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Innovation Base, Haikou, China, 4KApplied Geology Data Researching Center, Laboratory for
Big Data and Decision, Beijing, China
This study presents an innovative approach for marine sediment parameter

inversion based on the Biot theory and the Biot-Stoll model to generate training

datasets for a Particle Swarm Optimization-Backpropagation (PSO-BP) neural

network. The developed inversion network was validated using surface data

collected from in situ measurements and laboratory samples in the northwestern

South China Sea. The experimental results demonstrated high accuracy in retrieving

sediment properties such as porosity, density, and sound speed across multiple

frequencies. Specifically, the average relative error was 2.06% for porosity when

utilizing laboratory sample data at 100 kHz, and 3.79% for porosity when applied to

in situ measurement data at 8 kHz. Comparison of high-frequency data (100 kHz)

withmid-frequency in situ data (8 kHz) confirmed the robustness and adaptability of

the method under different frequency conditions. The validation results underscore

the effectiveness of the proposed inversion framework for marine sediment

characterization, indicating its potential for integration into marine observation

systems for enhanced seabed monitoring and resource assessment.
KEYWORDS

medium to low frequency acoustic inversion, sediment acoustic characteristics, seabed
reflection coefficient, PSO-BP inversion network, Biot-Stoll mode
1 Introduction

The acoustic properties of seafloor sediments are fundamental parameters for

understanding submarine structures, resource exploration, and underwater acoustic field

prediction. In geophysical acoustic inversion, techniques based on reflection signals from

the seafloor have been widely employed to extract sediment acoustic parameters owing to
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their high sensitivity to changes in the marine environment (Huang

et al., 2022; Wang et al., 2023; Wang et al., 2021; An et al, 2020; Tan

et al., 2023; Amiri-Simkooei et al., 2019; Chiu et al., 2014; Dettmer

et al., 2008).

Traditional inversion methods often rely on physics-based

models to construct cost functions for model solution. While

such approaches have demonstrated some success in low- to mid-

frequency regimes, they encounter limitations in accuracy and

stability under conditions of multi-source noise interference and

complex acoustic environments. Particularly, their capacity

for lateral spatial parameter characterization remains inadequate

(Dettmer et al., 2009; De and Chakraborty, 2011; Haris et al., 2011;

Sternlicht and Moustier, 2003; Jackson et al., 1986; Mackenzie,

1960; Chapman, 1983).

Recent advances in marine sensor technology and autonomous

underwater vehicles (AUVs) have significantly expanded the ability

to collect high-resolution geophysical data in complex seafloor

environments (Li et al., 2024; Batchelor et al., 2020). These

developments enable more precise and large-scale mapping of

sediment acoustic properties, supporting the deployment of real-

time monitoring systems and dynamic resource assessment (Wang

et al., 2024). However, the vast data volume and high environmental

noise challenge traditional models’ efficiency and accuracy.

Physically based inversion models often struggle to provide rapid,

adaptive solutions in such contexts, underscoring the need for

intelligent inversion frameworks equipped to handle diverse and

noisy datasets.

In recent years, artificial neural networks (ANNs) have gained

prominence as powerful tools for geophysical parameter inversion

due to their advantages in nonlinear mapping and pattern

recognition (Gassner et al., 2019). Studies have demonstrated that

neural networks exhibit superior fitting ability and robustness when

handling high-dimensional and complex acoustic data. However,

standard backpropagation (BP) neural networks tend to suffer from

local minima, slow convergence, and limited accuracy (Zhu et al.,

2023). To address these issues, the particle swarm optimization

(PSO) algorithm—characterized by its robust global search

capability and simple implementation—has been used to optimize

neural network weights, greatly improving convergence speed and

inversion stability. The integration of PSO with BP neural networks

(PSO-BP) has shown promising results in engineering and remote

sensing applications (Zhang et al., 2024; Huang et al., 2020).

Nonetheless, applications specific to submarine acoustic

parameter inversion, especially for the seafloor reflection

coefficient, are still limited.

This work aims to develop a novel PSO-BP neural network-

based method for inverting the seafloor reflection coefficient—

focusing on retrieving key sediment parameters such as sound

speed, density, and attenuation coefficient. By constructing an

optimized hybrid network architecture and modeling the

nonlinear relationship between reflection coefficient and sediment

properties, this approach seeks to enhance the accuracy and spatial

resolution of sediment parameter inversion. The new method

provides a high-efficiency, stable solution for geophysical acoustic
Frontiers in Marine Science 02
parameter inversion in complex underwater environments, thus

advancing marine geophysical analysis and resource exploration.
2 Theoretical background

2.1 Biot-Stoll model

The Biot-Stoll model provides a fundamental framework for

studying the propagation characteristics of acoustic waves within

seafloor sediments. It integrates and analyzes thirteen

key parameters, including porosity (n), particle density (rg),
particle bulk modulus (Kg), fluid density (rw), fluid bulk

modulus (Kw), viscous damping coefficient (h), permeability (k),
pore tortuosity (a), pore size (a), skeleton bulk modulus (Kb),

skeleton bulk modulus dissipation factor (s0), and skeleton shear

modulus (m).
Within the Biot-Stoll model, the accuracy of these parameters

critically influences the model’s ability to effectively address

practical problems. Some parameters can be determined based on

empirical values from literature, while others require measurement

or calculation. Currently, common parameter determination

methods primarily include the Stoll parameter estimation method

and the Schock parameter estimation method. Specific parameter

values are summarized in Table 1.

Since the porosity n, sediment density r, and median grain size

f are interrelated through certain conversion relationships, it is

necessary to analyze the sensitivity of these three parameters within

the model to facilitate their selection. The results of the Sobol

sensitivity analysis are shown in Figure 1. From the figure, it can be

observed that both the total effect index and the main effect index of

porosity are significantly higher than those of density and median

grain size, indicating that the model is more sensitive to variations

in porosity.
2.2 PSO-BP neural network

The forward modeling process can be viewed as using the

porosity input, passing through the underwater environment, to

obtain the seafloor reflection coefficient. When the model becomes

overly complex, solving the inverse problem to derive the

underwater environment becomes extremely challenging.

Therefore, the constructed PSO-BP neural network aims to

simulate the inverse of the seafloor environment. In this study, a

hybrid approach combining Particle Swarm Optimization (PSO)

with Backpropagation (BP) algorithms is adopted. This method

primarily seeks to overcome the issues associated with BP neural

networks, such as high sensitivity to the initial weight values and a

tendency to fall into local minima during training.

Furthermore, a novel inertia weight adjustment strategy is

proposed, employing a nonlinear adaptive inertia weight w as

described by the Equation 1:
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w (t) = wmin + (wmax − wmin) * (1 − g=Gk)
a(t)

a(t) = amin + (amax − amin) * (1 − g )
(1)

In this formulation, w (t) denotes the inertia weight at the t-th

iteration. The variable g represents the current iteration index, while

Gk denotes the maximum number of iterations. The a(t) is a time-

varying nonlinear control parameter that modulates the rate of

change of the inertia weight. The parameter g is a constant

regulating the variation of a(t); in the present context, g=0.9.
Compared to traditional PSO algorithms, the nonlinear adaptive

inertia weight strategy presented in this paper causes the weight to

vary nonlinearly with the number of iterations.
3 Methodology

3.1 Construction of the training dataset

In marine acoustics research, the Biot–Stoll model can be

employed to simulate realistic seabed environments by calculating

the seabed reflection coefficient based on thirteen physical

parameters, including porosity. This model provides a

comprehensive description of the acoustic properties of

sediments; however, its structure is highly complex, making

inverse problem solving particularly challenging. The core

concept of this study is to develop a reverse environment of the

Biot–Stoll model using a PSO–BP neural network, whereby the

acoustic property parameters of sediments are inferred from the

known seabed reflection coefficient. In this study, the selection of
Frontiers in Marine Science 03
the porosity parameter n is of critical importance for the

performance of the PSO-BP inversion network. This parameter

directly affects the prediction accuracy and practical applicability of

the model. To ensure the rationality and accuracy of the parameter,

we comprehensively considered existing literature findings and

empirical porosity values specific to the study region, establishing

a porosity range from 0.4 to 0.7. To analyze the influence of porosity

variations on the model’s predictive performance in more detail, a

step size of 0.0006 was chosen, resulting in 501 discrete porosity

values. Using these values, corresponding seafloor reflection

coefficients were computed via the Biot-Stoll model, which served

as the training dataset for network optimization. For different

frequency scenarios, the training datasets were derived from this

porosity range, with the seafloor reflection coefficients at the

respective frequencies as input features and porosity as the output

label for network training.
3.2 Construction of the PSO-BP network

To improve the realism and adaptability of the prediction model,

environmental noise simulating actual underwater measurement

conditions was incorporated into the training process at frequencies

of 8 kHz and 100 kHz. Specifically, Gaussian noise with a standard

deviation corresponding to 10% of the input data’s standard deviation

was added to the seafloor reflection coefficient inputs. This step aimed

to emulate measurement noise encountered in real seafloor reflection

coefficient data, thereby enhancing the model’s robustness against

environmental variability. The noisy reflection coefficients served as
TABLE 1 Parameter values for the Biot-Stoll model.

Parameter Selected values/range References

Particle Density rg/kg*m-3 2690 Williams (Williams et al., 2002)

Porosity n 0.4-0.7

Tortuosity a a =

1:35 j ≤ 4

−0:3 + 0:4125j 4 < j < 8

3:0 j ≥ 8

8>>>><
>>>>:

9>>>>=
>>>>;

Schock (Schock, 2004)

Permeability k/m2
k =

d2n3

180(1 − n)2
·

1ffiffiffiffiffi
10

p Schock (Schock, 2004)

Dynamic Viscosity of Seawater h/Pa*s 0.001 Williams (Williams et al., 2002)

Particle Bulk Modulus Kg/Pa 3.3×1010 Williams (Williams et al., 2002)

Seawater Bulk Modulus Kw/Pa 2.395×109 Williams (Williams et al., 2002)

Seawater Density rw/kg*m3 1023 Williams (Williams et al., 2002)

Framework Shear Modulus m0/Pa mr = 1:835� 105
n

1 − n

� �−1:12
Yamamoto (Yamamoto et al., 1989)

Framework Bulk Modulus Kb/Pa Kb =
2mr(1 + s )
3(1 − 2s )

Ogushwitz (Ogushwitz, 1985)

Pore Size a a =
d
3
·

n
1 − n

·
1ffiffiffiffiffi
10

p Schock (Schock, 2004)

Logarithmic Attenuation df df (zs) = df (z0)
ffiffiffiffiffi
z0
zs

r
Stoll (Stoll, 1977)
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input features, with porosity as the output, for neural network training.

To further assess the model’s accuracy and generalization capacity, the

dataset was randomly shuffled prior to training, with 15% of the data

reserved as a test set to evaluate prediction performance.

The neural network used in this study follows a standard

feedforward structure, consisting of an input layer, a single

hidden layer with 5 neurons, and an output layer. The network
Frontiers in Marine Science 04
was trained using the Levenberg–Marquardt algorithm (trainlm),

with the tansig activation function applied to the hidden layer and

the purelin activation function applied to the output layer. The

performance of the network was evaluated using the Mean Squared

Error (MSE) loss function. Figure 2 presents the architecture of the

neural network, including the layer composition, activation

functions, and training settings in detail.
FIGURE 1

Sobol sensitivity analysis results chart.
FIGURE 2

Neural network architecture.
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The training results (shown in Figures 3a1, 3b1) display plots of

sample number (horizontal axis) versus the predicted porosity

obtained from the inverse model (vertical axis). The true porosity

values, obtained via forward modeling, are plotted as the actual

data, while the predicted values are derived from the trained neural

network. The mean absolute percentage error (MAPE) remained
Frontiers in Marine Science 05
within 1.3%, indicating high prediction accuracy. Additionally,

error convergence plots were generated, where the number of

iterations in the particle swarm optimization was plotted along

the horizontal axis, and the model’s fitness (measured by mean

square error) along the vertical axis. It was observed that the error

reached its minimum after approximately 68 iterations at 8 kHz and
FIGURE 3

Inversion model training process under different frequency conditions: (a1) Training-set results at 8 kHz; (a2) Error variation at 8 kHz; (a3) Test-set
results at 8 kHz; (b1) Training-set results at 100 kHz; (b2) Error variation at 100 kHz; (b3) Test-set results at 100 kHz.
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42 iterations at 100 kHz (Figures 3a2, 3b2). The training process

then ceased, demonstrating effective convergence to an optimal

minimum error state. These results confirm that, following initial

iterative optimization, the model can reliably converge to a

minimum-error solution, validating the stability and effectiveness

of the employed methodology and algorithm for this application

(Figures 3a3, 3b3).
4 Experimental data and inversion
results

4.1 Data sources

The data used in this study originate from the project titled

National Key Research and Development Program of China

(2021YFF0501200). During the research cruise in the northern

South China Sea, sediment core samples were collected and

analyzed in the Laoshan laboratory. Laboratory measurements of

sound speed, density, and porosity of the core samples were

conducted under 100 kHz conditions. Additionally, in situ

acoustic measurements of the seafloor sediments were performed

using an underwater sediment acoustic in situmeasurement system,

providing seafloor sediment sound speed data at 8 kHz. These

datasets serve to thoroughly validate the PSO-BP inversion model.

By comparing laboratory measurements with in situ data as

benchmarks, we evaluate the accuracy and applicability of the

neural network in estimating actual sound speed under different

frequency conditions.
4.2 Inversion results

This study is based on the inversion of acoustic parameters of

seafloor sediments derived from the seafloor reflection coefficient,

with detailed analysis conducted on parameters such as sound

speed, porosity, and density within the upper 0–30 cm sediment
Frontiers in Marine Science 06
layer. The sediment types include coarse silt, silty clay, sandy clay,

sandy silt, clayey silt, and silted sand—covering six categories.

Among these, the three most prevalent are silt-rich sand, clayey

silt, and silted sand. The specific parameters are summarized

in Table 2.

The seafloor reflection coefficient was calculated based on

measured sound speed data at 100 kHz and 8 kHz frequencies,

using the Equation 2:

R =
rv − rwvw
rv + rwvw

(2)

where r, v are the measured density and sound speed of the

sediment, and rw=1023kg/m3 and vw = 1500m/s are the seawater

density and sound speed, respectively. Based on the measured

values, the reflection coefficient was first determined.

Subsequently, the porosity was estimated through inversion of the

reflection coefficient, and the sediment’s density and sound speed

were calculated using Equations 3 and 4.

r = nrw + (1 − n)rg (3)

v =
rwvw(1 + R)
r(R − 1)

(4)

The results (Figure 4) indicate that the mean absolute

percentage error (MAPE) for porosity is 2.39%, with a mean

absolute error of 0.01. In addition, the average absolute

percentage errors for density and sound speed are 1.01%, with

mean absolute errors of 17.29 kg/m³ and 15.27 m/s, respectively.

These findings validate the accuracy and reliability of the developed

inversion network.
5 Inversion errors and discussion

In sediment acoustic parameter inversion, model error serves as

a key indicator of inversion accuracy. This study validates the

inversion model using data at both 8 kHz and 100 kHz
TABLE 2 Surface sediment measurement data.

Sediment type
Porosity Density (kg/m3) Sound speed (m/s)

100kHz 8kHz 100kHz 8kHz 100kHz 8kHz

Silted Sand

MAX 0.56 0.66 1910 1910 1632.78 1610.44

MIN 0.44 0.64 1760 1790 1504.86 1539.67

AVG 0.52 0.65 1810 1880 1567.68 1575.72

Sandy Silt

MAX 0.63 0.65 1850 1840 1594.28 1561.88

MIN 0.49 0.64 1630 1780 1516.11 1535.83

AVG 0.53 0.64 1780 1820 1555.06 1550.84

Clayey Silt

MAX 0.68 – 1690 – 1533.01 –

MIN 0.6 – 1560 – 1483.17 –

AVG 0.65 – 1610 – 1501.88 –
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frequencies, analyzing the applicability of the method for three

sediment types—Silted Sand, Sandy Siltt, and Clayey Silt—under

different frequency conditions for parameters such as sound speed,

density, and porosity. The results (Table 3) demonstrate that the
Frontiers in Marine Science 07
inversion errors across these parameters are relatively small at

both frequencies.

Overall, errors at 100 kHz tend to be lower, whereas at 8 kHz, the

maximum errors—particularly in porosity—are generally higher.
FIGURE 4

Inversion results under different frequency conditions: (a1) Porosity inversion results at 8 kHz; (a2) Density inversion results at 8 kHz; (a3) Velocity inversion
results at 8 kHz; (b1) Porosity inversion results at 100 kHz; (b2) Density inversion results at 100 kHz; (b3) Velocity inversion results at 100 kHz.
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Among the three sediment types, Silted Sand shows the highest

porosity errors, with maximum values of 5.41% at 100 kHz and

6.36% at 8 kHz. For Silted Sand, the maximum errors in sound

speed are 1.62% (8 kHz) and 2.50% (100 kHz), while the maximum

density errors are 1.60% and 2.57%, respectively. For Sandy Silt, the

maximum errors in sound speed are 1.58% (8 kHz) and 2.13% (100

kHz), with density errors of 1.55% and 2.09%. These findings suggest

that the inversion of sound speed tends to be more accurate at 8 kHz,

while density inversions are relatively more stable at 100 kHz.

Regarding minimum errors, both frequencies exhibit very low

error margins: for Silted Sand, the minimum density errors are

0.02% (8 kHz) and 0.04% (100 kHz); for Sandy Silt, 0.08% (8 kHz)

and 0.01% (100 kHz). In contrast, Clayey Silt shows a wider error

distribution, with porosity errors ranging from 0.40% to 3.13%,

indicating that this sediment type has higher sensitivity to

frequency-dependent effects.

Further analysis of the average errors reveals that all three

sediment types maintain mean errors around 1%, indicating good

overall stability of the inversion model. Specifically, the mean errors

for Silted Sand are 0.93% (8 kHz) and 0.76% (100 kHz); for Sandy

Silt, 0.83% (8 kHz) and 0.78% (100 kHz); and for Clayey Silt, 1.41%

(at 100 kHz). Notably, the inversion accuracy for Clayey Silt appears

to be somewhat lower at higher frequencies.

Distinct variability among sediment types is evident; Silted Sand

and Sandy Silt exhibit larger frequency-dependent errors in

parameters such as sound speed and porosity, whereas Clayey Silt

demonstrates more consistent, lower errors—likely due to more

homogeneous structures that favor stable high-frequency parameter
Frontiers in Marine Science 08
inversions. For sediments with less uniform particle distribution,

such as Silted Sand and Sandy Silt, more complex correction

methods may be necessary to mitigate local fluctuations and errors.

Analyzing errors based on porosity, density, and sound speed

data, the results show that the average relative error in porosity

inversion at 100 kHz (2.06%) is significantly lower than at 8 kHz

(3.79%), indicating that higher frequency signals can better capture

porosity variations and improve inversion accuracy. For density, the

average relative errors at both frequencies are low (0.865% at 8 kHz

and 0.813% at 100 kHz), demonstrating good stability, though the

overall mean absolute errors (approximately 14.9) are relatively

large—possibly affected by environmental noise during actual

measurements. Similarly, for sound speed, the errors at both

frequencies are comparable, with average relative errors around

0.85%, but the absolute errors (approximately 15 m/s) suggest room

for further improvement (Table 4).
6 Conclusion

This study employed Biot theory and the Biot-Stoll model to

generate datasets for training the PSO-BP neural network and

constructed an inversion framework based on this hybrid model.

The validation was performed using surface data collected from

both measured samples and in situ sampling points in the

northwestern South China Sea. The results demonstrate the high

accuracy of the developed PSO-BP inversion network. Specifically,

when inverting parameters such as porosity, density, and sound
TABLE 3 Error results for different sediment types.

Sediment
type

Relative
error %

Porosity Density (kg/m3) Sound speed (m/s)

8 kHz 100 kHz 8 kHz 100 kHz 8 kHz 100 kHz

Silted Sand

MAX 1.62 2.50 1.60 2.57 6.36 5.41

MIN 0.02 0.04 0.02 0.04 2.89 0.13

AVG 0.93 0.76 0.92 0.76 4.23 2.30

Sandy Silt

MAX 1.58 2.13 1.55 2.09 5.92 3.66

MIN 0.08 0.01 0.08 0.01 1.42 0.45

AVG 0.83 0.78 0.82 0.78 3.77 2.25

Clayey Silts

MAX – 2.53 – 2.59 – 3.13

MIN – 0.62 – 0.62 – 0.40

AVG – 1.41 – 1.43 – 1.37
TABLE 4 Error results for different data types.

Acoustic
Property

Parameters

100kHz 8kHz

Average relative error% Average absolute error Average relative error% Average absolute error

Porosity 2.06 0.011 3.79 0.019

Density 0.865 14.984 0.813 14.9

Sound Speed 0.8602 13.33 0.822 12.76
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speed using laboratory data at 100 kHz, the maximum mean

absolute percentage error (MAPE) was 2.3%. For in situ

measurement data, the maximum error increased to 3.8%. The

comparison between high-frequency laboratory data (100 kHz) and

mid-frequency in situ data (8 kHz) confirms the method’s feasibility

and robustness across different frequency conditions. These

findings highlight the potential of the proposed approach for

accurate and flexible marine sediment parameter inversion in

complex underwater environments.
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