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Resources, Xiamen, China
The release of cesium (Cs) isotopes from treated nuclear-contaminated water at

Japan’s Fukushima Daiichi Nuclear Power Plant (FDNPP) has raised global

concern due to their potential long-term environmental impacts. Some of

these isotopes have a physical half-life of 30.17 years, posing a potential threat

to marine environments and marine life. This study used the stable isotope 133Cs

to simulate exposure and assess the ecological risks associated with Cs isotopes

in marine environments. The black porgy (Acanthopagrus schlegelii) was

selected as the model organism and was exposed to various concentrations of
133Cs (0.02, 0.2, 2, and 20 mg/L). Although 133Cs exhibited low bioaccumulation

in black porgy, it still showed potential for biomagnification. The fish

demonstrated a strong stress response and some antioxidant adaptation at 3

days, but significant cellular and tissue damage occurred after 14 days of

exposure. Analysis of the Integrated Biomarker Response version 2 (IBRv2)

further revealed that the black porgy was more sensitive to Cs at 3 days, with

toxic effects intensifying over time. This study provides a scientific basis and

experimental reference for assessing the ecological risks of Cs isotopes in

marine ecosystems.
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GRAPHICAL ABSTRACT
1 Introduction

On 24 August 2023, Japan began discharging treated nuclear-

contaminated water from the Fukushima Daiichi Nuclear Power

Plant (FDNPP) into the Pacific Ocean, drawing global concern.

This release reintroduces radionuclides into the marine

environment, reminiscent of the 2011 FDNPP incident, which

contaminated shallow-water organisms along the Pacific coast of

eastern Japan (Tateda et al., 2024b). Indeed, radioactive cesium (Cs)

levels in pelagic fish have already exceeded the Japanese seafood

safety limit of 100 Bq kg-ww-1 (Fukushima Prefecture (FP), 2023).

Furthermore, between 2019 and 2022, the concentration of Cs

isotopes in suspended solids from inflow water in an urban pond

in Koriyama City, Fukushima Prefecture, Japan, was 0.041 m2/kg,

higher than in other urban catchments (Kurosawa et al., 2025). Such

findings underscore the potential long-term threat of Cs isotopes to

marine ecosystems has been noted globally (Liu et al., 2025).

Cs is an alkali metal with one stable isotope (133Cs) and 32

radioactive isotopes. Among these, 137Cs and 134Cs have half-lives

of radioactive decay, lasting 30.17 years and 2.06 years, respectively

(Mohammad et al., 2015). Environmental monitoring has revealed

the widespread distribution of Cs isotopes across aquatic systems.

For example, in the Kaniv Reservoir, 133Cs in suspended particles

was measured at 4.4 ± 0.2 mg/kg (Sansone et al., 2002). In coastal

São Paulo, 137Cs levels in surface seawater ranged from 1.7 to 1.9 Bq

m−³ (Cunha et al., 1993), while in the Arabian Gulf, 137Cs

concentrations ranged between 1.04 and 1.18 Bq m−³ (Uddin

et al., 2017). From 2011 to 2013, 137Cs concentration along the

eastern coast of Indonesia varied between 0.12 and 0.32 Bq m−³

(Suseno and Prihatiningsih, 2014). Offshore measurements in the

central Pacific Ocean in January 2012 recorded 137Cs at 1.5 ± 0.1 Bq

L−³ (Kamenıḱ et al., 2013). These findings highlight the widespread

presence of Cs isotopes in aquatic systems. Although 133Cs is less
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frequently detected, its stability and chemical similarity to

radioactive isotopes such as 137Cs (Rühm et al., 1999; Tsukada

and Hasegawa, 2003), make it crucial for understanding the

biological effects of Cs in ecosystems. Given its stability and

chemical properties, studying the biological impact of 133Cs,

particularly in fish, is essential.

Apart from Cs isotopes being present in the environment, their

accumulation has also been observed in aquatic organisms.

Dissolved Cs is a major route for the bioconcentration of its

isotopes in marine invertebrates (Thomas and Fisher, 2019), and

tends to concentrate in scallop soft tissues (Metian et al., 2011). As a

potassium analogue, Cs accumulates in organisms during biological

growth (Lacoue-Labarthe et al., 2010), entering the food chain

through potassium exchange. In marine fish, Cs isotopes are

mainly acquired through feeding and drinking seawater (Fowler

and Fisher, 2005). Between 2018 and 2021, increased Cs isotopes

levels in zooplankton led to higher radioactivity in surface water fish

(Tateda et al., 2024a). Notably, radioactive Cs, like mercury (Hg),

biomagnifies at the top of the marine food chain (Xiguang et al.,

2001). Additionally, 133Cs has been shown to induce

immunotoxicity and impair immune function in Mytilus edulis

(Xu et al., 2023). Chronic effects of 137Cs on fish include delayed

reproduction, reduced fertility, increased embryo mortality, and

adult sterility (Xu et al., 2024). Cs accumulation in organisms can

lead to localized high doses, causing tissue-specific damage and

even organ failure (Xu et al., 2023). Despite these known risks, the

impact of Cs on marine ecosystems remains poorly understood.

In light of these concerns, this study aims to clarify the

ecological risks of stable Cs (133Cs) in marine fish by examining

its bioaccumulation and effects in black porgy (Acanthopagrus

schlegelii). Black porgy, a fast-growing species resilient to

environmental stressors and widely distributed along the coasts of

China, Japan, and Korea (Mao et al., 2024; Sun et al., 2024), serves
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as our model organism. We first quantified bioconcentration factor

(BCF) of 133Cs in various tissues and then measured hepatosomatic

index (HSI) and condition factor (K) after 3- and 14-day exposures

to assess impacts on growth and health. Next, biochemical

responses were examined by assessing antioxidant enzyme

activities and corresponding gene transcription levels. Finally,

these physiological and molecular endpoints were integrated

using the integrated biomarker response version 2 (IBRv2) to

comprehensively gauge 133Cs-induced disruption. Our findings

provide a scientific basis and experimental reference for assessing

the ecological risks of Cs isotopes in coastal ecosystems.
2 Materials and methods

2.1 Fish maintenance

Three hundred healthy juvenile black porgy (body weight: 14.12

± 7.67 g, body length: 9.5 ± 1.5 cm) were purchased from the

Zhangzhou Aquaculture Company, Fujian, China. Before the

experiment, fish were acclimated for one week in a flow-through

system with constant aeration in a 1000 L Polyvinyl chloride (PVC)

tank containing sand-filtered seawater. Water conditions were

maintained at 28 ± 0.5°C, salinity 15 ± 1 Practical Salinity Unit

(psu), and pH 8.0 ± 0.1. The fish were fed once daily, equivalent to

1% of their body weight. The fish feed was supplied by Zhangzhou

Aquaculture Company. All animal procedures were approved by

the Ethics Committee of the Third Institute of Oceanography,

Ministry of Natural Resources, China (No. TIO-IACUC-01-2024-

03-08).
2.2 Experimental design

2.2.1 The simulative system of 133Cs exposure
The experiment was designed to assess the dose-dependent

toxicity of 133Cs in juvenile fish through a controlled 14-day

exposure period. The setup included a control group and four

treatment groups, each in triplicate, receiving 133Cs at

concentrations of 0.02, 0.20, 2.00, and 20 mg/L. These specific

concentrations were chosen based on preliminary trials to represent

a gradient of exposure levels, allowing assessment of potential

toxicity patterns and dose-responsive behavior. Analytical-grade

cesium chloride (Shanghai Macklin Biochemical Technology

Company, Shanghai, China) was used to prepare the solutions.

Each tank held 30 uniformly sized juvenile fish in 75 liters of

artificial seawater to minimize background ion interference and

ensure reproducibility. The health of all fish was confirmed before

starting the experiment. To maintain consistent exposure

conditions, two-thirds of the solution in each petri tank was

renewed daily with freshly prepared Cs solution at the same

concentration. Throughout the 14-day period, environmental

parameters such as temperature, humidity, and lighting were kept

stable to ensure reliable experimental outcomes.
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2.2.2 Tissue sampling
The experimental sample collection was carried out on days 3

and 14 of the exposure period. During tissue sampling, fish were

anesthetized using 200 mg/L MS-222 (Sigma Aldrich, St. Louis,

MO, USA), and their body length and weight were recorded. the

liver was then selected for analysis due to its crucial role in

processing toxicants entering the organism. As the primary site of

detoxification and elimination, the liver is particularly susceptible to

damage from environmental chemicals. Consequently, it is one of

the most valuable tissues for toxicological research, directly reflects

an organism’s exposure to harmful compounds (Bo et al., 2023;

Ishaq et al., 2023). After sampling, livers were immediately flash-

frozen in liquid nitrogen and stored at −80°C for subsequent

analysis. The HSI and CF were calculated using the following

standard equations.

Hepatosomatic   index   (HSI,   % )

= ½(liver  weight,   g)=   (body   length,   g)� � 100

Condition   factor   (K ,   g=cm3)

= ½(body  weight,   g)=(body   length,   cm)3� � 100
2.3 Concentration determination of 133Cs
in water and fish tissues

At the beginning of the experiment, 50 mL of water was

collected from each concentration group, with three replicates per

group. Samples were transferred to polyethylene (PE) tubes at time

points 0 hours, 24 hours (prior to the initial water renewal), and 48

hours (after subsequent water renewal). This approach verified

concentration stability over time, ensuring that observed

biological responses could be reliably correlated with actual

exposure levels.

The concentration of 133Cs+ in each water sample was

determined by inductively coupled plasma mass spectrometry

(ICP-MS, Model 7700x, Agilent Technologies, Santa Clara, CA,

USA). Cs standard solutions were prepared at 0, 0.2, 1, 5, 20, 50,

100, and 500 mg/L and measured by ICP-MS to create a calibration

curve via linear regression. All calibration curves had correlation

coefficients within acceptable analytical criteria. Following this,

Control and experimental water samples were analyzed using the

same procedure. To ensure accuracy, an internal standard solution

was introduced continuously throughout analysis, and sample

concentrations were corrected according to internal standard

recovery rates (92.5%–108.2%). The method detection limit

(MDL) for Cs was determined to be 0.04 mg/L.
Liver, muscle, and gill samples were collected after a 3-day

exposure period to assess 133Cs enrichment. Three replicate samples

were taken from each concentration group, with each replicate

consisting of tissue from ten fish. Tissue samples were removed

from cold storage, thawed at room temperature, and weighed to
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obtain fresh weight. They were then dried at 80 °C until constant

weight and reweighed for dry weight. Next, approximately 1:10 (w/

v) concentrated nitric acid was added, and samples were left to

digest overnight at room temperature. This was followed by

sequential heating at 60 °C for 1 h, 80 °C for 1 h, and 120 °C for

6 h, until the solution became clear. Blank digestions using nitric

acid alone were prepared in parallel. After digestion, samples were

diluted to 15 mL with ultrapure water, mixed thoroughly, filtered

through a syringe filter, and analyzed for Cs concentration by ICP-

MS. For water samples, 5% nitric acid was added immediately after

collection for fixation. Prior to analysis, these water samples were

diluted 100-fold with 2% nitric acid, filtered through a syringe filter,

and measured for Cs concentrations using the same ICP-

MS protocol.

Samples were removed from cold storage, thawed at room

temperature, and weighed to obtain fresh weight. They were then

dried at 80°C until they reached a constant weight, after which they

were reweighed for dry weight determination. Next, approximately

1:10 (w/v) concentrated nitric acid was added, and samples were left

to digest overnight at room temperature. Sequential heating was

then performed at 60°C for 1 h, 80°C for 1 h, and 120°C for 6 h,

until the solution became clear. Blank digestions using nitric acid

alone were run in parallel. After digestion, each sample was diluted

to 15 mL with ultrapure water, mixed thoroughly, filtered through a

syringe filter, and analyzed for Cs concentration by ICP-MS. For

water samples, 5% nitric acid was added immediately after

collection to fix the samples. Before ICP-MS analysis, these water

samples were diluted 100-fold with 2% nitric acid, filtered through a

syringe filter, and then measured for Cs concentration using the

same protocol.

To evaluate the efficiency of metal accumulation in the liver,

gills, and muscle, the BCF were calculated using the standard

equation.

Bioconcentration   factors   (BCF,   kg=L)

= ½(metal   concentration   in   tissues,  mg=kg)=

(metal   concentration   in  water,  mg=L)� � 100
2.4 Antioxidant enzymatic activity
measurement

After sampling, antioxidant enzyme activity was measured

using five replicate liver samples from each concentration group.

Liver tissues were first homogenized in a pre-cooled sodium

chloride solution (1:9 w/v) to prepare a 10% (w/v) tissue

homogenate. Homogenization was performed in a high-

throughput vertical cryogenic grinding instrument (MB-LD 48;

Zhejiang Meibi Instruments Company Limited, Zhejiang, China)

at 10,000 rpm for 10 minutes at 4°C. After centrifugation, the

supernatant was collected carefully and used to assess antioxidant

enzymatic activity. The activities of superoxide dismutase (SOD),

catalase (CAT), glutathione peroxidase (GPX), glutathione

reductase (GR), total protein (TP), and malondialdehyde (MDA)
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were measured using commercial kits sourced from Nanjing

Jiancheng Bioengineering Institute (Nanjing, China).
2.5 Real-time quantitative polymerase
chain reaction analysis

Total RNA was isolated from five replicate liver samples per

concentration group using TRIZOL® reagent (Invitrogen, Carlsbad,

California, USA). The concentration and purity of the extracted

RNA were assessed with a microspectrophotometer (K5600, Kaiao

Technology, Beijing, China). For cDNA synthesis, 1 mg of total

RNA was reverse-transcribed using the PrimeScripte™ RT-PCR Kit

(Takara, Tokyo, Japan). Real-time quantitative polymerase chain

reaction (RT-qPCR) was subsequently conducted using the SYBR

Green qPCRMaster Mix Kit (Promega, Madison, Wisconsin, USA),

with amplification and data-analysis protocols adapted from

(Bo et al., 2012).

The transcriptional levels of various genes related to

metallothionein regulation, oxidative stress, immune response,

inflammation, endoplasmic reticulum (ER) stress pathways, and

pro-apoptotic mechanisms were analyzed. The genes examined

included mt2 (metallothionein II), hsp70 (heat shock protein 70),

hsp90 (heat shock protein 90), Cu/Zn-sod (copper-zinc superoxide

dismutase), cat (catalase), tnfa (tumor necrosis factor-alpha), tgfb
(transforming growth factor-b), grp78 (glucose-regulated protein

78kD), atf6 (activating transcription factor 6), caspase7 (cysteinyl

aspartate specific proteinase), and bax (bcl-2 associated X protein).

b-actin was used as the reference gene. The RT-qPCR primer

sequences were adopted from (Zhao et al., 2024), with gene-

specific primer details provided in Supplementary Table S1 in

Supplementary Information (SI).
2.6 IBRv2 analysis

To comprehensively assess biological responses across different

biomarkers (antioxidant enzyme activities and genes expression),

the IBRv2 index was employed. This method provides a visual and

quantitative means of evaluating organismal stress by integrating

various biomarker responses into a single comparative value.

Calculations were performed following established methodologies

from previous studies (Gao et al., 2024; Leite et al., 2024; Zheng

et al., 2024). Displayed as a star plot, IBRv2 is independent of

biomarker arrangement and is based on reference deviations

between undisturbed and disturbed physiological states (Pollicelli

et al., 2023). IBRv2 was calculated using the following equations.

Yi = log(
Xi

X0
)

Zi =
(Yi − m)

s

A = Zi − Z0
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IBRv2 =o​ Aj j
Xi is the treatment mean and X0 is the control mean. The

treatment group and the control group are represented by Zi and

Z0, respectively. m is the mean and s is the standard deviation of Yi.

A represents the biomarker deviation index. The IBRv2 value was

calculated by summing the Ai value (absolute value).
2.7 Statistical analysis

The results are presented as the mean ± standard error (S.E.).

Initially, the data were tested for normality and homogeneity. A

one-way analysis of variance (ANOVA) was then conducted,

followed by Tukey’s Honest Significant Difference (HSD) test to

identify significant differences between the treatment and control

groups. In cases where the data did not follow a normal distribution,

a Kruskal-Wallis ANOVA was used to detect significant differences.

Statistical significance was considered at *p< 0.05 and **p< 0.01. All

statistical analyses were performed using IBM SPSS Statistics

29.0 .1 .0 (Armonk, New York, USA), while graphical

representations were created using GraphPad Prism 10

(GraphPad Software, San Diego, California, USA).
3 Results

3.1 133Cs+ exposure levels in water,
biometric changes, and tissue
bioaccumulation in black porgy

To evaluate the internal and external exposure of black porgy to
133CsCl, both water concentrations and biological responses were

monitored across a range of treatment levels. At 0 hours, the actual
133Cs+ concentrations in water were approximately 75% of the

nominal values for the 0.02, 0.2, and 2 mg/L groups, and around

55% for the highest concentration group (20 mg/L) (Table 1). These

levels remained relatively stable at 24 hours and showed a slight

increase by 48 hours. In terms of biometric responses, a significant
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decrease in HSI was observed after 14 days, with mean values of 1.06

in the 0.02 mg/L group and 0.85 in the 20 mg/L group (Figure 1). In

contrast, body length, weight, and CF showed no significant

alterations (Figure 1).

Regarding bioaccumulation, 133Cs+ concentrations in tissues

increased in a dose-dependent manner (Table 2). At lower exposure

levels (0.02, 0.2, and 2 mg/L), 133Cs+ accumulated in the order: gill >

muscle > liver. However, at the highest concentration (20 mg/L), the

distribution shifted, with the gill still showing the highest

accumulation, followed by the liver and then muscle. BCF values

for all three tissues remained above 1 across all exposure levels

(Figure 2). Notably, the liver BCF decreased with rising

concentrations but rose again at 20 mg/L, suggesting a non-linear

uptake pattern. The gill BCF peaked at the lowest concentration and

stabilized at higher doses, whereas the muscle BCF declined

progressively with increasing exposure.
3.2 Antioxidant responses after exposure to
133CsCl

MDA levels showed a decreasing trend with rising

concentrations of 133CsCl during the 3-day acute exposure.

However, during the 14-day chronic exposure, MDA levels

increased with higher doses compared to the control, though the

differences were not statistically significant (Figure 3). This shift in

MDA patterns over time may reflect a delayed oxidative response,

prompting further examination of key antioxidant enzymes.

Throughout both acute and chronic exposures, SOD activity

remained stable. GR activity decreased at day 14 compared to day

3, whereas GPX activity showed a dose-dependent increase followed

by a decline, peaking at 2 mg/L after 14 days. In contrast, CAT

activity declined gradually with increasing 133CsCl concentrations

at day 3. By 14 days, a significant reduction was observed in the

treated groups compared to the control, with mean activity of

292.89 U/mg prot (Figure 4).
3.3 Transcriptional expression profiles of
target genes after exposure to 133CsCl

Significant differences in mRNA expression were observed for

hsp70 and tgfb during acute exposure (3 days). Specifically, the

expression of hsp70 was 3.76 and 6.20 times higher in the 0.02 mg/

L and 2 mg/L groups, respectively, compared to the control.

Similarly, tgfb expression was 1.99-fold higher in the 0.2 mg/L

group and 1.96-fold higher in the 20 mg/L group compared to the

control. However, no significant differences were observed in the

expression of mt2, hsp90, Cu/Zn-sod, cat, tnfa, grp78, atf6,

caspase7, and bax.

During the chronic exposure (14 days), significant changes were

found for Cu/Zn-sod and grp78. Cu/Zn-sod expression was

significantly induced by 2.43 and 1.91-fold at 0.2 mg/L and 20

mg/L groups, respectively. Conversely, grp78 expression was

markedly suppressed to 0.17-fold in both 0.02 and 2 mg/L
TABLE 1 Actual Cs+ concentration in the waters.

Nominal
concentration

(mg/L)
Actual concentration (mg/L)

Control

0 h 24 h 48 h

< MDL < MDL < MDL

0.02 0.033 ± 0.004 0.020 ± 0.002 0.054 ± 0.030

0.2 0.167 ± 0.005 0.155 ± 0.004 0.199 ± 0.034

2 1.478 ± 0.052 1.500 ± 0.014 1.495 ± 0.034

20 11.415 ± 0.279 11.507 ± 0.109 11.597 ± 0.092
MDL (method detection limit), values reported as “< MDL” indicate that the concentration
was below the method detection limit of 0.04 mg/L.
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groups. No significant alterations were observed in the expression of

mt2, hsp70, hsp90, cat, tnfa, tgfb, atf6, caspase7, and bax after 14

days of exposure (Figure 5).
3.4 IBRv2 values

In terms of IBRv2 values, the different concentration groups

exhibited varying degrees of deviation following 133CsCl exposure.

At 3 days, the IBRv2 value increased gradually from 18.53 in the

0.02 mg/L group to 31.88 in the 20 mg/L group. However, by 14

days, the trend reversed, with the IBRv2 values decreasing from

49.48 in the 0.02 mg/L group to 37.48 in the 20 mg/L

group (Figure 6).
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4 Discussion

Using controlled laboratory conditions, this study

systematically investigated the integrated biological effects of

black porgy following exposure to a gradient of 133CsCl

concentrations under controlled laboratory conditions. Our

results demonstrate that 133CsCl exposure perturbs multiple

biological functions, with evidence indicating potential hepatic

impairment. Despite tissue bioaccumulation levels remained

relatively low, BCFs suggested a risk of biomagnification through

aquatic food webs. At the molecular level, key metabolic pathways

involved in heat shock response, oxidative stress, immune

regulation, and ER stress were markedly affected.

To quantify bioaccumulation, BCFs were calculated for liver,

gill, and muscle tissues. The BCF is a critical metric for evaluating a

contaminant’s accumulation potential in aquatic organisms

(Kowalska et al., 2024). In this study, ¹³³Cs+ BCF values ranged

from 5 to 30, aligning with bioaccumulation profiles observed for

metals such as cadmium (Jing et al., 2019). According to

Organization for Economic Co-operation and Development

(OECD) guidelines (OECD, 2012), BCF values below 100 denote

low bioaccumulation potential. However, any value exceeding 1

confirms the bioaccumulative nature of ¹³³Cs+ and implies a

potential for biomagnification within aquatic ecosystems

(Parkerton et al., 2008).

Beyond BCF measures, oxidative stress biomarkers were

evaluated at multiple time points to capture their temporal

dynamics under 133CsCl exposure. During the acute phase (3

days), activities of CAT, GPX, and GR declined as 133CsCl

concentration increased in this study, mirroring previous reports

of antioxidant enzyme inhibition following short-term metal

exposure (Fatima and Ahmad, 2005; Zheng et al., 2016). This

decline may reflect toxic inhibition, substrate competition (Freitas
FIGURE 1

Biometric responses of black porgy following 3- and 14-day exposures to 0.02, 0.2, 2, and 20 mg/L of 133CsCl. Data are expressed as mean ±
standard error (SE). Statistically significant differences between the exposure and control groups are indicated at *p< 0.05.
TABLE 2 Levels of Cs+ bioaccumulation in different tissues of the
black porgy.

Concentration
(mg/L)

Cs bioaccumulation in different
tissues (mg/kg)

Control

Liver Gill Muscle

< MDL < MDL < MDL

0.02 0.348 ± 0.198 0.994 ± 0.894 0.599 ± 0.191

0.2 1.016 ± 0.258 1.431 ± 0.857 1.566 ± 0.276

2 7.655 ± 0.668 13.258 ± 2.054 9.328 ± 1.679

20 90.929 ± 30.224 105.250 ± 8.605 69.103 ± 18.776
MDL (method detection limit), values reported as “< MDL” indicate that the concentration
was below the method detection limit of 0.04 mg/L.
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et al., 2020) or decreased glutathione availability (Özkan-Yılmaz

et al., 2014). Notably, SOD activity remained stable, consistent with

its role as a first-line defense enzyme that is less sensitive to

moderate oxidative stress (Eyckmans et al., 2011). Unexpectedly,

MDA levels decreased during acute exposure despite elevated
133Cs+ doses. This observation differs from the typical increase in

lipid peroxidation under oxidative stress (Chakraborty et al., 2024;

Wang et al., 2024), but parallels findings in mercury-exposed

Dicentrarchus labrax juveniles (Barboza et al., 2018), suggesting

either effective initial antioxidant scavenging or insufficient

exposure duration to induce lipid peroxidation (Zheng et al.,

2016). Given that MDA typically rises within 48 hours post-stress

(Chakraborty et al., 2024; Liu et al., 2024), measurements at 96

hours underscore a robust early antioxidant response, consistent

with enhanced aldehyde detoxification (Li et al., 2024). Conversely,
Frontiers in Marine Science 07
chronic exposure (14 days) induced increased activities of SOD,

CAT, and GPX alongside dose-dependent MDA elevation,

indicating that prolonged 133CsCl exposure overwhelms

antioxidant defenses, culminating in oxidative damage. This

pattern aligns with chronic metal toxicity observed in other fish

species, where sustained exposure leads to lipid peroxidation and

compensatory enzyme induction (Vinodhini and Narayanan, 2009;

Tabrez and Ahmad, 2011; Javed et al., 2017). Despite increased

enzyme activities, the response appears insufficient to prevent

oxidative injury, potentially impairing mitochondrial function and

immune defense (Halliwell and Gutteridge, 2015; Sun et al., 2022).

To investigate whether these enzymatic changes correspond to

gene-level regulation, we examined transcriptional profiles of key

antioxidant genes over time. At the transcriptional level, antioxidant

genes exhibited complex regulation: Cu/Zn-sod and cat mRNA levels
FIGURE 2

The BCF in liver, gill, and muscle of the black porgy following 3-day exposures to 0.02, 0.2, 2, and 20 mg/L of 133CsCl. Data are expressed as mean
± standard error (SE).
FIGURE 3

MDA activity in the black porgy following 3- and 14-day exposures to 0.02, 0.2, 2, and 20 mg/L of 133CsCl. Data are expressed as mean ± standard
error (SE).
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increased at 14 days, mirroring enzymatic antioxidant activation in the

chronic phase. However, discrepancies between gene expression and

enzyme activity were observed, reflecting common post-

transcriptional regulatory mechanisms and temporal delays in

protein synthesis (Craig et al., 2007; Li et al., 2013; Regoli and

Giuliani, 2014) This underscores the necessity of interpreting

molecular and enzymatic data conjointly. Gene expression patterns

also revealed a temporal shift between early and late exposure. During

early exposure, antioxidant genes such as Cu/Zn-sod and mt2 were
Frontiers in Marine Science 08
downregulated, while stress-related genes (hsp70, tnfa, tnfb, grp78,
and atf6) were progressively upregulated with increasing contaminant

levels. Such patterns suggest a cellular strategy prioritizing protein

repair and immune responses over immediate antioxidant defense,

balancing reactive oxygen species detoxification with proteostasis

maintenance mediated by heat shock proteins (Pockley and

Henderson, 2018; Junprung et al., 2021). Additionally, hsp70, a

molecular chaperone vital for protein stabilization and refolding

under stress, was notably upregulated, reflecting its conserved
FIGURE 5

Transcription profiles of the selected genes in the black porgy following 3- and 14-day exposures to 0.02, 0.2, 2, and 20 mg/L of 133CsCl. Data are
expressed as mean ± standard error (SE). Statistically significant differences between the exposure and control groups are indicated at *p< 0.05 and
**p< 0.01.
FIGURE 4

Antioxidant enzyme activities of the black porgy following 3- and 14-day exposures to 0.02, 0.2, 2, and 20 mg/L of 133CsCl. Data are expressed as
mean ± standard error (SE). Statistically significant differences between the exposure and control groups are indicated at *p< 0.05.
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protective function in metal-exposed fish (Safari et al., 2014;

Jeyachandran et al., 2023). This adaptive response may be mediated

via the Nrf2-ARE pathway, linking antioxidant gene activation with

heat shock responses to mount a comprehensive defense against

oxidative insults (Dayalan Naidu et al., 2015). Contrastingly, mt2

expression remained low during acute exposure and showed no clear
Frontiers in Marine Science 09
correlation with 133Cs concentration, aligning with previous

observations of weak or inverse relationships between MT

expression and metal burden in short-term exposures (De Boeck

et al., 2003; Huang et al., 2014; Lee and Nam, 2016). Possible

explanations include limited Cs accumulation or species-specific

metal handling mechanisms.
FIGURE 6

IBRv2 radargrams of various biomarkers in the black porgy following 3- and 14-day exposures to 0.02, 0.2, 2, and 20 mg/L of 133CsCl.
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In addition to antioxidant responses, inflammatory and apoptotic

pathways were activated under 133Cs exposure, as oxidative stress can

trigger these processes. Pro-inflammatory cytokine tnfa was dose-

dependently upregulated in a dose-dependent manner, peaking at 20

mg/L, which is indicative of an immune response to Cs-induced

inflammation (Abdel-Latif et al., 2022). Tnfa activation can initiate

macrophage and monocyte signaling cascades culminating in apoptosis

(Harikrishnan et al., 2021; Gao et al., 2023). Supporting this, apoptotic

gene induction coincided with ER stress markers upregulation grp78,

atf6, and caspase7 pointing to unfolded protein response (UPR)

activation (Qian et al., 2001; Biagioli et al., 2008). Chronic ER stress

may lead to apoptosis, as demonstrated in other metal toxicity models

(Szegezdi et al., 2006; Kitamura and Hiramatsu, 2010). Collectively,

these intertwined pathways of oxidative stress, inflammation, ER stress,

and apoptosis delineate a coordinated cellular response to Cs exposure.

Although antioxidant defenses and heat shock proteins offer some

protection, inflammation and apoptosis contribute substantially to

cellular damage during acute exposure. After 14 days of exposure,

expression of heat shock proteins, inflammatory mediators, and ER

stress markers decreased, while mt2, antioxidant, and apoptotic genes

increased, especially at lower doses (2 mg/L). This pattern suggests

reactivation of antioxidant and metal regulation mechanisms, although

progressive Cs accumulation may impair liver function and reducemt2

expression at higher doses (George, 1989; De Boeck et al., 2003; Huang

et al., 2014). Notably, mt2 expression peaked at 2 mg/L but declined at

higher concentrations, possibly indicating cellular saturation or toxicity

thresholds, raising concerns about its reliability as a biomarker for

chronic metal exposure (Rainbow, 2002; Lin et al., 2004; Long and

Wang, 2005; Zhang andWang, 2005; Cho et al., 2008; Le Croizier et al.,

2018). Despite increased Cu/Zn-sod and cat expression, their activation

was insufficient to counter prolonged oxidative stress, as evidenced by

dose-dependent MDA increases. Simultaneously, hsp70 expression was

suppressed, potentially weakening cellular resilience and exacerbating

damage (Lin et al., 2023). Chronic exposure also suppressed

inflammatory pathways but enhanced apoptotic signaling through

caspase7 and bax, indicating severe oxidative damage, tissue injury,

and programmed cell death in black porgy.

Finally, the IBRv2 index proved valuable for quantifying

cumulative biological stress. Our study demonstrated that acute

exposure elicited slightly greater variability in IBRv2 values (IBRv2:

18.53–31.88) than chronic exposure (IBRv2: 37.48–49.48),

consistent with previous reports (Cao et al., 2022; Ramesh et al.,

2024). Interestingly, during acute exposure, the highest deviation

occurred at the highest dose (20 mg/L), while at 14 days, the greatest

deviation appeared at the lowest dose (0.02 mg/L). Although this

inverse dose response pattern is uncommon in IBRv2 studies, it

highlights the complex dynamics of toxicant effects over time.
5 Conclusion

This study examined the physiological and biochemical responses

of black porgy to stable isotopic 133Cs at different doses over both 3-day

and 14-day exposures. The accumulation of Cs+ in black porgy suggests

a potential risk of biomagnification within the food chain.While the fish
Frontiers in Marine Science 10
demonstrated a robust stress response, its antioxidant system (SOD,

CAT, GR and GPX) was capable of rapidly adapting to acute exposure.

However, chronic exposure to 133Cs led to cellular and organ damage, as

indicated by changes in altered gene expression profiles and increased

antioxidant enzyme activity. Additionally, the IBRv2 index showed a

dose-dependent response, further revealing the compound toxic effects

of 133Cs. These findings highlight that ¹³³Cs poses toxic risks to

economically important marine fish. Further research is needed to

assess the impact of other isotopes on aquatic organisms and to better

understand its toxicological mechanisms. This will help improve

ecological risk assessments, particularly in regions affected by nuclear

wastewater discharge and where seafood is a major food source.
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