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Incomplete data significantly hampers risk analysis for high-sea maritime

accidents (HSMAs). This paper introduces a novel multi-source data-driven

Bayesian network (DDBN) framework to address this limitation. This framework

initially integrates heterogeneous data from multiple sources, including accident

reports, ship characteristics, environmental conditions, etc. The structural

learning of the DDBN employs a hybrid, tri-source enhanced methodology.

Informed by a two-stage risk evolution theory, this approach integrates evidence

from structured data, text analysis, and expert knowledge to construct a unified

network structure, ensuring that derived causal relationships align with both

statistical evidence and domain expertise. Subsequently, the Expectation-

Maximization algorithm is employed for parameter estimation to handle

missing data. The findings indicate that although the accident type, sea area

and ship type all contribute to the risk level of HSMAs, the gross tonnage is the

most critical factor that directly affects the likelihood of an accident. The DDBN

model achieves an accident prediction accuracy of 84.0%, with both precision

and recall exceeding 75%. Furthermore, DDBN-based scenario analysis

proactively identifies high-risk scenarios associated with specific accident types

and gross tonnage, offering maritime authorities and operators an enhanced tool

for risk assessment. This study provides a scientific basis for formulating targeted

HSMA prevention strategies.
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1 Introduction

With its advantages of low cost and high efficiency, maritime

transport accounts for more than 80% of global trade (Goerlandt

and Montewka, 2015; Wang et al., 2024a; Liu et al., 2025). However,

the development of large-scale and high-speed ships has brought

severe challenges to maritime security, especially in the high-sea

area. The high-sea area usually refers to remote sea areas far away

from the coastline and unable to quickly obtain land support (Xie

et al., 2021). According to statistics, from 2014 to 2022, a total of 698

merchant ships over 100 tons were lost globally (Allianz Global

Corporate & Specialty Company, 2024). Among more than 23,000

maritime casualties, 20.8% occurred in the high sea, with a rising

trend year by year (European Maritime Safety Agency, 2023).

Although maritime regulators, shipowners and other stakeholders

have made tremendous efforts to enhance safety levels in terms of

supervision, ship design improvements and risk management,

accidents in the high sea still occur frequently. For example, on

February 16, 2022, the cargo ship Felicity Ace caught fire near the

Azores in the Atlantic Ocean. Although rescue efforts were made,

the complexity of the high-sea environment and the out-of-control

fire ultimately led to the total loss of the ship and more than 3,000

vehicles on board, with economic losses of more than $400 million

(Göksu et al., 2023). Another pertinent case occurred on January 21,

2023, when a pump operator sustained a critical head injury while

on duty at sea. The absence of prompt medical intervention was

cited as a contributing factor to the worker’s death two days later

(International Maritime Organization, 2023). These examples

highlight that accidents in the high sea often lead to catastrophic

consequences, including ship lost, loss of life, environmental

pollution, and supply chain disruptions. Exacerbating this

problem is that only a few ports and shipyards worldwide are

equipped to handle such accidental ships (Xu et al., 2024).

Therefore, there is an urgent need to develop scientific, rigorous

and targeted risk analysis methods to assist decision makers in

effectively identifying potential risks and thereby improve the safety

level of high-sea navigation.

Addressing the severe challenges and inherent risks of maritime

navigation necessitates the development of advanced risk analysis

methods to enhance maritime safety. Traditional risk analysis

techniques, such as Fault Tree Analysis (FTA) and risk matrix,

have indeed played an important role in dealing with specific

scenarios with clear causal chains and sufficient historical data

(Cem Kuzu et al., 2019; Huang et al., 2023). However, these

traditional methods exhibit significant limitations within the

complex high-sea environment, which is characterized by data

sparsity, diverse information sources, and high uncertainty.

Specifically, their efficacy is often compromised by difficulties in

integrating heterogeneous data, diminished reliability with

incomplete or missing data, and an inability to adequately capture

the non-linear, time-varying interactions among risk factors.

Consequently, to address these deficiencies, leveraging the

burgeoning volume of maritime data for risk analysis has

emerged as a prominent trend, fostering the innovation and

application of data-driven methodologies in maritime safety.
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These methods, especially machine learning and probabilistic

graphical models, have shown great potential in mining potential

patterns in complex data, handling uncertainties, and modeling

complex dependencies between variables (Chen et al., 2023; Li et al.,

2023; Fan et al., 2024). Among many data-driven technologies,

Bayesian networks (BNs) have attracted much attention due to their

unique advantages: (1) they can effectively integrate quantitative

and qualitative information from different sources; (2) they can still

perform robust probabilistic reasoning in the absence of data; (3)

they explicitly model the potential causal or correlation

relationships between variables and build highly interpretable risk

models, which is crucial for understanding the mechanism of

accidents (Marcot and Penman, 2019). These characteristics make

BNs an ideal tool for addressing the challenges of data

heterogeneity, incompleteness, and relationship complexity in

high-sea accident risk analysis.

In view of this, this paper proposes a multi-source DDBN

framework, which aims to make full use of the core advantages of

BNs and innovatively adopt a hybrid, three-source enhanced

methodology to provide an accurate and comprehensive analysis

method for accident risks in the high sea. The main innovations of

this paper are as follows.
1. To the best of the author’s knowledge, this is the first model

to quantitatively assess the risk of HSMAs informed by a

two-stage risk evolution perspective. It comprehensively

considers factors including the ship, environment,

management, and human elements, effectively filling the

gap in maritime accident assessment from the high-

sea perspective.

2. A new adaptive variable state definition method combining

domain knowledge has been developed, which can

objectively and accurately divide the state based on data

characteristics, laying the foundation for DDBN modeling.

3. Most importantly, a hybrid three-source enhanced

structural learning method is proposed. The new method

innovatively integrates structured data patterns, text

mining insights, and expert knowledge to build a network

structure that is more consistent with causal logic

and reality.
The rest of this paper is organized as follows. Section 2 provides

a literature review on maritime accident research and maritime

applications of BN. Section 3 introduces the proposed risk analysis

framework, multi-source data, and related method. Section 4

provides the results and discussion of the high-sea accident risk

analysis. Finally, Section 5 concludes the paper.
2 Literature review

Maritime safety is a critical global concern, attracting significant

research focused on risk analysis, management, maritime accident,

and policy (Luo and Shin, 2019; Chen et al., 2020; Xu et al., 2023).

However, extant research has predominantly focused on port and
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coastal water scenarios (Pan et al., 2021; Wang et al., 2024b). This

predominant focus has resulted in maritime accidents within the

challenging high-sea environment remaining comparatively

understudied. The unique characteristics of the high sea, such as

vast distances, harsh conditions, pervasive data limitations, and

complex Search and Rescue (SAR) logistics, present distinct

difficulties for comprehensive risk analysis (Song et al., 2023).

Consequently, addressing HSMAs represents a significant research

gap requiring dedicated investigation.

Maritime accidents arise from complex interactions among

human factors, adverse environmental conditions, and ship

failures, with strong coupling between these elements hindering

effective risk assessment (Deng et al., 2021). To address this, the

International Maritime Organization’s (IMO) Formal Safety

Assessment (FSA) framework (Zhou et al., 2020) provides

structured decision support. Driven by the FSA methodology,

traditional risk analysis approaches, utilizing quantitative

techniques like FTA and qualitative methods such as the

Human Factors Analysis and Classification System (HFACS),

are widely applied in maritime accidents. For instance (Chen

et al., 2013), employed HFACS for a detailed investigation and

classification of human factors in maritime accidents. In turn

(Zhang et al., 2019), combined the strengths of HFACS with FTA

to identify collision risk factors for icebreakers operating in ice-

covered waters. Nevertheless, a significant limitation of these

traditional approaches lies in their inherent challenges in

rigorously managing uncertainty and adequately modeling the

intricate probabilistic causal dependencies among diverse risk

factors, which is essential for robust risk understanding

and prediction.

To overcome these limitations, BNs have emerged as a powerful

probabilistic graphical modeling approach, adept at representing

complex dependencies and reasoning effectively under uncertainty

(Afenyo et al., 2017; Jiang and Lu, 2020b). Their suitability for

handling uncertainty and integrating diverse information sources in

maritime safety management and decision support has been well-

documented (Hänninen, 2014).

While early BN applications in maritime safety were primarily

expert-driven (Fu et al., 2023; Li et al., 2024), the advent of maritime

Big Data, characterized by increasing volume, velocity, and variety

from sources like Automatic Identification System (AIS), Vessel

Traffic Services (VTS), sensor networks, and textual incident reports

(Chen et al., 2020; Wang et al., 2024a), has significantly fueled a

shift towards data-driven methods. These approaches leverage Big

Data analytics techniques to learn network structure and

parameters automatically from extensive and heterogeneous

historical records, thereby reducing subjectivity and potentially

uncovering complex, hidden dependencies. For instance (Fan

et al., 2020), employed a data-driven BN on large-scale incident

datasets to assess human factor risks, identifying key contributors

across accident types. In the same year (Jiang and Lu, 2020a),

utilized a dynamic BN learned from extensive spatio-temporal

accident data to evaluate risks in specific sea lanes. Two years

later (Fu et al., 2022), also demonstrated the synergy of BNs with

other accident analysis techniques like AcciMap to enhance causal
Frontiers in Marine Science 03
identification in stranding accidents, often drawing insights from

combined data sources.

Despite advancements showcasing DDBN utility, significant

obstacles persist, particularly when analyzing complex high-sea

accidents within the current maritime Big Data landscape.

Addressing high-sea specific risks, effectively managing diverse

and incomplete multi-source data, and ensuring learned

structures align with domain knowledge are critical unmet

challenges (Xu et al., 2024). These challenges constitute the

starting point and core focus of this study.

To address these specific issues, this study proposes a novel

multi-source DDBN framework designed for the high-sea

environment. The framework systematically handles the

heterogeneity and incompleteness of the data, especially adopting

the Expectation-Maximization (EM) algorithm for parameter

estimation. The structure learning adopts a hybrid three-source

enhanced algorithm and integrates structured data patterns, text

mining insights, and expert knowledge to enhance causal validity.

The goal of this study is to develop an accurate and reliable tool with

plausible causal relationships for assessing and mitigating accident

risks in challenging high-sea environments.
3 Materials and methods

Section 3 outlines the materials and methods used in this study

to assess the risk of HSMAs. Initially, section 3.1 presents the overall

risk analysis framework that guided the research process. Section

3.2 then describes the relevant materials used. Finally, building

upon this foundation, Section 3.3 details the key methodological

steps, including the identification and state definition of risk

influencing factors (RIFs), the construction of the DDBN model,

its rigorous validation, and the subsequent sensitivity analysis.
3.1 Risk analysis framework

The mechanism of HSMAs is complex, involving multi-source

heterogeneous information such as the ship’s own status and

external environmental conditions, and has the characteristics of

uncertainty and high complexity. To address these multifaceted

challenges, this paper introduces a systematic DDBN-based risk

analysis framework, depicted in Figure 1. The framework aims to

ensure the rigor of risk analysis through a structured process and

ultimately provide reliable decision support for high-sea navigation

safety. The framework is divided into four key steps: (1) Data

preparation focuses on integrating multi-source heterogeneous data

and defining key RIFs. (2) DDBN model construction involves

building the probabilistic risk model using a tri-source enhanced

structural learning method and parameter estimation. (3) Model

validation and analysis aims to assess the model’s predictive

accuracy, logical coherence, and the sensitivity of key RIFs. (4)

Model application utilizes the model for risk inference and scenario

simulation to identify high-risk situations and support accident

prevention decisions.
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3.2 Materials

3.2.1 Study scope and definitions
This study statistically analyzes global maritime accidents from

2005 to 2022 based on navigational area and accident risk, with the

findings presented in Figure 2. For this analysis, navigational areas

are categorized as inland waters, internal waters, territorial sea, and

the high sea. Accident risk, following IMO standard MSC-MEPC.3/

Circ.1, is categorized as very serious, serious, or less serious. In this

study, we define ‘high-risk accidents’ as those resulting in ‘very

serious’ consequences. Thus, the ‘High-risk accidents ratio’ in

Figure 2 denotes the proportion of ‘very serious’ accidents to the

total number of accidents within a given water area.

Figure 2 illustrates an overall downward trend in total global

maritime accidents since 2013, indicative of continuous

improvements in global maritime safety governance. Notably,

however, the number of accidents in the high sea did not

correspondingly decrease significantly during this period, even

remaining relatively stable in some years. For example, comparing

data from 2013 (117 inland water accidents, 69 high-sea accidents)

with 2020 (54 inland water accidents, 63 high-sea accidents) clearly

shows that safety challenges in high-sea areas remain severe and are

relatively independent of this general trend.

Further analysis reveals that HSMAs exhibit not only limited

quantitative improvement but also a propensity for more severe

consequences. Indeed, data indicate that the proportion of high-risk

accidents in high-sea areas (the ‘High-sea ratio’) generally exceeds
Frontiers in Marine Science 04
that in non-high-sea areas. In 2017, for instance, the high-risk

accident ratio in high-sea areas was approximately 83%,

significantly surpassing the circa 60% in non-high-sea areas for

that year. This high-risk profile is commonly attributed to the

inherently adverse natural conditions of the high seas, limitations in

the geographical accessibility of rescue assets, and the relative

deficiencies in emergency response and logistical support

capabilities. In view of the persistence of high-sea accidents, the

extreme severity of their repercussions, and the unique genesis of

their risks, this study designates the risk analysis of HSMAs as its

core research focus.

3.2.2 Multi-source data collection and processing
A comprehensive HSMA dataset is constructed for this study,

employing a multi-source data fusion strategy. The primary data,

comprising high-sea accident summaries and investigation reports

(2014-2022), originates from the IMO’s Global Integrated Shipping

Information System (GISIS). This core dataset is augmented by

meteorological/hydrological data from the European Centre for

Medium-Range Weather Forecasts (ECMWF), vessel specifications

from the Electronic Quality Shipping Information System

(EQUASIS) and Lloyd’s Register Fairplay (LRF), and port

proximity data from public port authority records. Data linkage

accuracy across these diverse sources is ensured via IMO and

Maritime Mobile Service Identity (MMSI) numbers, establishing a

foundation for comprehensively capturing multi-dimensional RIFs

including ship, environment, management, and human.
FIGURE 1

DDBN-based risk analysis framework for HSMAs.
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Adhering to predefined spatio-temporal boundaries, the data

collection phase involves gathering detailed qualitative and

quantitative information for each HSMA case. Where necessary,

cross-database record linkage, again utilizing IMO and MMSI

numbers, is performed to consolidate all pertinent information

for individual ships and incidents. This meticulous approach

ensures the consistency and completeness of the dataset before its

subsequent analysis.

The collected data subsequently underwent a meticulous two-

stage (TS) processing workflow to ensure its quality and suitability

for modeling. Stage one focused on data cleaning and completion,

which involved the removal of duplicate and irrelevant entries,

alongside the imputation of missing values for key variables using

supplementary data sources. Stage two consisted of data validation

and filtering, where records exhibiting internal inconsistencies,

ambiguous information, or insufficient detail were manually

reviewed and excluded. Completion of these procedures yielded a

final dataset of 472 HSMA cases, forming the empirical foundation

for the construction and analysis of the DDBN model.
3.3 Methods

3.3.1 RIFs identification and state definition
Identifying RIFs for HSMAs is a fundamental step in

constructing a robust risk analysis model. This study employes a

systematic, multi-source approach to identify these RIFs, which

primarily encompassed: (1) an extensive literature review focusing

on the causative factors of maritime accidents and established safety

frameworks; (2) an in-depth analysis of high-sea accident

investigation reports from the IMO’s GISIS database; and (3)
Frontiers in Marine Science 05
iterative consultation and validation with domain experts. From a

system safety theory perspective, the identified potential RIFs were

subsequently categorized into four main dimensions: ship,

environment, management, and human.

These identified RIFs collectively determine the safety level of

high-sea navigation. To effectively represent these factors within the

DDBN model, this study integrates both quantitative data and

qualitative knowledge. Table 1 systematically summarizes the

RIFs selected for this research, detailing their categorization, data

processing types, and the rationale for their inclusion, critically

including their selection basis. The ‘Selection basis’ column in

Table 1 clarifies the primary and secondary evidence supporting

the inclusion of each RIF. To ensure the reliability and relevance of

expert knowledge throughout crucial phases such as RIF selection,

state definition, and model structure optimization, a panel of

experts with extensive experience in pertinent domains is

consulted; their professional backgrounds are provided in Table A1.

Subsequent to RIF identification, defining discrete states for

each node is crucial in BN modeling. To overcome limitations of

traditional expert-defined thresholds, such as subjectivity, this study

employes a Stratified Expert-Integrated Discretization (SEID)

method. For ‘expert-based’ RIFs with clear standards (e.g.,

‘Classification society’ as ‘Registered’/’Unregistered’), SEID adopts

these predefined categories. For ‘numerical’ RIFs (e.g., ‘Ship age’),

initial intervals are partitioned using supervised discretization, such

as our Supervised Cause-based Interval Merging (SCIM) method

(Chen et al., 2024), which leverages accident cause distributions

within intervals.

These initial data-driven partitions then undergo expert

validation. Experts assess the practical significance and

operational relevance of intervals, adjusting boundaries to align
FIGURE 2

Annual maritime accidents by navigational areas and high-risk ratios.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1631650
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Qu et al. 10.3389/fmars.2025.1631650
with critical safety thresholds or established maritime practices not

algorithmically captured. For example, a statistically derived ship

age bracket might be refined to reflect maintenance cycles. This

hybrid SEID process balances data objectivity with expert insight,

enhancing the credibility and utility of node state definitions,

detailed for the final 19 nodes in Table A2.

3.3.2 DDBN model construction
A DDBN model is defined by a network structure, G, and a set

of parameters, q . For any given set of n variables, X = {X1 ,…, Xn},

their joint probability distribution over specific instantiations, P(x1
, x2,⋯, xn), can be factorized using the chain rule, as shown in

Equation 1:

P(x1, x2,⋯, xn) =
Yn
i=1

p(xi pi)j (1)

Here, pi denotes the set of parent nodes of Xi in the graph G.

The conditional probability distributions, P(Xi pi)j , are

parameterized by q . For discrete variables, these distributions are

typically represented as Conditional Probability Tables (CPTs).

This factorization forms the fundamental basis for performing

probabilistic inference and prediction with BNs.

In this study, we employ a hybrid, tri-source enhanced

algorithm for learning the network structure G; subsequently, the

EM algorithm is utilized to estimate the parameters q from multi-

source data, which may contain missing values. The subsequent

subsections will respectively detail the structural learning and

parameter estimation algorithms employed.
Frontiers in Marine Science 06
Structural learning for BNs, which involves defining the directed

acyclic graph G, primarily relies on two main approaches: data-driven

algorithms and expert knowledge-based construction. Data-driven

methods, such as Tree-Augmented Naive Bayes (TAN), excel at

discovering statistical dependencies but may overlook contextual

information or deeper causal relationships (Kamal and Çakır, 2022).

Conversely, approaches that depend solely on expert knowledge are

challenged by subjectivity and potential incompleteness.

Consequently, hybrid methods have emerged, aiming to integrate

data-derived evidence with expert insights to construct more robust

and reliable network structures (Fan et al., 2024).

To this end, this study proposes a novel hybrid structural

learning algorithm, termed the Tri-Source Enhanced Two-Stage

(TSETS) algorithm. Figure 3 illustrates a comparison of network

structures derived from: Figure 3a Naive Bayes (NB) and Figure 3b

TAN, representing common BN learning approaches; Figure 3c a

foundational TS structure that serves as a precursor; and Figure 3d

the final, optimized structure obtained through the TSETS

algorithm. These structures, particularly NB, TAN, and TS, also

serve as baselines for the performance evaluation discussed later.

The core of the TSETS algorithm lies in the systematic, multi-

source evidence-driven enhancement and refinement of a given TS

foundational structure (as depicted in Figure 3c). This method

innovatively integrates three distinct types of information sources:

statistical dependency patterns derived from structured data,

relationships extracted from unstructured textual narratives, and

domain expert judgments. The specific procedural steps of the

TSETS algorithm are detailed in Table 2.
TABLE 1 RIFs for HSMAs: categories, data types, and selection basis.

Category RIF Data type Selection basis

Ship Ship type Expert-based D, L

Ship age (years) Numerical L, D

Classification society Expert-based L, D

Gross tonnage Numerical D, L

Equipment Expert-based D, L

Environment Sea area Expert-based L, D

Wind speed (m/s) Numerical L, D

Wave height (m) Numerical L, D

Time of day Expert-based L, D

Management SAR support Expert-based E, L

Emergency preparedness Expert-based E, L

Port distance (NM) Numerical L, E

Human Negligent lookout Expert-based D, L

Assessment failure Expert-based D, L

Fatigue/heavy workload Expert-based E, L

Inadequate communication Expert-based D, L

Incompetent crew Expert-based E, L
‘L’ means literature-based, ‘D’ indicates database-derived (e.g., IMO GISIS), ‘E’ denotes expert judgment-based.
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Once the final DDBN structure, G, is established, the

subsequent critical task is parameter learning to determine the

conditional probability distribution for each node. The presence of

incomplete data in this study’s dataset, exemplified by missing

vessel information for fishing boats and unrecorded occurrence

times for some accidents, renders standard Maximum Likelihood

Estimation (MLE) methods inapplicable. Consequently, the widely-

used EM algorithm (Yang et al., 2019) is adopted for parameter

estimation, as it is particularly well-suited for learning parameters

in probabilistic models with missing data.

The essence of the EM algorithm is to find the maximum

likelihood estimate for parameters q by iteratively processing an

incomplete dataset X, which comprises an observed part (A) and a

missing part (B). The EM algorithm consists of two steps: the
Frontiers in Marine Science 07
TABLE 2 Process of the TSETS Algorithm.

Step Task

1 Identify baseline structure & learn TAN structure (S_TAN) from
structured data

2 Extract narrative relationships (L_Text) from textual data via
relation extraction)

3 Present baseline structure & evidences (S_TAN & L_Text) to experts

4 Expert evaluation, cross-validation & reconciliation of
integrated findings

5 Iterative structure refinement based on expert consensus

6 Finalize TSETS structure (G)
FIGURE 3

The structure of NB (a), TAN (b), TS (c) and TSETS (d).
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Expectation (E) step and the Maximization (M) step. These are

detailed as follows:

E-step: Given the current parameter estimate qk, calculate the

expectation of the complete-data log-likelihood function with

respect to the conditional distribution of the missing data B given

A and qk. This expected log-likelihood, often denoted as the Q-

function, is defined as:

Q(q , qk) = E½log p(A,B q)j jA, qk� (2)

M-step: Maximize the Q-function with respect to q to obtain

the updated parameter estimate qk+1:

qk+1 = argm
q
axQ(q , qk) (3)

The algorithm iterates between the E-step and M-step until qk+1

converges. Upon convergence, the algorithm terminates and

outputs the optimal DDBN parameters q . Otherwise, the E and

M steps are repeated.

3.3.3 Model validation
Following the construction of the DDBN model, its rigorous

validation is a critical step for assessing reliability and effectiveness.

This study employs a dual-dimension validation strategy,

integrating an internal logical consistency review with an external

predictive performance evaluation.

The internal logical consistency review is primarily conducted

using an axiomatic approach (Fan et al., 2023; Li et al., 2023).

Axiom 1 stipulates that a slight increase or decrease in the prior

probability of a parent node should induce a corresponding

directional change in the posterior probability of its child node.

Axiom 2 mandates that the overall impact of a combination of

evidence must be no less than the impact of any subset of

that evidence.

External performance evaluation focuses on quantifying the

DDBNmodel’s predictive accuracy and generalization capability on

unseen data (Jiang et al., 2020). This study utilizes randomly

allocated training and test sets to calculate four standard

performance metrics derived from a confusion matrix (Table 3).

In addition to overall accuracy (i.e. Equation 4), particular emphasis

is placed on precision (i.e. Equation 5), recall (i.e. Equation 6), and

the F1-score (i.e. Equation 7). These metrics are employed to

comprehensively assess the model’s predictive performance and

discriminatory power, especially when addressing potential class

imbalance in the data.

Overall Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 − score =
2 ∗ Precision ∗Recall
Precision + Recall

(7)
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3.3.4 Sensitivity analysis
Initially, a preliminary sensitivity analysis is conducted using

Mutual Information (MI) to quantify the strength of statistical

dependence between each RIF and the target node. MI effectively

identifies key RIFs that have a significant influence on the target

node. The MI is calculated as shown in Equation 8:

I(T ,R) = o
t∈T
o
r∈R

P(t, r) log
P(t, r)
p(t)p(r)

� �
(8)

where T denotes the target node, and R represents any given

RIF. P(t, r) is the joint probability distribution of T and R, while p(t)

and p(r) are the marginal probability distributions of T and R,

respectively. A higher MI value indicates a stronger statistical

association between the RIF and the target node.

Secondly, for the key RIFs identified and ranked by their MI

values, a parameter sensitivity analysis is conducted. This analysis

involved sequentially setting each state of a selected key RIF as

deterministic evidence (i.e., 100% probability) and then utilizing

Bayesian network inference to calculate the posterior probability of

the target node, ‘accident risk,’ under that specific condition. By

comparing the variations in the target node’s probability as the RIF

assumes different states, the specific degree of impact and the

influence patterns of each particular state of that RIF on the

‘accident risk’ probability could be precisely and quantitatively

revealed. This process thereby provided stakeholders with

valuable insights and decision support for identifying critical risk

points and formulating targeted risk mitigation strategies.
4 Results and discussion

4.1 Learned DDBN model

First, we construct the DDBN network structure using the

TSETS algorithm, as detailed in Table 2. Second, we employ the

EM algorithm, formulated in Equations 2, 3, to learn the CPT for

each node. Finally, the TSETS-based model for high-sea accident

risk proposed in this study is depicted in Figure 4.

Figure 4 reveals several new patterns concerning the occurrence

of HSMAs. Firstly, fire (18.1%) emerge as the most common type,

followed by occupational accidents (16.2%) and collision (15.0%).

Secondly, the probability of ships experiencing ‘very serious’

consequences from accidents in the high sea is notably high, at

approximately 42.3%. These findings suggest that stakeholders

should enhance the training of ocean-going seafarers and conduct

regular safety drills, encompassing first aid and firefighting.

Crucially, maintaining a proper lookout is essential for ensuring
TABLE 3 The confusion matrix.

Predicted positive Predicted negative

Actual Positive TP FN

Actual Negative FP TN
‘TP’ means true positive, ‘FP’ indicates false positive, ‘FN’ denotes false negative, ‘TN’
represents true negative.
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safe vessel navigation, even in the high sea. The subsequent analysis

will examine the specific circumstances of HSMA occurrence from

four dimensions: ship, environment, management, and human

factors, to aid stakeholders in formulating targeted accident

prevention measures.

Cargo ships (49.2%) are the ship type most frequently involved

in high-sea accidents, followed by fishing ships (26.1%). Ships aged

between 5 and 14 years (42.4%) exhibit the highest likelihood of
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experiencing high-sea accidents, and equipment failure is present in

43.5% of accident-involved ships. Among ships involved in high-sea

accidents, 26.8% are not registered with a classification society, and

those with a gross tonnage (GT) between 500 and 25,000 account

for the largest proportion (36.5%). Therefore, stakeholders should

strengthen safety management for cargo ships and fishing ships.

Furthermore, ship age, GT, and classification society registration

can serve as key reference points when selecting ocean-going ships.
TABLE 4 Performance comparison of different DDBN structures.

Structure Overall Accuracy Accident Risk Precision Recall F1-score

NB 0.714 Less serious 0.189 0.438 0.264

Serious 0.528 0.555 0.541

Very serious 0.852 0.783 0.816

TAN 0.860 Less serious 0.784 0.707 0.744

Serious 0.736 0.821 0.776

Very serious 0.919 0.893 0.906

TS 0.775 Less serious 0.730 0.725 0.728

Serious 0.749 0.746 0.747

Very serious 0.821 0.826 0.823

TSETS 0.840 Less serious 0.807 0.794 0.800

Serious 0.857 0.811 0.833

Very serious 0.845 0.896 0.870
FIGURE 4

The TSETS-based DDBN model created for HSMAs.
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Western Europe (24.4%) is the sea area with the highest

incidence of high-sea accidents, followed by East Asia (14.4%).

The accident occurrence rate is highest during the early morning

hours, accounting for approximately 33.1% of incidents. While

20.6% of high-sea accidents occur in strong wind conditions, only

13.6% take place in heavy sea conditions. Therefore, vigilance must

be maintained even in favorable wind and sea conditions, and

seafarers should intensify monitoring, particularly during nighttime

navigation. For high-frequency accident areas in the high seas,

regulatory oversight and emergency response capabilities ought to

be appropriately enhanced.

Although only 17.6% of accident-involved ships are located

more than 200 nautical miles from port at the time of the incident,

merely 21.8% of ships in high-sea accidents receive SAR support.

Furthermore, only 52.3% of ocean-going ships demonstrate

effective emergency preparedness. Consequently, there is a need

to strengthen high-sea safety training and accelerate the

development of high-sea emergency support infrastructure to

ensure rapid and effective assistance can be accessed following

an accident.

Lack of communication, negligent lookout, fatigue/heavy

workload, incompetent crew, and assessment failures are

identified as the primary human factors contributing to the

occurrence of high-sea accidents. Therefore, communication

training should be enhanced to improve the efficiency and

accuracy of intra-crew communication. Additionally, providing

necessary mental health counseling is recommended to help

seafarers cope with the occupational stress of working at sea.
4.2 Model performance and validation

The DDBN model’s internal logical consistency is verified

using a two-axiom approach. For this, ‘classification society’ and

‘ship age’ are selected as risk nodes, and ‘equipment’ (initial ‘bad’

state probability: 43.5%) serves as the target node. When the

probability of the risk node ‘classification society’ being

‘unregistered’ is notionally increased by 10 percentage points

(which implies a corresponding 10 percentage point decrease for

the ‘registered’ state), the ‘bad’ state probability of ‘equipment’

rises from 43.5% to 43.9%. This outcome satisfies Axiom 1.

Subsequently, while maintaining this evidence, applying a

similar 10 percentage points notional probability increase to

‘ship age’ being ‘over twenty-four years’ further elevates the
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‘equipment’ ‘bad’ state probability from 43.9% to 44.4%. This

incremental increase in the target node’s risk with cumulative

adverse evidence aligns with Axiom 2, thus confirming the

model’s logical coherence.

External performance evaluation (Table 4) compares the

proposed TSETS structure with NB, TAN, and a foundational TS

structure. These baselines were selected to provide a comprehensive

benchmark: NB serves as a simple probabilistic classifier baseline,

TAN represents a standard data-driven BN learning approach, and

the TS structure allows for direct assessment of the improvements

gained from TSETS’s tri-source enhancement. While purely data-

driven approaches like TAN exhibit strong predictive metrics (e.g.,

TAN OA: 0.860), they may overlook deeper causal understanding.

In contrast, our TSETS algorithm enhances a foundational structure

by systematically integrating statistical patterns, textual insights,

and expert knowledge, achieving a robust overall accuracy of 84.0%

and a high F1-score (0.870) for ‘very serious’ accidents. This

compelling balance between strong predictive performance and

superior causal plausibility and interpretability, led to the

selection of the TSETS algorithm for learning the DDBN

topology in this study.
4.3 Sensitivity analysis results

This study employs the MI method to conduct sensitivity

analysis, with the MI calculation detailed in Section 3.3.4. MI is a

statistical measure that quantifies the degree of mutual dependence

between two nodes, where a higher MI value signifies a stronger

interrelation. Table 5 presents the sensitivity analysis results for two

target nodes: ‘accident risk’ and ‘accident type.’

According to the MI values presented in Table 5, when ‘accident

risk’ serves as the target node, ‘accident type’ exhibits the strongest

influence, with an MI value of 0.031. Furthermore, variables with

MI values ranging between 0.01 and 0.03, namely ‘sea area’ and

‘ship type,’ also demonstrate a significant impact on ‘accident risk.’

Conversely, the ‘assessment failure’ and ‘emergency preparedness’

variables exert a relatively weaker influence on the target node, with

their respective MI values being only 0.002.

When ‘accident type’ serves as the target node, ‘gross tonnage’

exerts the most substantial influence, with a MI value of 0.126. This

is closely followed by ‘assessment failure,’ with an MI value of 0.120,

indicating that ‘assessment failure’ is a strong influencer of ‘accident

type.’ Furthermore, variables with MI values ranging between 0.05
TABLE 5 Top factors affecting accident risk and accident type.

Accident risk factors Mutual info. Accident type factors Mutual info.

Accident type 0.031 Gross tonnage 0.126

Sea area 0.020 Assessment failure 0.120

Ship type 0.013 Equipment 0.088

Assessment failure 0.002 Wave height 0.065

Emergency preparedness 0.002 Time of day 0.055
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and 0.1—namely ‘equipment,’ ‘wave height,’ and ‘time of day’—also

demonstrate a significant impact on ‘accident type.’

In summary, the MI values reveal that ‘assessment failure’ is a

significant influencing factor for both ‘accident type’ and ‘accident

risk.’ Additionally, ‘sea area’ notably impacts ‘accident type.’ These

observations collectively underscore the appropriateness and

necessity of incorporating risk factors such as ‘sea area’ and

‘assessment failure’ into the risk analysis framework for HSMAs.
4.4 Scenario simulation and analysis

Scenario analysis allows for the exploration of how different

states of RIFs potentially impact high-sea risk, thereby yielding

valuable insights. Based on the preceding sensitivity analysis results,

this study separately investigates the potential impact of different

GT states on accident types (first stage) and the potential impact of

different accident types on overall accident risk (second stage), as

depicted in Figures 5, 6, respectively.

Scenario 1 simulates the probability of various high-sea accident

types resulting from different GT categories. As shown in Figure 5,

if the GT state is set to ‘GT under 500,’ a comparison with baseline
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data reveals that ‘fire,’ ‘occupational accident,’ and ‘capsizing’ are

common accident types for this GT. Concurrently, the occurrence

probabilities of ‘capsizing’ and ‘sinking’ accidents increase

significantly under this condition.

Furthermore, sequentially setting GT states to ‘GT 500 to

25000,’ ‘GT 25001 to 60000,’ and ‘GT over 60000’ reveals a clear

shift in dominant accident types. While fire is a primary concern for

smaller ships (‘GT under 500’ and ‘GT 500 to 25000’), the risk

profile transitions towards collisions becoming more prevalent for

large ships (‘GT 25001 to 60000’). For very large ships (‘GT over

60000’), damage incidents emerge as the most significant accident

type, notably surpassing fire in frequency, while collisions become

relatively less common. This progression reveals that variations in

ship size, with their attendant operational characteristics and risk

profiles, are critical determinants in shaping the profile of prevalent

maritime accident types. Notably, ‘fire’ and ‘occupational accidents’

consistently exhibit high occurrence proportions across all GT

categories considered.

Consequently, maritime stakeholders are encouraged to

consider these GT category-specific variations when guiding

shipping companies to enhance their safety management systems

and strengthen personnel competency. In turn, shipping companies
FIGURE 5

Probability distribution of accident types by GT in scenario one.
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are advised to prioritize the robust management of fire and

occupational safety risks on board their ships.

Scenario 2 simulates the potential for different accident types to

result in ‘very serious’ high-sea accident outcomes, as depicted in

Figure 6. In these bar charts, R1, R2, and R3 represent the posterior

probabilities of the accident risk being ‘less serious,’ ‘serious,’ and

‘very serious,’ respectively, given a specific accident type is set to

100% occurrence. If the ‘accident type’ state is set to ‘collision,’ a

comparison of data from Figures 4, 6 reveals that the posterior

probability of a ‘very serious’ outcome decreases from an average of
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42.3% to 37.6%. This indicates that the severity impact of collision-

related incidents in the high sea is lower than the overall average.

Furthermore, when the ‘accident type’ state is sequentially set to

collision, grounding, fire, damage, capsizing, sinking, fatality,

missing, and occupational accident, the respective posterior

probabilities of a ‘very serious’ outcome are 36.7%, 30.9%, 37.4%,

32.3%, 43.3%, 39.3%, 52.6%, 49.2%, and 55.4%. This demonstrates

that different accident types have varying impacts on accident risk.

For instance, occupational accidents and fatalities significantly

increase the likelihood of a ‘very serious’ outcome. In contrast,
FIGURE 6

Probability distribution of accident risk by accident types in scenario two.
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actual collisions in the high sea result in the lowest severity impact

among the types analyzed.

Consequently, maritime stakeholders should prioritize

strengthening preventive measures specifically targeting

occupational accidents and incidents leading to fatalities, given

their high propensity to result in very serious consequences.

Concurrently, the development of differentiated emergency

response plans tailored to specific accident types is also of

critical importance.
4.5 Study limitations

This study has certain limitations that warrant discussion.

Firstly, while the proposed DDBN model integrates data and

expert knowledge, mitigating deficiencies of purely data-driven or

expert-based approaches, challenges persist regarding human and

management factors. Data for these human and management

factors are often subjective, which hinders the acquisition of fully

objective, quantifiable data and introduces uncertainty that could

affect model precision. The subjectivity in quantifying human

factors thus remains a primary limitation. Future research could

explore advanced human factor quantification (e.g., NLP on

reports) and incorporate uncertainty-handling methodologies like

fuzzy logic or Dempster-Shafer theory within the DDBN framework

(Göksu et al., 2023). Achieving such advanced quantification via

NLP, however, would critically depend on access to extensive and

consistently structured textual accident data.

Secondly, the proposed DDBN, while effective for static

scenario analysis, inherently lacks support for high-frequency,

real-time risk prediction due to its fundamentally static structure.

This precludes leveraging dynamic data streams for rapid risk

updates, thus not fully meeting practical demands for proactive

risk management. The model’s insufficient real-time predictive

capability is therefore another key limitation. Addressing this

necessitates developing dynamic BNs integrated with real-time

data (e.g., AIS, sensor feeds) and adaptive machine learning

algorithms for continuous model updating and inference (Fan

et al., 2024). However, ensuring the real-time computational

feasibility and managing the evolving complexity of such dynamic

BNs may present significant implementation hurdles.
5 Conclusions

To address the gap in maritime accident analysis from a high-

sea perspective, this study proposes a risk analysis framework based

on a multi-source DDBN. This framework is designed not only to

assess and predict the risk of HSMAs but also to furnish

stakeholders with insights for developing effective prevention

strategies. Methodologically, the framework first integrates

heterogeneous data from sources such as accident reports, ship

information, and environmental data. A hybrid, tri-source
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enhanced algorithm is then employed for structural learning to

obtain a network structure consistent with causal logic and real-

world conditions. Subsequently, the EM algorithm is used to

calculate the conditional probabilities of the DDBN. Key RIFs are

then identified based on sensitivity analysis results derived fromMI.

Finally, we conduct scenario analysis, guided by these sensitivity

findings, to reveal potential risks under different conditions. The

principal findings of this study include:
1. The three RIFs with the greatest impact on accident risk are

accident type, sea area and ship type, while the three RIFs

with the greatest impact on accident type are GT,

assessment failure and equipment.

2. Occupational accidents are associated with the highest

severity impact, whereas collisions result in the lowest

severity impact.

3. The most common accident types are fire for small to

medium-sized ships, collisions for large ships, and damage

for very large ships.

4. The proposed DDBN risk model successfully performs causal

reasoning for accidents in complex scenarios, achieving a case

inference accuracy of approximately 84.0%.
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