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Maritime cargo capacity serves as a critical indicator of port efficiency and 
regional economic impact, yet reliable data remain constrained by operational 
and commercial complexities. This study addresses this gap by leveraging 
maritime big data to compare traditional empirical methods with machine 
learning approaches, integrating multi-source datasets (ship inbound/ 
outbound records, vessel archives, and AIS data). Results demonstrate that the 
K-nearest neighbors (KNN) algorithm achieves 88% predictive accuracy on 
validation data—a 19-percentage-point improvement over conventional 
methods (69%). While training accuracy reached 95%, anomalous vessel 
operations in validation samples reduced performance to 88%, revealing the 
model’s sensitivity to real-world variability and underscoring the need for 
enhanced data preprocessing. These findings highlight machine learning’s 
potential to refine cargo capacity estimation while emphasizing the 
importance of robust data quality frameworks for operational deployment. 
KEYWORDS 

ship cargo capacity prediction, machine learning, shipping big data, draught depth, 
high accuracy 
1 Introduction 

Driven by the resurgence of global trade and carbon neutrality objectives, ship cargo 
capacity forecasting has emerged as a pivotal component of the shipping industry’s digital 
transformation. According to the United Nations Conference on Trade and Development 
(UNCTAD) 2024 Report (UNCTAD, 2024), the Carbon Intensity Index (CII) grading 
system mandates that shipowners reduce carbon intensity per cargo turnover by 15% by 
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2026. In this context, enhancing cargo capacity prediction accuracy 
can minimize empty voyages and inefficient emissions by 
optimizing cargo allocation strategies. This advancement holds 
substantial potential for cutting operational costs and reducing 
the maritime sector’s carbon footprint. 

This study demonstrates a systematic methodology for 
integrating multi-source maritime datasets—including 2023 ship 
inbound/outbound records, archival vessel specifications, and 
dynamic AIS trajectory data—to construct a robust framework 
for ship cargo capacity prediction through comprehensive data 
fusion and cleaning protocols. We conduct a comparative 
evaluation of two distinct estimation approaches: conventional 
empirical formulas based on International Maritime Organization 
(IMO) technical guidelines and data-driven machine learning 
models. For the machine learning approach, we specifically 
investigate how critical preprocessing techniques such as 
normalization and logarithmic transformation influence model 
performance and prediction stability. The trained models are 
subsequently validated against a temporally independent 2024 
dataset to assess their generalizability and operational relevance in 
real-world maritime logistics scenarios. 

The main contributions of this paper are as follows: Firstly, this 
paper pioneered the exploration of predicting ship cargo capacity 
with multi-source heterogeneous data and established separate 
cargo capacity prediction models for ships transporting different 
types of cargo. Secondly, to enhance the quality of the ship cargo 
capacity training dataset, we propose a data-cleaning method that 
corrects the negative correlation between draught and cargo 
capacity and removes draught data that do not comply with the 
regulations as per the IMO report. For missing data, this paper 
developed a machine-learning approach to fill in the gaps by 
leveraging the correlation between ship size information and the 
missing  data. Thirdly, in the  realm of ship  cargo  capacity
estimation, this paper established machine-learning models to 
predict cargo capacity, using traditional empirical formula-based 
methods as a comparison. We employ suitable indicators to 
evaluate the models based on different samples, thereby 
demonstrating the accuracy of the trained models on the 
validation set. All the abbreviations used in this paper have been 
listed in Table A1 in Appendix A. 
2 Literature review 

The primary role of a merchant vessel is to transport cargo from 
one location to another, with its carrying capacity defined as the 
maximum mass it can safely carry. For bulk carriers transporting 
high-density cargos, deadweight tonnage (DWT) is commonly used 
to indicate the maximum carrying capacity. However, for other 
types of vessels, the measurement may vary. For instance, gas 
carriers use cubic meters, container ships use twenty-foot 
equivalent units (TEU), and Roll-on/Roll-off (RoRo) vessels use 
lane meters (Adland and Jia, 2018). The proportion of a vessel’s 
total carrying capacity occupied by paying cargo, known as payload, 
is referred to as vessel capacity utilization or load factor (Alizadeh 
Frontiers in Marine Science 02 
and Talley, 2011b). For shipping companies, payload or capacity 
utilization is one of the main factors influencing their profitability 
and unit transport cost. The payload, as implied by a vessel’s 
draught, is also a crucial input for calculating vessel fuel 
consumption (Ghose, 2004). Despite the significance of payload 
in the shipping industry from both economic (micro and macro) 
and environmental perspectives, limited academic research has 
focused on this issue. As (Hjelle, 2011) notes, load factors are 
‘critical input factors with scarce empirical evidence, … possibly 
because such information is considered highly sensitive.’ 

However, there are relatively few studies related to ship cargo 
capacity at present (Chen et al., 2023; Huang et al., 2023), and most 
of the research methods for obtaining ship cargo capacity include 
equipment measurement methods, empirical estimation methods 
(Alizadeh and Talley, 2011a; Sandvik, 2005). have presumed that 
the load factor or payload remains a constant proportion of a 
vessel’s carrying capacity, regardless of the measurement method 
used for that capacity (Styhre, 2010). examines the key factors 
influencing vessel capacity utilisation in a case study of ferry services 
in Scandinavia, where payload data is directly obtained from 
companies. According to (Styhre, 2010), service frequency, trade 
imbalance, demand fluctuations, types of customers and cargo, and 
the competitive landscape are the four primary factors affecting 
vessel capacity utilization (Kristensen, 2012). used a regression 
method to study the relationship between length, width, draught 
and maximum load capacity of different types of ships (Sun and 
Wang, 2011). mainly studied the relationship between the length 
and width of container ships, as well as the number of containers 
and their carrying capacity. 

Although the above-mentioned research focuses on estimating the 
cargo volume through traditional methods (Chen et al., 2023, 2020; Liu 
et al., 2024), mentioned that the trend of intelligent shipping in recent 
years requires the prediction model to have dynamic adaptability 
(Cepowski, 2019). established a regression formula with cargo capacity 
by combining AIS data and considering ship mass based on length, 
width and draught (Gurgen et al., 2018). used artificial neural networks 
to predict parameters such as the length, width and draught of the ship, 
considering the maximum deadweight tonnage and designed speed of 
the ship, providing support for cargo capacity prediction (Jia et al., 
2019). used traditional empirical formulas and combined them with 
draught data in AIS to estimate the cargo capacity of ships, verifying 
the reliability and applicability of the draught data in this data source 
(Yanagimoto et al., 2022). investigated the impact of acceleration on 
the cargo load of dry bulk carriers using Discrete Element Method 
(DEM)-Finite Element Method (FEM) coupling analyses combined 
with propagation models to assess the cargo load of dry bulk ships. To 
determine whether peak shipping capacity could be reached (Garrido 
et al., 2020), assessed the limits of ship size based on economies of scale, 
port infrastructure, demand, environmental trends, and naval 
design criteria. 

In conclusion, methods for estimating ship cargo capacity based 
on shipping big data have not been extensively explored (Zou et al., 
2025), and machine learning-related methods have not been 
adequately applied or validated. To address this gap, this paper 
takes global ships transporting crude oil, coal, ore, grain, Liquefied 
frontiersin.org 
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Natural Gas (LNG), and Liquefied Petroleum Gas (LPG) as 
examples. By leveraging multi-source heterogeneous data and 
integrating domain knowledge with statistical methods, we 
establish a high-quality dataset for predicting ship cargo capacity. 
We compare the accuracy of various machine learning models with 
traditional empirical formula methods under different data 
preprocessing conditions to predict cargo capacity. This approach 
holds significant value for global cargo monitoring, assessment of 
port influence, and estimation of port throughput (Li et al., 2024; 
Obeidat et al., 2024; Adland et al., 2017; Zhang, 2016). believes that 
it is also of great significance for establishing a shipping network. 
3 Data and methodology 

This study takes ships transporting crude oil, coal, ore, grain, 
LNG, LPG as examples. Before establishing the ship’s cargo  capacity  
prediction model, the relevant data needs to be preprocessed to ensure 
the generalization performance of the cargo capacity prediction model 
by improving the data quality. The specific prediction framework is as 
follows, where the schematics is as shown in (Figure 1). 
 

3.1 Data 

The dataset used in this study mainly includes ship inbound and 
outbound port data, AIS data, ship segment data, ship archive data, 
and port and berth archive data within 2023 (Table 1). 

3.1.1 Data fusion 
Based on the data collected above, associations need to be 

established according to the common fields of the relevant data 
(Maritime Mobile Service Identity (mmsi), berth_uuid, 
report_start_time, report_end_time, etc.) to achieve data fusion of 
different ships in both temporal and spatial dimensions. The specific 
fusion process is as follows, where the schematics of the fusion process 
is displayed in Figure 2. 

Among them, due to the differences in the definition of the time 
dimension among the multi-source data, when fusing based on the 
time in the inbound and outbound port data (start time, end time) 
and  the  time  in  the  segment  data  (leg_start_postime,  
leg_end_postime), the cargo capacity of the previous port in the 
adjacent samples repeats in the next port, leading to anomalous 
problems. The reasons are illustrated in the following Figure 3. 

As illustrated in the figure above, the inbound and outbound 
port data record the ship’s voyage time in the port arrival-port 
arrival format, whereas the segment data record the voyage time in 
the port departure-port departure format. Consequently, during the 
data fusion process, the time crossover issue may cause a mismatch 
between the actual draught and the cargo capacity. The objective of 
this study is to predict the cargo capacity of the ship in segment 1. 

3.1.2 Data cleaning 
Given the varying definitions of the time dimension across 

multi-source data, crossover issues may arise when fusing these data 
Frontiers in Marine Science 03 
based on the time dimension. Specifically, the data information 
from the previous segment may be erroneously attributed to the 
next segment, leading to identical cargo capacity information for 
both segments while the actual draught remains associated with the 
original segment. This disrupts the reasonable positive correlation 
between draught characteristics which are crucial information and 
cargo capacity, thereby undermining the predictive power of the 
model. Moreover, the cargo capacity data in the inbound and 
outbound records are manually entered, introducing a degree of 
inaccuracy. Consequently, the fused datasets require preprocessing 
to enhance data quality. 

(1) Classification of cargo type data 
To establish predictive models for ships carrying different types 

of cargo, we first address the issue that the ship segment data lack 
information on cargo types, with specific descriptions of loaded 
cargo types only available in the inbound and outbound port data. 

Additionally, considering that the liquid (capacity of liquid 
tanks) field in the data of ships transporting crude oil is not 
empty, we take measures to avoid omissions. Specifically, we 
identify all non-empty data in the liquid field. Furthermore, data 
that are not classified as crude oil through the initial mapping 
relationship (based on mmsi query) are also categorized as 
crude oil. 

(2) Correct draught and cargo capacity data 
Theoretically, there is a positive correlation between the 

draught depth  of  a ship and  the  weight of the  cargo it carries.

Therefore, we first plot the distribution of draught versus cargo 
capacity for each type of ship to determine whether anomaly 
handling is necessary (Figure 4). 

As illustrated in the figure above, ships carrying different types 
of cargo exhibit varying degrees of abnormal scattered points that 
affect the positive correlation between draught and cargo capacity, 
potentially impacting the model. By examining the original dataset, 
we identified the overall issue and its corresponding solution 
as follows: 

(a) For segment information with a dynamic_type of 5, it 
indicates that loading and unloading occurred, but the 
start_draught and end_draught remained unchanged. 

To address the existing draught issue, we extract data with a 
dynamic_type of 5 from the complete fusion dataset, treating each 
data point as the beginning of a voyage. Based on this, if a loading or 
unloading state occurs without a change in draught, we traverse the 
next adjacent segment row by row to locate the data where the 
draught value (start_draught) begins to change and replace 
it accordingly. 

(b) For cases where the cargo capacity is empty, but the draught 
data is abnormally indicating that the draught deviates significantly 
from the expected value for an empty ship. According to the IMO 
report, which specifies the minimum no-load draught for ships. 
This minimum no-load draught is used as the reference draught 
when the cargo capacity is zero. 

The specific calculation method is as follows, shown in 
Equation 1. 

min_draught = 0:02 · length + 2 (1) 
frontiersin.org 
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Where min_draught represents the minimum no-load draught 
and length represents the length of the ship. 

To solve this problem, the specific solution is as follows: 
 

Fron
Step 1: Query all the data in the dataset with a cargo capacity 
of 0. 

Step 2: Calculate the absolute deviation a between the actual 
draught and the minimum no-load draught, and based on 
empirical observations take 5% of the ship’s designed

draught as the allowable draught deviation b. 

Step 3: Compare the magnitudes of a and b. If  a is greater than 
b, it indicates that the actual draught in the no-load data 
exceeds the maximum allowable no-load draught of the 
corresponding ship. Generate a random number from the 
interval [minimum no-load draught, minimum no-load 
draught + b] to replace the actual draught (set the 
random seed to 42), with the aim of allowing the model 
to maintain good generalization performance when 
learning rule of the no-load data. 
tiers in Marine Science 04 
Step 4: Compare the sizes of a and b. If a is less than or equal to 
b, it indicates that the actual draught in the empty data is 
within the range of the maximum allowable empty draught 
of the corresponding ship, the original actual draught value 
will be returned. 
(c) Abnormal cargo capacity problem: 
Problem 1: According to the actual draught, theoretically the 
ship is empty, but the actual data is not. It should be 
corrected to 0. 

Problem 2: According to the actual draught, the ship is 
theoretically not empty, but in the actual data, group by 
mmsi, there is no positive correlation between the actual 
data and the draught. 
In the context of the above two problems, the specific solutions 
are as follows: 

Step 1: Calculate the absolute deviation c between the actual 
draught and the minimum no-load draught. 

Step 2: Compare the magnitudes of c and b. If  c is less than or 
equal to b, it indicates that the actual draught is relatively close to 
the minimum no-load draught. In this case, the download cargo 
capacity is likely to be 0, so the cargo capacity is corrected to 0. 

Step 3: If c is greater than b, it indicates that the actual draught is 
not close to the minimum no-load draught. In this case, the ship is 
likely to be not empty, so further processing will be carried out. 
First, calculate the expected cargo capacity based on the following 
formula, manifested in Equation 2 

(start _ draught − min _ draught) x dwt 
realc arg o(e) =  (2)

design _ draught − min _ draught 

Step 4: Calculate the percentage deviation between the expected 
cargo capacity and the actual cargo capacity by the following 
formula, displayed in shown in Equation 3. 
FIGURE 1 

Prediction framework for ship cargo capacity. 
TABLE 1 Description of characteristics and output data. 

Features Explanation Data Sources 

dwt maximum deadweight tonnage ship archive data 

length length of ship ship archive data 

width width of ship ship archive data 

draught designed draught ship archive data 

start_draught 
draught of the ship when leaving the 
previous port 

ship archive data 

TPCI 
variations in load tons per 1 
centimeter draught 

ship archive data 

realcargo 
(output) 

cargo capacity 
ship inbound and 
outbound data 
frontiersin.org 
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jrealc arg o(e) − realc arg oj
realc arg o _ error = x 100 % (3)

realc arg o 

Step 5: If realcargo_error is greater than 5%, replace the 
expected cargo capacity with the actual cargo capacity; otherwise, 
return the actual cargo capacity. 

After correcting some of the draught and cargo capacity data, 
there is a good positive correlation between the draught and load of 
each cargo type, which is beneficial for improving the training 
performance of the subsequent model, as shown in (Figure 5). 

(3) Anomalous data processing 
After the previous related processing, to ensure that the draught 

and cargo capacity data remain logically accurate and positively 
correlated, the draught and cargo capacity anomalies are identified 
based on scatter plots and ship structure theory as follows: 
Frontiers in Marine Science 05 
The above diagram (Figure 6) shows the relationship between a 
ship’s cargo capacity and draught, with the X-axis representing 
draught and the Y-axis representing cargo capacity. Point A 
represents the ship’s designed draught and maximum deadweight 
(DWT), point B and point C have draughts of 90% and 110% of the 
designed draught, point D represents the minimum no-load draught 
according to the ship’s safety design requirements, and point E 
represents the upper limit of no-load draught. It can be expressed 
as min imum _ no - load _ draught + designed _ draught*20 %. 

According to IMO requirements, the basic requirements for 
draught of no-load ship: For ships with a length of no more than 
150 m, when sailing with no-load, the draught at the front of the 
smallest boat should be greater than or equal to 0:025*length, and 
the draught in the middle of the smallest boat should be greater than 
FIGURE 3 

Defining relationships for the time dimension in different data sources. 
FIGURE 2 

Processing of data fusion. 
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or equal to 0:02*length + 2; For ships longer than 150 meters, when 
sailing empty, the draught at the front of the smallest boat is greater 
than or equal to 0:12*length + 2, and the draught in the middle of 
the smallest boat is greater than or equal to 0:02*length + 2. Any 
point within the B, C, D, E quadrilateral above is a normal point, 
while any point outside of it is an abnormal point. The following 
Frontiers in Marine Science 06
figure shows the results of anomaly detection for the complete data 
(Figure 7): 

(4) Missing value processing 
Before training the model, it is essential to assess the presence of 

missing key information. Upon statistical analysis, we found that the 
column for TPCI (Tons Per Centimeter Immersion) contained missing 
FIGURE 5 

Distribution of draft and cargo capacity data after correction. 
FIGURE 4 

Distribution of draught and cargo capacity data before correction. 
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data. Since TPCI represents the change in deadweight tonnage (t) for a 
one centimeter (cm) change in the ship’s draught, it is a static 
characteristic of the ship that can reflect its size and, to some extent, 
determine the possible cargo capacity. Therefore, we decided to impute 
this feature. In this study, we employed Random Forest, Gradient 
Boosting Decision Tree, and XGBoost for this purpose. 

The selected feature input as follows: 

input predict(tpci) = ½dwt,  length,  width,  height,  draught] 
With maximizing R2 and minimizing MAE as the main 

evaluation criteria, select the model with the highest fit, and 
finally select the Random Forest model. The formulas for R2 and 
MAE are as follows, shown in Equations 4, 5. 

R2 = 1  − o(ypred − yreal )
2 

(4) 
yÞ2 oðyreal -
Frontiers in Marine Science 07 
    o ypred − yreal
MAE = (5) 

n 

where ypred represents the predicted value of the model, yreal 
represents the actual value of the cargo capacity, y represents the 
average value of the cargo capacity, nrepresents the size of sample. 

The distribution of the padded TPCI data is as follows (The red 
part is the padded data, and the blue part is the original data), as 
manifested in (Figure 8): 
3.2 Methodology 

Based on the previously preprocessed dataset, this paper 
estimates the cargo capacity of the target ships using both the 
calculation method based on the IMO report and the data-driven 
method based on machine learning. Considering the size of the 
ship and the scale of the data, to facilitate a unified evaluation of 
FIGURE 7 

Process of anomalous data. 
FIGURE 6 

A example of the theoretical relationship between the cargo capacity and draught. 
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model performance, the following metrics were adopted in this 
study, shown in Equations 6–8. 

! 
ypred − yreal 

ACC = 1  − x 100%  (6)  
yreal

o ypred − yreal
MAE _ Zero = (7) 

n 

ACC _ Total = (1  − o ypred − yreal 
) x 100 % (8) 

oyreal 

where for samples with non-zero cargo capacity, ACC is used to 
evaluate model; for samples with zero cargo capacity MAE _ Zero is 
used to evaluate model, for all samples, ACC _ Totalis used to 
evaluate model. 
3.2.1 Estimating ship cargo capacity with 
traditional empirical formulas 

According to the IMO report in 2020 (MEPC, 2020), based on 
the stability performance of the ship under various operating 
conditions and its cargo capacity, the cargo capacity of the ship is 
estimated. The calculation method of the cargo capacity (mc arg o) is  
as follows, shown in Equation 9. 

mc arg o = mvar − mballast − mfuel (9) 
Frontiers in Marine Science 08
where mvar represents the variable mass under different 
operating and navigation conditions, mballast represents the mass 
of ballast, mfuel represents the mass of fuel carried by ship. The steps 
to calculate relevant parameters are as follows: 

Step 1 Calculate the balance of the ship's mass and buoyancy, 
displayed in Equation 10. 

mT = r*V (10) 

where mT represents the total mass of the ship; r represents the 
density of seawater, taken as 1.025 tons per cubic meter; V represents 
the capacitytric displacement of the ship. The total mass of the ship can 
also be expressed as the sum of the ship’s light weight tonnage(lwt) and  
its variable mass, displayed in Equation 11 (mvar): 

mT = lwt + mvar (11) 

Step 2 Calculate the capacitytric displacement of the ship, 
displayed in Equation 12. 

V = Cb,op*L*B*Top (12) 

where Cb,op represents the instantaneous square coefficient (the 
ratio of the capacity of water drained by the ship at a particular 
draught to the waterline area of the hull, used to assess the stability 
of the ship under different loading conditions); L represents the 
length of the ship; B represents the width of the ship, Top represents 
the instantaneous draught. The formula for calculating Cb,op is as 
follows, displayed in Equation 13. 
FIGURE 8 

Distribution of TPCI data after filling with different features based on the RF model. 
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Tdesign 
3Cb,op = 1  − (1 − Cb,design)( ) 
1 

(13)
Top 

where Cb,design represents the design square coefficient (the ratio 
of the drainage capacity of the ship at the design draught depth to 
the waterline area of the hull), Tdesign represents the design draught. 
The formula for calculating Cb,design is as follows, manifested in 
Equation 14. 

( ( ))
1 23 − 100Fn 

Cb,design = 0:7 +  arctan (14)
8 4 

where arctan represents the arctangent function, the formula 
for calculating Fn, displayed in Equation 15. Fn: 

0:5144*vdesignFn = pffiffiffiffiffiffiffiffiffiffiffiffiffi (15)
9:81*L 

where vdesign represents the designed speed of the ship, in knots. 
Step 3 Calculate lwt, for the general type of ship, assume to 

estimate lwt in the design state (mvar=DWT), the calculation 
formula is as follows, displayed in Equation 16. 
Frontiers in Marine Science 09
lwt = Cb,design*L*B*Tdesign − DWT (16) 

where DWT represents the maximum deadweight tonnage. 
Step 4 Calculate mballast , displayed in Equation 17. 

mballast = d*DWT (17) 

For d , it is necessary to look up the specific coefficients within 
different DWT intervals based on the ballast coefficient table in 
the report. 

Step 5 Calculate mfuel , displayed in Equations 18, 19. 

mfuel = d1*DWT (18) 

d1 = 
Vfuel*rfuel 
DWT 

(19) 

Based on the calculation results in the report, d1 take the 
coefficient as the median of 0.053. 

Step 6 Calculate mc arg o, displayed in Equation 20: 

mc arg o = Cb,op*L*B*Top*r − lwt − mballast − mfuel (20) 
3.2.2 Estimating ship cargo capacity with 
machine learning models 

Generally, a vessel’s cargo-carrying capacity (tonnage) is 
directly proportional to its size. Therefore, key parameters such as 
deadweight tonnage (DWT), length, beam, designed draft, and 
tonnage-per-centimeter immersion (TPCI) can serve as primary 
indicators for determining vessel scale. These metrics typically 
exhibit positive correlations with cargo capacity - larger vessels 
generally possess greater cargo-carrying capabilities across different 
ship types. 

For dynamic assessment of cargo load on a specific vessel, real-
time variables must be considered. The draft measurement serves as a 
reliable dynamic indicator, where increased draft depth directly 
corresponds to greater actual cargo loading. This relationship holds 
particularly for individual vessels during operation, with deeper drafts 
consistently indicating higher cargo quantities aboard. Therefore, the 
features and outputs for this study are determined as follows: 

This paper employed several machine learning models to train 
and test the cargo capacity of ships, including K-Nearest Neighbors 
(KNN), Decision Tree, Random Forest, XGBoost, Gradient 
Boosting Decision Tree (GBDT), and Extra Trees. 

To ensure an accurate evaluation of the model’s generalization 
performance, we employed GroupKFold (group cross-validation) 
based on mmsi grouping before training the model. Unlike 
conventional cross-validation, this method assigns all data from 
the same ship to either the training set or the validation set. This 
approach effectively prevents data leakage, as the static feature data 
of the same ship remains unchanged. The number of folds for cross-
validation is set as follows: min(num_group, 10), which is the 
smaller value between the number of ship groups and 10, with a 
maximum of no more than 10 folds. The specific model training 
and test evaluation results will be statistically calculated based on 
the average of the group cross-validation iterations (CV). 
Considering the potential impact of different data standardization 
TABLE 2 The hyperparameter optimization search range of different 
machine learning models. 

Model Name of 
hyperparameter 

Search range 

KNN 
n neighbors (3,9) 

weights uniform, distance 

DT 

max depth (5,10) 

min samples split (5,10) 

min samples leaf (3,5) 

RF 

n estimators (100,200) 

max depth (5,10) 

min samples split (5,10) 

min samples leaf (3,5) 

XGBoost 

n estimators (100,200) 

max depth (5,10) 

learning rate (0.01,0.05) 

reg alpha (0.1,0.5) 

reg lambda (1,5) 

GBDT 

n estimators (100,200) 

max depth (5,10) 

learning rate (0.01,0.05) 

subsample (0.8,1) 

ET 

n estimators (100,200) 

max depth (5,10) 

min samples split (5,10) 

min samples leaf (3,5) 
 frontiersin.org 

https://doi.org/10.3389/fmars.2025.1632661
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Chen et al. 10.3389/fmars.2025.1632661 
methods on the model, the input features and output cargo capacity 
will be processed using three methods: unprocessed, normalized, 
and logarithmic. Appropriate inverse processing will be conducted 
before calculating the evaluation indicators to ensure that the data 
are statistically calculated at the original scale. On this basis, 
Frontiers in Marine Science 10 
recognizing that the entire voyage segment contains more 
repetitive information (since each ship has multiple voyage data 
and static feature information is repetitive), we conducted an 
additional test on the berthing operation segment (seg5) to 
determine whether the model’s accuracy could be further improved. 
TABLE 4 Comparison of traditional formulas with KNN predictions in training and test sets. 

Dataset Method ACC MAE_Zero ACC_Total Sample 

Train set traditional formulas 77.70% 18883.02 30.13% 25174 

KNN 94.38% 59.10 96.54% 25174 

Validation Set traditional formulas 88.36% 29411.57 52.99% 1171 

KNN 86.37% 9460.73 75.33% 1171 
TABLE 3 Cross-validation evaluation results of each model group after different data preprocessing. 

Model Data 
preprocessing 

CV_ACC CV_MAE_Zero CV_ACC_Total Segment 

Traditional formulas None 77.70% 18883.02 30.13% all 

None 70.42% 19169.74 26.58% 5 

KNN None 81.10% 1227.55 84.57% all 

Normalization 94.38% 59.10 96.54% all 

Logarithmic 93.75% 31.66 96.47% all 

Logarithmic 90.75% 118.96 94.45% 5 

DT None 89.71% 158.16 93.11% all 

Normalization 89.71% 158.46 93.07% all 

Logarithmic 89.68% 47.53 91.76% all 

Logarithmic 89.00% 19.18 91.87% 5 

RF None 89.97% 1081.04 89.66% all 

Normalization 89.98% 1083.44 89.67% all 

Logarithmic 74.34% 5.30 79.50% all 

Logarithmic 68.04% 33.06 71.18% 5 

XGBoost None 88.27% 2764.66 79.09% all 

Normalization 88.17% 2816.71 78.73% all 

Logarithmic 52.92% 10.26 56.19% all 

Logarithmic 55.11% 3.63 56.17% 5 

GBDT None 89.18% 2735.55 80.72% all 

Normalization 89.19% 2735.52 80.71% all 

Logarithmic 53.48% 3.44 57.12% all 

Logarithmic 54.23% 10.26 57.64% 5 

ET None 92.19% 275.33 95.15% all 

Normalization 92.16% 278.88 95.14% all 

Logarithmic 85.19% 0.57 93.48% all 

Logarithmic 82.49% 2.55 92.36% 5 
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4 Results and discussion 

Based on the two evaluation methods mentioned above, this 
study utilized 2023 data for model training and evaluation, and 
combined 2024 ship data for validation. The hyperparameters of the 
machine learning models employed in this study are specified as 
follows, as shown in (Table 2). 

The accuracy of cargo load estimation using different methods 
on the training dataset is shown as follows: 

As can be seen from the table above (Table 3), based on the data 
of all segments, KNN model performed best. Furthermore, 
compared with other data preprocessing methods, logarithmic 
enables models to exhibit lower errors on no-load samples. 

For the 2024 ship data, in terms of data preprocessing, 
considering the absence of cargo data when making actual cargo 
predictions, only the TPCI filling method used during the training 
set processing (selecting the model with TPCI filled in the training 
set) was applied. 

As shown in the table above (Table 4), on the training set, the 
overall accuracy of cargo capacity prediction based on the KNN 
model is superior to that of the traditional empirical formula 
estimation method. 

On the validation set, the KNN model exhibits lower accuracy than 
the traditional formula when applied to non-zero cargo capacity 
samples. This discrepancy arises due to anomalies in the draft and 
cargo volume data within the validation set. For example, some records 
contain draft values from the previous port, which—if loading/ 
unloading operations occurred there—fail to correlate positively with 
the current cargo volume. Consequently, when the actual draft is large 
(indicating an empty ship), the model produces significant errors. 

The KNN model still achieves higher accuracy than the 
conventional empirical formula estimation method on samples with 
an actual value of 0 and overall. Additionally, the KNN model exhibits 
no significant difference in accuracy for non-zero samples between the 
training and validation sets, indicating that the model is not overfitted. 
The abnormal data in the validation set, however, leads to a notable 
difference in bias for zero cargo samples and overall accuracy. 
5 Conclusion 

This paper takes global ships transporting ore as an example. By 
integrating inbound and outbound port data, ship segment data, ship 
archive data, port and berth archive data, and combining business 
logic in the shipping field with relevant experience in statistical data 
analysis, we applied preprocessing methods such as cargo type 
matching, abnormal data correction and identification, and filling 
in missing values of static ship characteristics to the fused data. This 
process further improved the data quality and mitigated the impact of 
manual reporting errors and abnormal data on the model. The main 
conclusions from the model evaluation are as follows: 
Fron
1. Model evaluation based	 on different data preprocessing 
methods shows that when logarithmic processing 
is applied, the mean absolute error of different 
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models in predicting no-load data information is 
significantly reduced. 

2. KNN,	 DT, RF, XGBoost, GBDT, and ET models were 
employed  for  model  tra ining,  evaluat ion,  and  
comparative analysis. Results demonstrated that the KNN 
model exhibited superior predictive accuracy for ore cargo 
capacity across diverse operational scenarios, achieving a 
peak accuracy of 96.54%. 

3.	 Comparative analysis revealed that the KNN model 
achieved significantly higher prediction accuracy than 
conventional empirical formulas across both training and 
validation datasets. While model performance on the 
validation set showed a 22.34 percentage point reduction 
compared to training results (attributable to anomalous 
data instances), the KNN approach maintained superior 
accuracy, outperforming traditional empirical estimation 
methods by 22.34 percentage points overall. 
The main limitation of this paper is that the validation set also 
exhibits anomalies, such as a negative correlation between draught 
and cargo capacity. This issue, to some extent, prevents the model’s 
prediction accuracy on the validation set from fully reflecting its 
generalization performance. Moreover, due to differing definitions 
of the time dimension in vessel port entry and exit data as well as 
vessel leg data, data fusion based on the time dimension may result 
in mismatches between draught and cargo capacity, leading to 
further anomalies. 

This study’s methodology and results provide a scalable template 
for data-driven decision-making in bulk shipping. Future research 
could focus on collecting higher-quality AIS data for model training 
and validation and exploring more effective data-cleaning methods. 
Additionally, experimenting with more advanced deep learning models 
or improved machine learning models could further enhance the 
accuracy of ship cargo capacity prediction. 
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Appendix A 
Table A1 Abbreviation list in this research. 

Abbreviation Full name 

AIS Automatic Identification System 

KNN K-Nearest Neighbors 

UNCTAD United Nations Conference on Trade 
and Development 

CII Carbon Intensity Index 

IMO International Maritime Organization 

DWT Deadweight Tonnage 

TEU Twenty-foot Equivalent Units 

RoRo Roll-on/Roll-off 

DEM Discrete Element Method 

FEM Finite Element Method 

MMSI Maritime Mobile Service Identity 

TPCI Tons Per Centimeter Immersion 

GBDT Gradient Boosting Decision Tree 

CV Cross Validation 
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