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Oswaldo Cruz Foundation (Fiocruz), Brazil

*CORRESPONDENCE

Kelly L. Hondula

khondula@asu.edu

RECEIVED 23 May 2025
ACCEPTED 31 July 2025

PUBLISHED 26 August 2025

CITATION

Hondula KL, Martin RE and Asner GP (2025)
Variability in contamination of
submarine groundwater discharge
into West Hawai‘i coral reefs.
Front. Mar. Sci. 12:1634234.
doi: 10.3389/fmars.2025.1634234

COPYRIGHT

© 2025 Hondula, Martin and Asner. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 26 August 2025

DOI 10.3389/fmars.2025.1634234
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Sewage pollution is a global threat to coastal ecosystems and amplifies the

negative effects of climate change on coral reefs. Submarine groundwater

discharge (SGD) is a major transport pathway for land-based pollution, but

underlying drivers of SGD water quality are poorly understood, especially in

nearshore coral reef ecosystems. We combined airborne mapping, field

sampling, and statistical modeling to identify locations along the West Hawai‘i

Island coastline where SGD is contaminated with sewage. Water samples

collected from 47 distributed shoreline SGD locations were assayed for fecal

indicator bacteria. A geostatistical model was used scale from field to regional

levels at more than 1000 mapped SGD point locations to derive a geographic

understanding of areas highly susceptible to contamination. We estimate that

SGD delivers sewage-contaminated groundwater to at least 42% of reefs in West

Hawaiʻi. Subsequent analyses indicate that contaminated points are associated

with infrastructural build-up near the shoreline and an abundance of inland on-

site sewage disposal systems. Mitigation of sewage pollution will require the

prevention of numerous point sources from cesspools, septic leach fields, and

similar sources.
KEYWORDS

fecal indicator bacteria, submarine groundwater discharge, sewage, Hawai‘i, coastal
development, coral reef
1 Introduction

Coastal sewage pollution is broadly recognized as a global challenge, especially due to

its negative impacts on coral reef ecosystems (Tuholske et al., 2021; Wear and Thurber,

2015). Wastewater effluent amplifies the negative outcomes of climate change on reefs and

is highly associated with coral disease and mortality (Amato et al., 2016; Gove et al., 2023).

On Hawai‘i Island, on-site sewage disposal systems (OSDS) release an estimated 55 million

gallons of wastewater effluent into the ground per day (Mezzacapo et al., 2020). This

material travels through highly permeable volcanic substrate and reaches the coast

primarily through discrete point sources of submarine groundwater discharge (SGD)
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(Dimova et al., 2012; Knee et al., 2010), resulting in negative impacts

to coral, fish, and other reef organisms (Foo and Asner, 2021; Gove

et al., 2023).

Although SGD is broadly distributed, each point source of

discharge is relatively difficult to measure (Sawyer et al., 2016),

and consequently, the influence of this input is often overlooked in

investigations of coastal processes (Santos et al., 2021). Recent

technological advances have facilitated detecting and mapping the

locations, magnitude, and spatio-temporal variability of SGD

plumes (Asner et al., 2024; Kelly et al., 2013; McKenzie et al.,

2021a). These studies have revealed that SGD is ubiquitous along

the West Hawai‘i coastline, meaning the potential for wastewater

effluent to be transported to coastal ecosystems is widespread.

SGD can play a major role in determining nearshore ecosystem

processes and structure due to its effects on aquatic temperature,

nutrients, and salinity levels (Santos et al., 2021). SGD variability

drives the structure of benthic (La Valle et al., 2021) and

phytoplankton (Adolf et al., 2019) communities, as well as

ecosystem processes such as growth, net productivity, and carbon

uptake (La Valle et al., 2019; La Valle et al., 2023; Richardson et al.,

2017; Silbiger et al., 2020). The nature of this influence depends on

the composition of the discharging water and includes non-linear

and interactive effects. For example, SGD is often a highly

disproportionate source of inorganic nitrogen to reefs (Paytan

et al., 2006) relative to its volume (Knee et al., 2008). Native biota

are adapted to the low salinity and naturally elevated nutrient levels

in SGD, which can result in positive effects on coral growth rates

(Lubarsky et al., 2018). However, eutrophication beyond the

naturally elevated nutrient levels can allow invasive macroalgae to

dominate over culturally valued native species (Dulai et al., 2023;

Okuhata et al., 2023; Richards Donà et al., 2023), and can magnify

the negative effects of ocean acidification on bioerosion and coral

calcification rates (Prouty et al., 2017). Therefore, it is critical to

identify not just where SGD occurs, but also where SGD is

delivering land-based pollution to reefs.

Although progress has been made in quantifying the influence

of land cover and watershed management on the magnitude of SGD

in West Hawai‘i, especially in the context of hydrologic budgets and

concern over projected declines in freshwater availability (e.g

(Brauman et al., 2012; Dudley et al., 2020)), much less is known

about the underlying drivers of SGD water quality. One

investigation documented variability in nutrient fluxes over three

orders of magnitude across eleven sites (Knee et al., 2010). These

fluxes were not correlated with urban development and land cover

variables that are strongly associated with groundwater quality in

more densely populated areas on the windward side of the island

(Saingam et al., 2021; Strauch et al., 2014) and throughout the

Hawaiian archipelago (Bishop et al., 2017). Along the West Hawai‘i

coastline, the presence and impact of sewage contamination in

nearshore reefs are well documented in the northern region of

Kohala (Abaya et al., 2018; Aguiar et al., 2023; Panelo et al., 2022;

Wiegner et al., 2021). Modeling studies suggest there may be

extensive contamination beyond this region (Delevaux et al.,

2018; Gove et al., 2023; Okuhata et al., 2022a), but there is both a

lack of empirical water quality data for a majority of the coastline, as
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well as a need for finer scale information to support coastal and

watershed management and restoration activities. This lack of data

also hinders efforts to validate hydrologic models of contaminant

transport in Hawaiian aquifers (Mezzacapo et al., 2020).

Here we report on the results of a field sampling and modeling

study to assess indicators of wastewater pollution. In doing so, we

addressed the following: (1) Where SGD is contaminated by

wastewater and posing a chronic threat to nearshore reefs; (2)

How much variation in contamination can be explained by

environmental factors; and (3) How water quality varies between

contaminated and non-contaminated sites.
2 Methods

2.1 Study area and field sampling

Water samples were collected from 47 shoreline locations along

the West Hawai‘i coastline at locations of previously mapped

submarine groundwater discharge (Asner et al., 2024). Asner et al.

(2024) identified 1058 SGD outfall locations in West Hawai‘i, which

were subsequently used here to upscale results from our 47 field

sampling sites to the regional level using a landscape statistical model.

Samples were collected during early morning outgoing low tide to

capture negative hydraulic gradient to the shoreline and minimize

degradation of bacteria from solar radiation (Feng et al., 2013). Water

was collected into sterilized 500 mLNalgene bottles triple-rinsed with

site water. Sampling was focused on embayments in northern and

southern watersheds, where there is less frequent beach monitoring

and potential for coral reef restoration. Samples were collected

between August 2023 and February 2025. At 15 sites, multiple

samples were collected throughout the sampling period resulting in

a total of 117 observations.
2.2 Laboratory analysis

Fecal indicator bacteria levels were quantified as Enterococcus

abundance measured after samples were incubated with Enterolert

nutrient reagent (Sercu et al., 2011). Enterococcus was used as an

indicator of fecal contamination because it is more persistent in

marine environments compared to Escherichia coli, and levels can

be reliably assessed with low cost, rapid turnaround testing

procedures (Griffin et al., 2001; Vaccaro et al., 1950; Zhang et al.,

2015). Results are reported as minimum probable number (MPN)

per 100 mL and categorized using public health safety thresholds

used by the Hawai‘i Department of Health. A sample was

considered contaminated if levels exceeded 35 MPN, and for sites

sampled multiple times, it was considered contaminated if any

sample exceeded the 35 MPN contamination threshold. Each set of

sample incubations also included a sample blank for quality control.

Nitrate levels were quantified using a portable benchtop photometer

(HI97115 Hanna Instruments, Woonsocket, RI, USA). Salinity,

dissolved organic matter (DOM), chlorophyll, and turbidity levels

were quantified in the laboratory using a multiparameter water
frontiersin.org
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quality sonde (YSI EXO1, Yellow Springs Instruments, Yellow

Springs, OH, USA).
2.3 Environmental drivers

Land cover characteristics potentially contributing to or

mitigating the prevalence of groundwater contamination were

calculated for the land area immediately surrounding each

sampling site and for the upstream contributing land area.

Variables included: the percentages of five classes of land cover

(Built-Up, Bare/Barren, Shrubland, Tree Cover, Grassland) (Homer

et al., 2004; Zanaga et al., 2022), total impervious cover (USGS

2014); the total number of all OSDS (Whittier and El-Kadi, 2014)

and the total number of all upstream OSDS classified as cesspools

(i.e. Class IV OSDS). Cesspools are OSDS systems in which

wastewater effluent receives no treatment prior to being released

into the environment. Land cover variables are derived from the

finer 10 m resolution WorldCover database (Zanaga et al., 2022)

unless specified as National Land Cover Database (NLCD). Each

variable was calculated at twelve spatial scales: (a) within a 100 m

and 500 m radius of the site location; (b) within the entire adjacent

upstream watershed as well as the area within 100 m, 500 m, 1 km,

and 2 km of the coastline; and (c) within the adjacent upstream

coastal catchment as well as the area within 100 m, 500 m, 1 km,

and 2 km of the coastline. Watersheds were defined by the Division

of Aquatic Resources delineations (State of Hawaii, 2005), and

coastal catchments were defined from the USGS National

Hydrography Dataset (Moore et al., 2019). Watersheds and

catchments are both based on digital elevation models, however,

the coastal catchments only include land area that drains directly to

the coast and not to a stream channel, following the assumption

Sawyer et al. (2016) use in their continental-scale analysis of

submarine groundwater discharge. Daily rainfall data from the

Hawai‘i Climate Data portal (Longman et al., 2024) were used to

calculate the antecedent rainfall total for the two days prior to each

sample collection for sample-level models.
2.4 Statistical analysis

We used multivariate Bayesian generalized logistic regression

modeling (Bürkner, 2017; Carpenter et al., 2017) to identify which

environmental factors were most associated with Enterococcus

measurements. Models were fit at the level of sites and at the

level of individual samples, in order to account for variability in

outcomes at sites that were sampled multiple times. Site-level

models were fit with environmental site-level variables as fixed

effects, with contamination as a binary response variable.

Informative predictors were identified as those that explained at

least 10% of the variability in univariate models based on R2 values.

Next, models were fit with all combinations of the identified

informative predictors, while excluding combinations of highly

collinear variables. Variables were considered collinear if Pearson

correlations exceeded 0.7 (Dormann et al., 2013). Sample-level
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models were fit as mixed effect models using site as a random

effect, and water quality measurements and the sum of antecedent

rainfall in the two days prior to each sample collection as fixed

effects. Models were run with uninformative priors, and all

continuous variables were log-transformed and scaled before

model fitting, except for count variables (i.e. total number of

OSDS or cesspools) which were square root transformed. We

compared model fits using the expected log pointwise predictive

density (ELPD), pareto-smoothed leave-one-out cross validation

adjusted R2, Bayes posterior distribution of R2 values, and both

marginal and conditional R2 for mixed effect models (Vehtari et al.,

2017). Marginal R2 values quantify the proportion of variance

explained by fixed effects, whereas conditional R2 values include

the variance associated with differences between sites. The

relationships among water quality parameters were assessed using

mixed effect generalized linear regression models with site as a

random effect.
3 Results

3.1 Prevalence of contamination

Out of the 47 sampled SGD locations, 20 sites (42%) had

elevated levels of Enterococcus (i.e. exceeding the recommended

average level of 35 MPN), and 11 sites (23%) had concerning levels,

which exceeded the 130 MPN public health risk threshold.

Contaminated sites were distributed throughout the South Kona

and South Kohala watersheds (Figure 1), including eight sites in the

resort areas south of Puakō, three sites surrounding Hōnaunau Bay,

and eight sites near Miloli‘i Beach Park. We found no evidence of

contamination in the areas of Māhukona, Pauoa Bay, Ho‘okena, or

Honomalino Bay. For the 15 sites in Hōnaunau and Miloli‘i with

repeated sampling, Enterococcus levels typically varied above and

below the contamination threshold across sampling dates. The

exceptions were one site in Miloli‘i Beach Park where every

sample far exceeded contamination thresholds and three sites

north of Miloli‘i Beach Park that consistently measured below the

contamination threshold.
3.2 Factors explaining site level variability
in contamination

Sites were more likely to be contaminated if they were in

watersheds with higher levels of built-up land cover near the

coast, had more cesspools and OSDS in the upstream catchment,

or were in watersheds with greater amounts of bare land (Figures 2,

3, Supplementary Table S1). Sites were also more likely to be

contaminated if they had relatively high dissolved organic matter

or nitrate levels, or more freshwater influence (i.e. lower salinity).

Salinity (R2 = 0.35) was negatively correlated and dissolved organic

matter (R2 = 0.20) was positively correlated with Enterococcus

levels. The most influential land-cover variable was the percentage

of built-up land cover within 500 m of the coast in the upstream
frontiersin.org
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watershed (R2 = 0.14). Land-cover variables describing

development (built-up, bare, developed or impervious land cover)

explained the most variability when calculated over watershed

scales, whereas variables describing OSDS and shrubland land
Frontiers in Marine Science 04
cover explained more variability when calculated at catchment

scales. Many land-cover variables were significantly correlated

when calculated over different spatial scales (Figure 4), but they

explained the most variability in contamination outcomes when
FIGURE 2

Predictive models of SGD contamination modeled as the probability of fecal indicator bacteria exceeding 35 minimum probable number [P(FIB > 35
MPN)]: (a) Percent of infrastructural build-up in the upstream watershed within 1 km of the coastline; (b) Number of cesspools (Class IV OSDS) in the
upstream catchment. Lines show the predicted probability of contamination holding other variables constant. The shaded area is the 95% credible
interval for the expected response. Predictor variables were log-transformed (% Built-Up) or square-root transformed (number of cesspools) and
standardized prior to modeling, and axes have been back-transformed to the original scale for interpretability.
FIGURE 1

Measured levels of fecal indicator bacteria (Enterococcus spp.) in shoreline samples collected from submarine groundwater discharge locations
along the west coast of Hawaiʻi Island displayed in terms of recommended thresholds for public health. Yellow points represent sites where levels
exceeded 35 MPN and red points represent sites where levels exceeded 130 MPN. Background imagery is from the ASU Center for Global Discovery
and Conservation Science, Global Airborne Observatory. Background imagery for the left panel is © 2025 Planet Labs.
frontiersin.org
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calculated over only the region of each watershed or catchment

nearest the coast (e.g. within 500 m of the shoreline).

The multivariate model that best predicted site-level Enterococcus

contamination explained 51% of the variability (Bayes R2 = 0.51 ±

0.05) and included three fixed effects: number of cesspools in the

upstream catchment (b = 1.74 ± 0.69 standard error), percent of built-

up land cover within 1 km of the coast in the upstream watershed (b =
1.69 ± 0.83), and salinity (b = −1.62 ± 0.60). Only considering land-

cover variables, the most predictive model explained 35% of

Enterococcus variability (Bayes R2 = 0.35 ± 0.07) and included two

fixed effects: percent built-up land cover within 1 km of the coast in

the upstream watershed (b = 2.00 ± 0.74) and the number of cesspools

in the upstream catchment (b = 1.86 ± 0.62). The model including

salinity was more predictive (ELPD = −23.8 ± 6.8) than the model

only including land-cover variables (ELPD = −27.1 ± 6.0), but there

was no statistically significant difference in predictive performance

between these models or similar combinations of the influential fixed

effects (Supplementary Table S2).
3.3 Factors explaining sample level
variability in contamination

Sample-level models, that included time-varying factors as fixed

effects, indicated that water samples were more likely to be

contaminated alongside higher levels of dissolved organic matter
Frontiers in Marine Science 05
(DOM; R2 = 0.23), higher nitrate concentrations (R2 = 0.21), and

lower salinity levels (R2 = 0.27) (Figure 5; Supplementary Table S3).

Turbidity levels and antecedent rainfall amounts were not correlated

with Enterococcus presence when considered independently

(Supplementary Table S3). Although DOM had the strongest

association with Enterococcus based on its effect size, salinity had

higher ELPD and LOO-adjusted R2, indicating a more consistent and

generalizable relationship with Enterococcus compared to DOM. Site-

level factors (i.e. random effects in the mixed effect model) explained as

much or more variability in Enterococcus levels compared to sample-

level fixed effects. Salinity, DOM, and nitrate were also strongly related

to each other. DOM (Marginal R2 = 0.55; p < 0.001) and nitrate

(Marginal R2 = 0.64; p < 0.001) both had significant negative

relationships with salinity, and there was a significant positive

relationship between nitrate and DOM (Marginal R2 = 0.36, p < 0.001).
3.4 Coast-wide model predictions

We calculated the probability of Enterococcus contamination

for each mapped SGD point source location along the West

Hawai‘i coastline using an ensemble prediction from the highest

performing models, with each model prediction weighted by its

out-of-sample predictive accuracy (Yao et al., 2018). Results

suggest that 52% (545 out of 1058) of the SGD locations along

the coastline are highly susceptible to contamination based on
FIGURE 3

Effect sizes (b) and 95% credible intervals for the most explanatory fixed effects (all variables where R2 > 0.10) in univariate Bayesian logistic
regression models to predict site-level contamination. Positive effects indicate that higher values of the variable are associated with a higher
probability of contamination and negative effects indicate that lower values are associated with a higher probability of contamination. Colors indicate
separate clusters of highly collinear variables.
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upstream land cover. If the locations with land cover conditions

beyond the range of our sampling sites are excluded, model results

suggest 70% (358 out of 515) of sites are highly susceptible to

contamination (Supplementary Figure S1). Watersheds with high
Frontiers in Marine Science 06
numbers of sites predicted to be contaminated are distributed

throughout South Kohala (‘Anaeho ‘omalu), North Kona

(Ka‘ūpūlehu, Pu‘uwa‘awa‘a), and South Kona (Ho‘ōpūloa,

Keauhou) and include culturally significant places and regions
FIGURE 4

Correlation matrix showing Pearson correlation coefficients between site level predictors used in regression models. Blue indicates variables that are
positively correlated and red indicates variables that are negatively correlated. Only significant correlations at a = 0.05 are shown.
FIGURE 5

Individual conditional effects of water quality parameters to predict SGD contamination for a given sampling event, showing the marginal effect of
each predictor on the probability that fecal indicator bacteria (FIB) in that sample exceeded 35 MPN: (a) dissolved organic matter (DOM), (b) nitrate,
and (c) salinity. The shaded area is the 95% credible interval for the expected response. All variables were standardized prior to modeling, and DOM
and nitrate were log-transformed. Axes have been back-transformed to the original scale for interpretability.
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with historically high live coral cover (Figure 6; Supplementary

Table S4).
4 Discussion

Field sampling and mixed effects modeling showed that SGD

drives widespread but spatially variable contamination of submarine

groundwater discharge along the West Hawai‘i coastline.

Contamination was more likely at sites impacted by higher numbers

of cesspools and higher levels of coastal development. These findings

agree with and confirmmore localized studies establishing the presence

of sewage in coastal waters along the northern portion of our study

region (Abaya et al., 2018; Aguiar et al., 2023; Panelo et al., 2022;

Wiegner et al., 2021), and provide new evidence of groundwater

contaminated by fecal bacteria in several watersheds in the southern

portion of our study (Figure 1). Modeling suggested that groundwater

discharge at the coast is more susceptible to contamination in areas

where there are 450 or more cesspools in the upstream catchment, and

greater than 4.5% of the land within 1 km of the coastline is built up.

While the South Kona region currently has a low level of development

compared to the population centers and resort areas farther north, our

data suggests that even small increases in built-up land near the

coastline increase the likelihood of groundwater contamination.
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The southern coast of our study region, known as South Kona, not

only contains several rapidly expanding coastal developments, it is also

underlain by some of the youngest and most porous volcanic substrate

in the archipelago, with little soil development and a high degree of

hydrologic connectivity between point sources of pollution and coastal

waters (Perez-Fodich et al., 2024). Importantly, this region also

provides critical ecosystem functions to the larger reef system

because its bays still contain high levels of live coral cover (Asner

et al., 2022; Gove et al., 2023). These corals are critical nurseries for

spawning coral species and also serve as habitat for fish populations

(Carlson et al., 2024). Local regulations and design standards for OSDS

in new construction do not account for leaching of permitted septic

systems in rock substrate that lacks soil. The cumulative impacts of

OSDS at the watershed level are also not taken into account despite

extensive evidence linking wastewater to negative outcomes in West

Hawai‘i reefs (Aguiar et al., 2023; Gove et al., 2023; Yoshioka et al.,

2016). Conversely, we found no evidence of wastewater contamination

at multiple bays, such as Māhukona, Ho‘okena, and Honomalino,

which suggests these areas are not facing the chronic pressure from

land-based wastewater pollution observed elsewhere, and may

therefore be promising locations to target for coral restoration

activities (Foo and Asner, 2019; Schill et al., 2021).

The spatial patterns of Enterococcus detections indicate there is

highly localized control of SGD contamination. Although land cover
FIGURE 6

Point locations of submarine groundwater discharge along the West Hawaiʻi coast, colored based on the modeled susceptibility to wastewater
contamination at each site. Contamination is modeled as the probability of elevated fecal indicator bacteria (FIB) based on upstream landscape
characteristics, calculated using a weighted average of predictions from the 10 highest performing multivariate logistic regression models.
Background imagery is © 2025 Planet Labs.
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in upstream watersheds (i.e. coastal development and number of

wastewater point sources) was strongly associated with

contamination outcomes, site level factors only explained up to half

of the variability in our data. Previous studies in the region have

found that watershed characteristics were not strong predictors of

SGD composition (Knee et al., 2010), and this was attributed to the

relatively low levels of urban development and agriculture. Studies

from other regions have found high spatial variability in SGD

contamination on the scale of meters (Stieglitz et al., 2008), and a

significant role of beach geomorphology and coastal drainage

geometry (Donahue et al., 2017; Sawyer et al., 2016). We found

stronger relationships between land cover and contamination

outcomes when variables were calculated over the region closest to

the coastline, based on a presumed larger degree of hydrologic

connectivity to the coast (Abaya et al., 2018; Okuhata et al., 2022b).

This underscores previous research demonstrating that small

portions of the landscape can have an outsized effect on pollution

into adjacent reefs (Carlson et al., 2019). Highly localized control of

groundwater quality is also consistent with resistivity surveys that

have highlighted the role of preferential flow through subsurface

features, such as 10–15 m diameter lava tubes, that can act as a direct

conduit for groundwater and contribute additional spatial

heterogeneity in hydrologic flow paths (Dimova et al., 2012; Kreyns

et al., 2020).

The most predictive statistical model for contamination

outcomes included both water quality and land cover variables,

indicating that DOM and salinity levels are informative indicators

of wastewater contamination. These parameters, which can

potentially be measured remotely from UAVs and aircraft

(Harringmeyer et al., 2021) may be used for rapid screening over

large areas and complement more labor-intensive laboratory

analyses and incubations. Although benthic reef organisms can

exude substantial amounts of DOM (Quinlan et al., 2018),

terrestrially-derived organic matter typically has optical properties

that can readily distinguish it from the surrounding water column

(Nelson et al., 2015). Satellite-derived estimates of DOM have been

used to track large plumes of wastewater effluent off the coast of

southern California (Nezlin et al., 2020); however, more work is

required to develop reliable algorithms to estimate DOM

abundance in optically shallow reef areas surrounding tropical

islands (Aurin and Dierssen, 2012; Hondula et al., 2024) and to

investigate the relative importance of dissolved versus particulate

matter in transporting pollutants from land (Wiegner et al., 2013).

Although this study provides a synoptic view of contamination

along the West Hawai‘i coastline, it is important to note a few caveats

and limitations. As in other studies, we use Enterococcus as an

indicator of wastewater contamination; however, this bacterium is

not exclusive to humans and occurs naturally in tropical soils and

survives in sediment and wrack (Boehm et al., 2004; Miller-Pierce and

Rhoads, 2019). Microbial source tracking methods using host-specific

markers such as cross-assembly phages (crAssphage) could be carried

out to confirm that detected bacteria originate from human sources

(Sala-Comorera et al., 2021; Vanderzalm et al., 2024). However,

multiple studies in Hawai‘i have shown strong positive correlations

between Enterococcus and Clostridium perfringens, which is less
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likely to naturally occur (Gerken et al., 2022; Viau et al., 2011), as

well as other pathogens (Steadmon et al., 2024). Enterococcus is also a

more conservative indicator of sewage presence compared to isotopic

measurements (Aguiar et al., 2023). Another caveat is that we only

conducted repeated sampling at a subset of the sites, and for the

remainder, our inference is limited to only chronic and persistent

contamination issues. Elsewhere, studies have demonstrated seasonal

tourism-driven increases in groundwater contamination (Alorda-

Kleinglass et al., 2024) as well as significant relationships with

rainfall, temperature, tidal activity, and currents (Jennings et al.,

2018). Additionally, even if persistent SGD contamination can be

excluded as a site-level stressor for reef organisms, resource managers

and restoration practitioners also should consider potential exposure

to other adverse and acute conditions, such as high sediment loading

and marine heat waves, when making management decisions (Foo

and Asner, 2021; Schill et al., 2021).

Our findings indicate that SGD delivers sewage-contaminated

groundwater to multiple embayments and nearshore regions along

the West Hawai‘i coast, and that contaminated sites are associated

with both built-up land cover near the shoreline and the abundance

of upstream OSDS. This problem is particularly acute in South

Kona, where young volcanic substrate rapidly flushes point source

contamination into coastal bays that are critical areas for reef-wide

coral population dynamics (Carlson et al., 2024). Although there are

recent commitments to upgrade a centrally located wastewater

treatment plant, this upgrade is only anticipated to improve water

quality conditions in the immediate vicinity of the city of Kailua-

Kona because only a small fraction of the coastal population is

sewered (Wada et al., 2021), and point-source OSDS discharge can

have higher bacteria and nutrient loads than that of outfall plumes

from wastewater treatment plants (Waiki et al., 2025).

Implementing specific types of green infrastructure practices, such

as bioretention cells (Hayes et al., 2023; Lancaster et al., 2024), into

development practices may also help mitigate negative impacts of

untreated runoff and SGD on water quality (Jennings et al., 2018;

Reeves et al., 2004). Additionally, although projected climate and

land cover changes are anticipated to result in a drier climate and

reduction in groundwater recharge and discharge for this region

(Okuhata et al., 2023), such changes will not eliminate wastewater

pollution to coastal ecosystems because hydrologic connectivity is a

bi-directional process; inundation of wastewater infrastructure due

to rising sea levels can also transport contaminated groundwater to

nearshore ecosystems (McKenzie et al., 2021b).
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