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(UNIBO), Bologna, Italy, 2National Research Council (CNR), Institute for Biological Resources and 
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The introduction of invasive alien species (IAS) and the occurrence of jellyfish 
blooms and harmful algal blooms (HABs) can significantly alter native biodiversity 
and disrupt ecosystem functioning. This study expands the Cumulative IMPacts 
of invasive ALien species (CIMPAL) index to assess the cumulative impacts of IAS, 
HABs, and jellyfish blooms, also accounting for interspecific interactions. The 
approach is implemented in the Aegean Sea, analyzing data on 26 alien species 
(including one jellyfish), seven phytoplankton species responsible for HABs, and 
four native jellyfish species known to cause blooms. The application of CIMPAL 
revealed the spatial patterns and the relative importance of impacts across the 
Aegean Sea, identifying the most affected areas and ranking species based on 
four impact indicators. The results indicated that IAS contributed the most to 
cumulative impacts, with the highest scores observed in confined southern 
coastal areas of the Aegean Sea. Consequently, highly impacted coastal 
regions due to IAS were more prevalent in the southern Aegean compared to 
the north. In contrast, cumulative impacts in open waters decreased from the 
northern to the southern Aegean. HABs and jellyfish blooms also caused 
considerable impacts, particularly in certain gulfs. This study provides essential 
spatially explicit information to support effective management and mitigation of 
these environmental challenges in the Aegean Sea. 
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1 Introduction 

Alien species are organisms that have been intentionally or 
unintentionally introduced beyond their native geographic range 
due to human activities. Their introduction into new ecosystems 
can significantly alter the structure of native communities and 
disrupt ecosystem functioning (Howard et al., 2019; Katsanevakis 
et al., 2014a), often leading to dramatic declines in native 
biodiversity (Doherty et al., 2016; Garcı ́ ́meza-Go et al., 2020; 
Tsirintanis et al., 2022) and major losses in ecosystem services 
(Castro-Dı ́ et al., 2019; Katsanevakis et al., 2014b). Human ez 
activities have led to the introduction of over 37,000 alien species 
across various taxonomic groups and geographic regions 
worldwide. The rate of new introductions is currently around 200 
species per year, with an unprecedented increase in the spread of 
alien species (Roy et al., 2023). When alien species negatively impact 
their new ecosystems, they are classified as invasive alien species 
(IAS) (CBD, 2008). IAS cause significant and often irreversible 
changes to biodiversity and ecosystems, contributing to 60% of 
recorded global extinctions. They promote biotic homogenization, 
alter ecosystems properties, and their impacts are predicted to 
escalate in the future (Roy et al., 2023). 

Jellyfish blooms are defined as sudden increases in gelatinous 
zooplankton populations from various taxonomic groups, including 
Cnidaria (Hydrozoa, Scyphozoa, and Cubozoa), Chordata 
(Tunicata), and Ctenophora (Boero, 2013; Sagarminaga et al., 
2024). Jellyfish populations naturally fluctuate, experiencing 
periodic surges, and thus blooms are generally considered normal 
ecological phenomena (Boero, 2013). However, numerous studies 
have identified various anthropogenic drivers behind the increasing 
frequency and intensity of jellyfish outbreaks (Sagarminaga et al., 
2024), such as eutrophication (Richardson et al., 2009), overfishing 
(Boero, 2013),  climate change (Boero et al., 2016), and the 
introduction of alien species (Qu et al., 2014). Additionally, 
jellyfish densities are influenced by environmental factors. 
Although responses vary among species, temperature is a primary 
factor (Qu et al., 2014), followed by light, salinity, nutrient 
availability (Graham et al., 2001; Purcell, 2005), as well as 
physical factors such as currents, pressure, and turbulence 
(Graham et al., 2001). Jellyfish blooms can have significant 
consequences for marine ecosystems and coastal human activities, 
with impacts ranging from localized disturbances to broad regional 
effects (Sagarminaga et al., 2024). The adverse effects on biodiversity 
(e.g., Báez et al., 2022; Dinasquet et al., 2012; Helmholz et al., 2010; 
Sagarminaga et al., 2024), fisheries and aquaculture (e.g., Doyle 
et al., 2008; Quiñones et al., 2013; Sagarminaga et al., 2024), tourism 
(Canepa et al., 2014; Ghermandi et al., 2015), and human health 
(Cegolon et al., 2013) are well-documented. The increasing 
frequency of jellyfish blooms in recent decades across various 
regions (Boero et al., 2008) highlights the urgent need for effective 
management strategies to mitigate their ecological and socio
economic impacts (Sagarminaga et al., 2024). 

Harmful Algal Blooms (HABs) are events of proliferation of 
specific microalgal and macroalgal species that result in ecological, 
social, economic, and health-related impacts (Sagarminaga et al., 
Frontiers in Marine Science 02 
2023). These blooms are triggered by particular physical, biological, 
and chemical conditions, and can be exacerbated by human 
activities (West et al., 2021). The impacts of HABs are diverse. 
Even non-toxic algal blooms can disrupt ecosystems by reducing 
light penetration - contributing, for example, to seagrass decline 
(Burkholder et al., 2007) - and by depleting oxygen during decay, 
often leading to mass mortalities (Anderson, 2009). Additional 
harms include mechanical damage, acting as potential vectors for 
diseases, and degradation of water quality (Landsberg, 2002). When 
organisms ingest toxic phytoplankton, toxins can accumulate in 
their tissues to levels that pose substantial health risks to humans 
and other consumers, resulting in various poisoning syndromes. 
Toxins may also be released directly into the water, further 
threatening aquatic life and public health (Anderson, 2009). 
HABs can also lead to significant economic losses, including 
monitoring costs, fishery closures, fish and shellfish mortalities, 
reduced seafood sales, tourism disruption, and medical expenses for 
affected populations (Anderson, 2009). Although HABs are widely 
believed to be increasing in frequency and severity, further analysis 
is required to confirm a global trend (Hallegraeff et al., 2021). 
However, the expansion of aquaculture is expected to exacerbate 
HAB events in certain areas, particularly in developing regions 
already facing serious challenges from such outbreaks (Anderson, 
2014). Given their extensive environmental and socio-economic 
consequences, effective monitoring and management strategies are 
fundamental (Sagarminaga et al., 2023; Azzurro et al., 2024). 

Conducting impact assessments is essential for identifying and 
highlighting threats to biodiversity and ecosystem functioning. This 
understanding is crucial for developing effective adaptive 
management strategies in marine ecosystems, as it accounts for 
both the nature and spatial distribution of current impacts (Levin 
et al., 2009). The CIMPAL (Cumulative IMPacts of invasive ALien 
species) index, developed by Katsanevakis et al. (2016), provides a 
structured framework for estimating and mapping the impacts of 
IAS. It has been extensively applied across terrestrial (e.g., pan-
European IAS pressure mapping; Polce et al., 2023), freshwater (e.g., 
European river basins; Magliozzi et al., 2020), and marine (e.g., 
Mediterranean Sea; Katsanevakis et al., 2016) ecosystems. Among 
its key advantages are the ability to identify impact hotspots, 
prioritize management actions, and target specific sites, habitats, 
and species for intervention (Katsanevakis et al., 2016; Tsirintanis 
et al., 2023). CIMPAL supports informed decision-making and 
enhances the effectiveness of conservation efforts by providing a 
standardized, quantitative method for assessing cumulative impacts 
(Katsanevakis et al., 2016). To date, CIMPAL has been limited to 
assessing and mapping the impacts of IAS. 

Recognizing that both native and alien species can exhibit 
invasive characteristics, this study adopts a broader ecological 
perspective on invasiveness, treating it not merely as a 
biogeographical phenomenon associated to alien species (Valéry 
et al., 2009). Accordingly, IAS are treated as a subset of the broader 
category of invasive species (Katsanevakis et al., 2023), which 
include also native invaders (Simberloff, 2011). Specifically, for 
the purposes of this study, we grouped IAS, HABs, and Jellyfish 
blooms into a single operational category, hereafter referred to as 
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Invasive Native or Alien Species (INAS). Thus, this research 
expands the CIMPAL framework by integrating the impacts of all 
these species while also accounting for interspecific interactions. 
The extended framework is applied to the Aegean Sea as a 
case study. 
 

2 Materials and methods 

2.1 Expanding CIMPAL 

CIMPAL is expanded to incorporate (1) the impacts of INAS, 
and (2) interspecific interactions. The new index is called CIMPAL

JH (Cumulative IMPacts of ALien species, Jellyfish blooms and 
HABs) and is calculated using the following Equation 1: 

n m n n m 
(1)Ic = ooAiHjwi,j ± oooAiAkHjwi,jfi,k 

i=1 j=1 i=1k=1j=1 

Ic is the cumulative impact score for a given study area cell. Ai 

denotes the population state of species i in the specific cell,

standardized between 0 and 1. Hj represents the extent of habitat 
j within the cell. n is the total number of INAS; and m is the total 
number of marine habitats included in the analysis. wi,j is the 
impact weight of species i on habitat j, estimated as a combination 
of species i impact magnitude (following Blackburn et al., 2014; 
Volery et al., 2020) and the strength of available evidence (following 
Katsanevakis et al., 2014b)The estimations of the ‘impact 
magnitude’ and the ‘strength of available evidence’ are provided 
in the Supplementary Figures S1 and S2”. Ak represents the 
population state of species k≠i, another INAS interacting with 
species i, exhibiting either positive or negative effects, with Ak 

values standardized between 0 and 1. fi,k refers to the interaction 
effect of species k on species i, ranging from -1 (maximum negative 
interaction) up to a maximum value constrained by the condition 
wi,j(1 + fi,k) ≤ 8 (corresponding to the threshold for ‘massive’ 
impacts; i.e., the overall impact of a species, including synergistic 
interactions through the second term of Equation 1, cannot exceed 
this value); for i = k, fi,k = 0.  

For INAS with continuous impacts (such as for most IAS) Ai 

should ideally be a standardized measure of species abundance. In 
case of limited data, proxies such as the probability of presence 
derived from species distribution models or even binary presence-
absence may be used. However, species causing blooms (jellyfish or 
phytoplankton) differ fundamentally, as they typically occur in high 
concentrations seasonally or episodically, and for limited durations. 
Therefore, the overall severity of their impacts depends not only on 
the abundance (or concentration) of the blooming species but also 
on the average annual duration of blooms. To account for this, we 
propose estimating Ai for bloom-forming species using species-
specific thresholds, derived from historical data on bloom 
concentration and duration. Ai can thus be defined as a 
composite measure combining both metrics (see Supplementary 
Figure S3 for details). 
Frontiers in Marine Science 03 
2.2 Aegean Sea case study 

The Aegean Sea (north-eastern Mediterranean) is renowned for 
its rich marine biodiversity and complex ecosystems. Despite its 
ecological importance, the Aegean Sea faces substantial challenges 
for effective management and spatial planning (Sini et al., 2017). 
These challenges are intensified by human activities, including 
overfishing, pollution, and the introduction of alien species 
(Anagnostou et al., 2024). Over the past two decades, the number 
of established alien species in the region has substantially increased 
(Ragkousis et al., 2023), leading to important negative impacts on 
native biodiversity (Tsirintanis et al., 2023). Additionally, the 
frequency of jellyfish blooms has risen, disrupting tourism and 
posing risks to human health (Isinibilir et al., 2021; Özgür and 
Öztürk, 2008). HABs have also been recorded in the Aegean’s 
coastal waters, with documented adverse effects on the environment 
and ecosystem services (Tsikoti and Genitsaris, 2021). These events 
have resulted in water discoloration, mucilage formation, habitat 
degradation, marine species mortality, localized anoxia, and 
economic losses in tourism and aquaculture, along with public 
health  concerns  (Economou  et  al . ,  2007; Tsikoti  and  
Genitsaris, 2021). 

To apply CIMPAL-JH, the Aegean Sea was partitioned into 
321,346 grid cells, each measuring 0.01° in latitude and longitude, as 
described by Tsirintanis et al. (2023). For each grid cell, the percent 
cover of ten broad habitat types was retrieved from Tsirintanis et al. 
(2023), derived from the habitat maps developed by Sini et al. 
(2017). These habitat types included seagrass meadows, shallow soft 
substrates (0–60 m depth), deep soft substrates (60–200 m depth), 
soft substrates of the dysphotic zone (deeper than 200 m), shallow 
hard substrates (0–60 m depth), deep hard substrates (60–200 m), 
hard substrates of the dysphotic zone (deeper than 200 m), 
submarine caves, coralligenous formations, and the pelagic 
habitat. Depth information was integrated by overlaying 
bathymetric contours with the distribution of soft and hard 
substrates to estimate the coverage of each habitat type within 
each grid cell. 

IAS occurrence data were sourced from Tsirintanis et al. (2023). 
Overall, 26 IAS were found to impact at least one of the studied 
habitats. These species are Amathia verticillata, Amphistegina lobifera, 
Asparagopsis spp., Brachidontes pharaonis, Callinectes sapidus, 
Caulerpa cylindracea, Codium fragile, Conomurex persicus, Fistularia 
commersonii, Halophila stipulacea,Hydroides elegans, Lagocephalus 
sceleratus, Lophocladia lallemandii,Mnemiopsis leidyi (a jellyfish), 
Oculina patagonica,Parupeneus forsskali, Pempheris rhomboidea, 
Pinctada radiata,Pterois miles, Sargocentron rubrum, Siganus 
luridus, Siganus rivulatus, Styela plicata, Stypopodium schimperi, 
Upeneus pori and Womersleyella setacea. 

Jellyfish bloom data were compiled from published studies, the 
CIESM Jelly Watch Program, and iNaturalist, while HAB 
occurrence data were sourced through a systematic literature 
review. The ctenophore Mnemiopsis leidyi, although a bloom

forming  species,  was  included  in  the  IAS  dataset  and  
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consequently excluded from the jellyfish bloom records. Among all 
the studied species, only two interspecific interactions were 
identified: the consumption of the chlorophyte Caulerpa 
cylindracea by the two herbivorous fish Siganus luridus and S. 
rivulatus (Azzurro et al., 2007; Tsirintanis et al., 2023). In both 
cases, fi,k was taken equal to -1, as these two herbivore fish, when 
abundant, completely eradicate C. cylindracea. This means that the 
impact of C. cylindracea in such cases becomes (from Equation 1): 

AiHjwi,j + AiAkHjwi,jfi,k =  1 · Hj · wi,j + 1  · 1 · Hjwi,j · ( − 1) = 0: 

The CIMPAL-JH index was calculated for each grid cell, 
integrating the cumulative impacts of IAS, HABs, and jellyfish 
blooms. The population state of IAS, Ai, was derived from species 
distribution models (SDMs) as reported by Tsirintanis et al. (2023). 
For jellyfish and HAB species, only binary presence (1) or absence 
(0) data were used, due to the unavailability of consistent and 
reliable information on bloom duration and concentration. Impact 
magnitude and strength of evidence for each IAS were retrieved 
from Tsirintanis et al. (2023), whereas data for jellyfish and 
phytoplankton species were obtained through literature reviews 
(see Supplementary Table 1). Species lacking documented impacts 
were excluded from the cumulative impact score. This applied to 
the jellyfish Chrysaora hysoscella and Pennaria disticha and the 
phytoplankton species Alexandrium insuetum, Alexandrium 
minutum, Chaetoceros spp., Chattonella globosa, Chroococcus 
gelatinosus, Cylindrotheca closterium, Gonyaulax fragilis, 
Gonyaulax sp., Gonyaulax  spinifera, Gymnodinium catenatum, 
Leptocylindrus danicus, Leptocylindrus minimus, Lyngbya 
Frontiers in Marine Science 04
agardhii, Microcystis aeruginosa, Noctiluca scintillans, Phaeocystis 
pouchetii, Prorocentrum micans, Prorocentrum minimum, 
Prorocentrum redfeldii, Pseudo-nitzschia, Skeletonema costatum, 
Spatulodinium  pseudonoctiluca,  Synechocystis  sallensis,  
Synechocystis spp. and Trichodesmium erythraeum. 

Species were ranked by their negative impacts using four 
indicators as proposed by Tsirintanis et al. (2023). The first (D1) 
measured the total area of occurrence, defined as the number of grid 
cells where the species was present. The second (D2) counted the 
number of cells where the species had an impact score greater than 
zero. The third (D3) calculated the cumulative impact score of each 
species by summing its impact values across the study area. The 
fourth (D4) determined the mean impact score across the species’ 
range, excluding grid cells with values below 0.1. 
3 Results 

Cumulative impact scores for IAS, jellyfish blooms, and HABs 
per grid cell ranged from 0 to 45.6 (Figures 1, 2), with an average 
score of 1.6 per cell. Shallow coastal habitats (<60 m depth) 
exhibited significantly higher cumulative impact scores than 
offshore waters, with impacts being spatially localized rather than 
widespread (Figure 2). In offshore waters, cumulative impacts 
gradually declined from the northern to the southern Aegean 
(Figure 1). In contrast, high-impact coastal areas (i.e., the highest 
CIMPAL-JH scores) were more abundant in the southern Aegean 
compared to the north (Figures 1, 2). Certain regions, particularly 
FIGURE 1 

Map of cumulative impacts of invasive alien species (IAS), jellyfish blooms, and harmful algal blooms (HABs) in the Aegean Sea using CIMPAL-JH 
index scores. 
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the Saronikos and Thermaikos Gulfs, emerged as hotspots of 
cumulative impact, affected by all three categories of INAS 
(Figures 1–3). 

IAS are responsible for the most extensive impacts recorded 
among the CIMPAL-JH components in the Aegean Sea (Figure 3b). 
Among the most widespread IAS, Mnemiopsis leidyi, Hydroides 
elegans, Lagocephalus sceleratus, Fistularia commersonii, and
Frontiers in Marine Science 05 
Pinctada radiata exhibited the broadest distribution (D1). When 
considering number of impacted cells (D2), M. leidyi, L. sceleratus, 
F. commersonii, Parupeneus forsskali, and Caulerpa cylindracea 
ranked highest. The cumulative impact scores (D3) identified M. 
leidyi, L. sceleratus, Amphistegina lobifera, F. commersonii, and 
Lophocladia lallemandii as the most impactful species. In terms of 
average impact within each species’ range (D4), M. leidyi, L. 
FIGURE 2 

Zoomed-in views of cumulative impacts of invasive alien species (IAS), jellyfish blooms, and harmful algal blooms (HABs), in selected coastal areas of 
the Aegean Sea using CIMPAL-JH index scores. These close-up maps highlight spatial variations and fine-scale details of cumulative impact 
distribution in coastal regions. 
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lallemandii, Siganus luridus, Siganus rivulatus, and Womersleyella 
setacea were the most impactful species in the Aegean 
Sea (Figure 4). 

Four jellyfish species were identified as impactful: Aurelia 
aurita, Cotylorhiza tuberculata, Pelagia noctiluca, and Rhizostoma 
pulmo. Cumulative impact scores of jellyfish blooms per cell ranged 
from 0 to 5 (Figure 3d) with an average of 0.11 per cell, contributing 
7.0% of the total CIMPAL-JH impact (Figure 3a). Data from 
different sources showed a consistent pattern, indicating that the 
western Aegean is the most affected area by jellyfish blooms, as well 
as some islands in the Kyklades. Based on D1, D2, and D3, the 
species ranking was: R. pulmo, P. noctiluca, C. tuberculata and A. 
aurita. For D4 (average impact per cell within their distribution 
range), P. noctiluca, A. aurita, and R. pulmo were tied, followed by 
C. tuberculata (Figure 4). 

Seven phytoplankton taxa were identified as impactful in the 
Aegean Sea: Dinophysis sp., Dinophysis acuminata, Karenia brevis, 
Karlodinium spp., Mesodinium rubrum, Ostreopsis spp., and 
Frontiers in Marine Science 06
Vicicitus globosus. HABs exhibited cumulative impact scores per 
cell ranging from 0 to 6 (Figure 3c), with an average of 0.10, 
contributing 6.1% to the total CIMPAL-JH score (Figure 3a). These 
impacts were mainly concentrated in the Thermaikos and 
Saronikos gulfs. Based on both D1 and D2, D. acuminata and V. 
globosus were the top-ranked species. According to D3, M. rubrum 
had the highest impact, followed by D. acuminata and V. globosus. 
In terms of D4, M. rubrum and Ostreopsis spp. had the highest 
average impacts within their distribution ranges (Figure 4). 
4 Discussion 

Assessing cumulative impacts is a fundamental principle of 
ecosystem-based management (Papadopoulou et al., 2025). In the 
context of biological invasions, such assessments allow for a 
comprehensive evaluation of the combined effects of multiple 
invasive  species  on  marine  ecosystems,  ensuring  that  
FIGURE 3 

(a) Disaggregation of the total CIMPAL-JH score by its three components (IAS, jellyfish blooms, and HABs), and maps of the cumulative impacts in 
the Aegean Sea of (b) IAS, (c) jellyfish blooms, and (d) HABs. 
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management strategies effectively account for complex ecological 
interactions and mitigate associated risks (Carneiro et al., 2025; 
Mačic et al., 2018; McGeoch et al., 2016). While earlier assessments 
have primarily focused on IAS, other native invaders, such as those 
causing HABs and jellyfish blooms, can also cause significant 
disruptions to marine biodiversity (Sagarminaga et al., 2024, 
2023). By expanding the CIMPAL framework to include other 
environmental drivers and their interspecific interactions,

CIMPAL-JH provides a more comprehensive tool for assessing 
and mapping invasion-related impacts across marine habitats 
(Borja et al., 2024). It offers an integrated approach to identify 
high-risk areas, rank species based on their ecological impact, and 
support evidence-based management strategies. 
Frontiers in Marine Science 07 
The Aegean Sea faces a range of environmental challenges 
driven by population growth, wastewater discharge, agricultural 
runoff, aquaculture, industrialization, tourism, maritime transport, 
and climate change (Anagnostou et al., 2024). These stressors have 
contributed to increased occurrences of IAS, HABs, and jellyfish 
blooms, leading to the cumulative impacts documented in 
this study. 

According to the CIMPAL-JH index, coastal habitats 
consistently exhibited higher cumulative impact scores than 
offshore waters, echoing the findings of (Tsirintanis et al., 2023). 
This trend reflects the thermophilic affinity of most Mediterranean 
IAS, thriving in warmer, shallower waters (Katsanevakis et al., 
2014a), though it may also be influenced by research effort bias, 
FIGURE 4 

Ranking of the species impacts in the Aegean Sea according to the indicators D1 (Top Left), D2 (Top Right), D3 (Bottom Left), D4 (Bottom Right). The 
data related to D1, D2 and D3 are log-transformed. 
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as most ecological surveys are conducted in nearshore zones 
(Tsirintanis et al., 2023). 

The Thermaikos Gulf stood out as the most affected pelagic 
area, with significant impacts from jellyfish blooms and HABs. This 
can be linked to multiple anthropogenic stressors, including sewage 
discharge, industrial waste, agricultural runoff, shipping activities, 
and harbor operations. Furthermore, five major rivers transport 
nutrients, heavy metals, and organic compounds into the gulf, 
exacerbating these issues (Androulidakis et al., 2024). Both 
Thermaikos and Saronikos Gulfs are hotspots for alien 
invertebrates belonging to Mollusca, Arthropoda, and Annelida, 
though they do not exhibit the same degree of invasion by 
Chordata, particularly fish (Katsanevakis et al., 2013). Notably, 
both Thermaikos and Saronikos are among the Greek coastal 
regions most severely affected by human-induced eutrophication 
(Pagou, 2005), which is consistent with our findings of elevated 
HAB impacts. 

Differences between this study and Tsirintanis et al. (2023) are 
largely due to the inclusion of interspecific interactions, which 
reduced the cumulative impact of Caulerpa cylindracea. In

Tsirintanis et al. (2023), C. cylindracea ranked first in 
cumulative impact sum across all cells (D3) but, in this study, it 
has dropped to eighth place. Similarly, in terms of the average 
impact within a species’ range (D4), C. cylindracea fell from first in 
Tsirintanis et al. (2023) to 20th in the current assessment. This 
lower ranking more accurately reflects its current status, as recent 
observations indicate a substantial decline in C. cylindracea 
populations in the eastern Mediterranean, with the species even 
disappearing from several areas due to predation by Siganus spp 
(Dimitriadis et al., 2021). 

Among jellyfish, Rhizostoma pulmo emerged as the most 
impactful species across D1, D2, and D3, partly due to its role as 
a vector for bacterial pathogens, which may spread diseases to 
marine organisms and humans (Stabili et al., 2020). Additionally, R. 
pulmo blooms can threaten planktonic populations and disrupt fish 
larvae recruitment by reducing their zooplanktonic prey (Gueroun 
et al., 2022). Pelagia noctiluca, ranked second, exerts strong 
predatory pressure on zooplankton, including eggs and larvae of 
both benthic and pelagic species (Mariottini et al., 2008). 
Cotylorhiza tuberculata, ranked third in D1–D3 but lower in D4, 
indicating widespread but relatively lower localized impacts. 
However, its high abundance in enclosed coastal zones can 
disrupt resource availability and alter competition dynamics 
(Astorga et al., 2012). Aurelia aurita, while ranked lowest in D1, 
D2, and D3, had a high average impact within its range (D4), 
indicating it can still exert significant localized ecological pressures, 
particularly through zooplankton predation and microbial 
community shifts (Zoccarato et al., 2016). 

Although HABs had the lowest cumulative impact overall, they 
remain an ecological concern, particularly in the western Aegean. 
Like other Dinophysis species, D. acuminata produces okadaic acid 
(OA) and dinophysistoxins (DTXs), which are causative agents of 
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diarrhetic shellfish poisoning (DSP) in humans. However, the 
impacts of HABs extend beyond human health, as marine 
organisms are also vulnerable to their toxins. Research on DSP 
toxin exposure, accumulation, and effects on marine life remains 
limited, though available studies indicate potential behavioral and 
morphological changes, as well as mortality in fish (Corriere et al., 
2021). Vicicitus globosus is known for its cytotoxic effects, which can 
be harmful to a wide range of marine organisms (Chang, 2015). 
Mesodinium rubrum, which had the highest cumulative impact 
score (D3) and (together with Ostreopsis spp.) the greatest average 
impact within its range (D4), is particularly notable for its ability to 
turn water into a distinct red color. Its blooms can disrupt local 
marine ecosystems by outcompeting other phytoplankton species 
for resources (Zhang et al., 2018). Karenia cf. brevis is well known 
for causing red tides and producing brevetoxins, which are highly 
toxic to marine life and can cause Neurotoxic Shellfish Poisoning 
(NSP) in humans (Stumpf et al., 2022). Ostreopsis spp., although 
more localized, are also of concern, as they produce palytoxins and 
ovatoxins, which are harmful to marine organisms and can become 
aerosolized, leading to respiratory issues, skin irritation, and other 
health effects in humans (Pavaux et al., 2020). 

The impacts of HABs are strongly influenced by bloom density, 
as even the most toxic species must reach a threshold cell 
concentration to cause significant ecological harm. Although 
many harmful species are widespread, their actual impact 
depends on both bloom intensity and duration (Zingone and 
Oksfeldt Enevoldsen, 2000). Notably, some taxa, such as 
Dinophysis spp., can still induce toxic contamination at very low 
concentrations (Zingone and Oksfeldt Enevoldsen, 2000). To 
improve future assessments, it is essential to determine species-
specific cell concentration thresholds and consistently report bloom 
intensity and duration. A similar approach applies to jellyfish 
blooms, whose severity also depends on concentration and 
persistence - factors not yet reflected in the Ai term in the Aegean 
case study due to data limitations. Incorporating these parameters 
would improve impact estimations by more accurately quantifying 
the severity of these phenomena and moving beyond the constraints 
of simple presence-absence data, thereby avoiding under- or 
overestimation of impacts. This would also allow for the detection 
of subtle trends or changes in bloom dynamics and their associated 
impacts over time. 

Furthermore, the current implementation of CIMPAL-JH was 
static, assuming that the impacts of a species remain constant in 
space and time. However, impacts can be dynamic, influenced by 
environmental changes, fluctuations in resource availability, or 
adaptation of the native biodiversity, with ‘boom-bust’ dynamics 
reported for many species, challenging the assumption of persistent 
impacts (Santamarıá et al., 2022). 

Future refinements should therefore aim to integrate species-
specific concentration thresholds and spatiotemporal dynamics into 
the Ai and wi,j terms to enhance the assessment of cumulative 
impacts. Moreover, while the impacts of individual harmful species 
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are relatively well-documented, the interactions among multiple 
species and their combined effects remain complex and poorly 
understood. HAB events commonly involve multiple co-occurring 
species. Further research is needed to fully assess the cumulative 
impacts of co-occurring species and incorporate this understanding 
into the CIMPAL-JH index. 

This study expanded the CIMPAL framework, originally 
designed to assess IAS impacts, by incorporating jellyfish blooms, 
HABs, and interspecific interactions. Despite limitations in data 
availability, the application of CIMPAL-JH in the Aegean Sea has 
offered valuable insights into the spatial distribution of cumulative 
impacts of INAS, highlighting key hotspots of environmental 
impact. Beyond the Aegean, CIMPAL-JH is a versatile and 
scalable tool for assessing the impacts of both native and invasive 
alien species across diverse regions. By integrating multiple 
environmental drivers and accounting for species interactions, the 
index can be adapted to different aquatic ecosystems, helping to 
identify high-risk areas, prioritize management efforts, and support 
conservation strategies. 

CIMPAL-JH  may  support  existing  monitoring  and  
management efforts. For example, the European Union’s Marine 
Strategy Framework Directive (MSFD) requires Member States to 
monitor and manage biological disturbances as part of efforts to 
achieve Good Environmental Status (GES). Although to implement 
MSFD, Member States need to monitor and assess the occurrence 
and impacts of IAS, HABs, and jellyfish blooms, MSFD does not 
propose specific methodologies for evaluating their cumulative 
impacts on marine biodiversity. CIMPAL-JH addresses this gap 
by combining INAS and habitats distributions with habitat 
vulnerability to produce spatially explicit cumulative impact 
assessments. In this way, the framework contributes to the 
implementation of the MSFD by offering a structured approach 
to evaluating IAS and bloom-related pressures and supporting 
progress toward GES. Furthermore, the spatial outputs of the 
CIMPAL-JH framework can directly inform the actions of 
regional environmental managers by identifying high-risk zones 
where IAS and bloom events are likely to have the greatest impact. 
This information can guide monitoring priorities, optimize resource 
allocation, and inform the design of localized response strategies. 

Future applications could further refine the methodology by 
incorporating additional factors such as bloom intensity and 
species-specific thresholds or consider further  environmental

challenges. This would enhance the utility of the index as a 
decision-support tool for mitigating cumulative impacts on 
biodiversity and ecosystem services in the face of growing 
ecological challenges. 
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