These results indicate that the developed empirical

formula offers high accuracy and reliability in predicting MCCM

strength, effectively capturing its response under different scenarios.

This approach provides a simple and efficient alternative for users

without a machine learning background, enabling rapid strength

estimation without relying on complex algorithms. It serves as a

practical tool for engineering design and decision-making.
7 Conclusions

This study conducted experimental tests on the strength of

marine coral sand clay mixtures (MCCM) under various conditions

and established a comprehensive database based on the results.

Using this dataset, a machine learning model called LDA-BPNN

was developed to predict the strength of MCCM. The model

considers key input variables that influence strength, including

clay content, number of reinforcement layers, confining pressure,

water content, and strain. To evaluate the performance of the LDA-

BPNNmodel, three conventional machine learning models (BPNN,
FIGURE 13

Feature importance analysis plot.
TABLE 6 Connected weights and biases for the constructed LDA-BPNN algorithm.

Hidden layer node
number

Weight Bias

Input parameter
Output

parameter
Hidden layer Output layer

C L P W S H

1 0.42 -0.51 1.2 0.33 -0.27 0.21 0.85 0.14

2 -0.78 0.96 -1.34 2.15 0.1 -0.38 -0.66

3 1.53 -1.12 2.72 -0.85 0.57 0.45 1.1

4 0.63 1.34 -0.69 1.88 -0.93 0.09 -0.74

5 -1.21 0.45 0.92 -1.67 1.23 -0.11 0.39
The variables C, L, P, W, and S represent the input parameters: Clay content, Layer number, Confining pressure, Water content, and Strain, respectively, while H denotes the output parameter,
which is the strength of the MCCM, as listed in Table 6.
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GA-BPNN, and PSO-BPNN) were developed and their predictive

capabilities were compared. In addition, sensitivity analysis was

carried out to quantify the influence of each input parameter on the

strength of MCCM. Based on the analysis, an empirical formula was

proposed to support practical application by engineers who may not

have a background in machine learning. The main findings of this

study are summarized as follows:
Fron
1. Experimental results show that clay content, reinforcement

layers, confining pressure, water content, and strain

significantly affect MCCM strength. Reinforcement layers
tiers in Marine Science 16
and confining pressure have the strongest positive impact.

These findings help optimize material composition and

design parameters for engineering applications.

2. The LDA-BPNN model outperformed traditional

models (BPNN, GA-BPNN, PSO-BPNN) in predicting

MCCM strength, showing higher accuracy and better

generalization with a notably lower RMSE, demonstrating

the value of combining dimensionality reduction and

ensemble learning.

3. Sensitivity analysis showed water content most affects

MCCM strength, followed by clay content and confining
TABLE 7 30 sets of data selected for the experiment.

Clay content (%) Number of reinforcement layers Confining pressure (Kpa) Water content (%) Strain (%)

30

0 50 0 5

1 100 0 10

2 150 0 15

30

0 100 0 5

1 150 0 10

2 200 0 15

50

0 50 0 5

1 100 0 10

2 150 0 15

50

0 100 0 5

1 150 0 10

2 200 0 15

70

0 50 0 5

1 100 0 10

2 150 0 15

70

0 100 0 5

1 150 0 10

2 200 0 15

70

1 50 9 5

1 100 15 10

1 150 18 15

70

1 100 21 5

1 150 27 10

1 200 36 15

70

1 50 9 3

1 100 15 7

1 150 18 11

70

1 100 21 3

1 150 27 7

1 200 36 11
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Fron
pressure, aiding targeted and efficient parameter control in

engineering design.

4. The empirical formula derived from the machine learning

model is interpretable and practical, enabling reliable

strength prediction without specialized AI tools. It offers

a simple, cost-effective solution for engineers, especially

when data or computing resources are limited, supporting

rapid engineering decisions.
Overall, accurately predicting the strength of MCCM remains a

challenging task due to the complex, nonlinear interactions among

multiple influencing factors. However, the LDA-BPNN model

developed in this study effectively addresses these challenges by

integrating dimensionality reduction with neural network learning.

In addition, the empirical formula derived from the model results
tiers in Marine Science 17
offers a practical and accessible alternative for strength estimation,

especially in engineering contexts where computational resources or

machine learning expertise are limited. That said, it is important to

note that the empirical formula is based on a single dataset, which

introduces certain limitations in its generalizability. For future

research, it is recommended to incorporate additional material

characteristics of MCCM, such as particle morphology,

fabric, and mineral composition, to further enhance model

generalization. Expanding the experimental database with more

diverse loading and environmental conditions would also help

validate and refine the model under a broader range of scenarios.

These efforts will contribute to developing a more robust and

reliable predictive framework, capable of supporting informed

engineering decisions and improving the safety and efficiency of

marine infrastructure projects. Currently, the study is limited to a
FIGURE 14

Performance evaluation of MCCM strength prediction based on empirical equations. (a) The predicted and measured value. (b) The R2 value.
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single soil type, and the experimental conditions are relatively

constrained. Further research will involve incorporating more

experimental data and expanding the scope to include a wider

variety of soil types and loading conditions. Additionally, the model

comparison in this study is also limited; future work will aim to

include comparisons with other predictive models to better evaluate

its performance and applicability across different contexts.
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