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Autonomous Identification System (AIS) enables unmanned surface vehicles (USVs)

to sense their surrounding environment, enhancing safe navigation. However, AIS

signals may collide in congested waterways, degrading sensing performance.

Conventional statistical blind source separation (BSS) algorithms struggle to

isolate signals lacking strictly non-Gaussian features in complex communication

environments. Due to Gaussian filtering in AIS signal modulation, essential higher-

order statistics are lost, often leading to low accuracy and instability with

conventional methods. To this end, this paper develops a time sequence

generative adversarial network (TSeq-GAN)-enabled BSS method. The proposed

approach replaces an ordered training set with a randomly constructed AIS mixed

signal matrix and incorporates a spatialtemporal feature extraction network paired

with a generative adversarial framework to capture multidimensional signal

characteristics and reconstruct the original signals. Furthermore, a global multi-

objective optimization strategy is applied to the loss function to balance error

minimization and signal quality. Under a 5 dB signal-to-noise ratio (SNR) and varying

numbers of mixed signals, experimental results show that the method reduces

mean squared error (MSE) by at least 9.84%, improves signal-to-interference ratio

(SIR) by 10.03%, and increases continuousmutual information (cMI) by at least 4.11%

compared to existing techniques, validating its robust and accurate extraction of

AIS signals.
KEYWORDS

unmanned surface vehicle, automatic identification system, blind source separation,
deep learning, neural network
1 Introduction

Unmanned Surface Vehicles (USVs) are a quintessential example of intelligent vessels.

Due to their compact size, autonomous operation, high intelligence, and strong

maneuverability, USVs have become critical in marine exploration and environmental

monitoring (Yan et al., 2010, Wang et al., 2024a). They achieve functions such as pattern
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recognition, autonomous navigation, and automatic docking/

undocking by integrating multi-source sensor fusion, multimodal

target detection and recognition, and real-time path planning

(Wang et al., 2025). However, these capabilities impose stringent

demands on navigation efficiency, decision-making, and obstacle

avoidance. Current USV surface intelligent identification systems

include radar, ultrasonic sensors, optical cameras, and AIS (Cheng

et al., 2023, Xiao et al., 2025). Radar and ultrasonic sensors are

prone to false or missed detections under severe weather conditions

such as strong waves or high winds; they are expensive, difficult to

maintain, and ultrasonic sensors are limited to short-range

detection, which hinders target discrimination and local detail

capture in complex or densely populated environments (Ma et al.,

2022, Wang et al., 2024b). Optical cameras similarly suffer under

adverse weather and have limited fields of view, making them

vulnerable to occlusion and localized interference (Zhu et al.,

2023). In contrast, the Automatic Identification System (AIS) is a

novel navigational aid and one of the most critical sensing devices

on vessels. Utilizing Very High Frequency (VHF) radio

communication, AIS offers stable anti-interference performance,

low power consumption, and long-range coverage (Sun et al., 2024)

(Liu et al., 2022b), thus providing substantial value for

comprehensive environmental perception (Yang et al., 2019). W.

et al. addressed the requirement for realtime vessel positioning and

dynamic monitoring during navigation by fusing AIS data with

tracking radar data (Kazimierski and Stateczny, 2013). Mohamed

et al. proposed the fuzzy function dependency (FFD) method to

mitigate uncertainties and data inconsistencies in the fusion of AIS

and over-the-horizon (OTH) radar data (Mohamed Mostafa et al.,

2019). Larson et al. employed autonomous navigation algorithms

and obstacle-avoidance strategies to enable USVs to navigate

complex environments autonomously (Larson et al., 2006).

However, owing to the self-organizing time-division multiple-

access (SO-TDMA) scheme used by AIS and the ever-increasing

number of vessels and corresponding communication demands,

slot collisions among AIS receivers within the same time slot have

become increasingly prevalent in hightraffic-density regions.

Consequently, the probability of detecting AIS signals in these

areas is substantially reduced, markedly elevating collision risk

and posing a serious threat to navigational safety.Consequently,

there is a growing demand for efficient and accurate separation of

original signals from mixed AIS signals to enhance USV safety and

operational efficiency (Yu et al., 2021) (Mei et al., 2024).

BSS refers to the extraction of source signals from mixed signals

without any prior knowledge of the mixing process, and it has been

applied in various fields, including speech signal separation (Khan

et al., 2020). Aapo et al. proposed a fast ICA algorithm (FastICA)

based on fixed-point iteration, which efficiently achieves blind

source separation by maximizing the non-Gaussianity of the

signals, thereby significantly accelerating both computation and

convergence compared to conventional ICA algorithms (Hyvärinen

and Oja, 1997). E et al. introduced Tukey’s M-estimator to

overcome the tendency of the standard FastICA algorithm to

become trapped in local optima when separating complex-valued

signals, thus enhancing its stability and robustness in complex-
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valued scenarios (Jianwei et al., 2021). Cardoso et al. presented the

Joint Approximate Diagonalization of Eigen-matrices (JADE)

algorithm, which performs blind source separation by jointly

diagonalizing multiple covariance or higher-order statistic

matrices, this approach addresses the limitations of traditional

BSS methods when source signals exhibit statistical correlation,

offering a more robust separation framework (Cardoso, 1998).

Traditional blind source separation algorithms, such as FastICA

and JADE, rely on nonlinear functions to amplify the non-Gaussian

characteristics of the mixed signals to recover the original sources,

under the prerequisite that the source signals are non-Gaussian and

the mixtures approximate Gaussian distributions (Rieta et al., 2004)

(Hyvärinen and Oja, 1997).However, AIS signals undergo Gaussian

Minimum Shift Keying (GMSK) modulation, where the baseband

signal is passed through a Gaussian low-pass filter (Meng et al.,

2018). The smoothing effect of the filter alters the original statistical

properties of the source signal, leading to a partial loss of its non-

Gaussian features (Lin et al., 2006). Consequently, traditional

Independent Component Analysis (ICA) algorithms face inherent

limitations when processing AIS signals compared to other types of

signals. In contrast, neural networks can partially overcome the

absence of these prior conditions in AIS mixed signals and can

automatically adjust model parameters across different noise

environments without the need for additional denoising networks,

thereby enhancing the suppression of complex noise interference

(Galvan, 1996). Kumar et al. introduced the use of capsule networks

(CapsNet) to separate speech sources in underdetermined

convolutive mixtures (Kumar and Jayanthi, 2020). Xu et al.

proposed a novel two-step approach for underdetermined blind

source separation (UBSS): first, the law of large numbers is

employed to estimate both the number of sources and the mixing

matrix; second, the separated signals are recovered via a minimum

angular separation rule (Xu et al., 2020). Li et al. presented a single-

source detection criterion based on vector transformations of the

mixture signals, using an improved density-peak clustering

algorithm to adaptively estimate initial cluster centers across

different application scenarios (Li et al., 2020). Xie et al.

developed an underdetermined blind source separation method

for speech mixtures grounded in compressed sensing, thereby

addressing the signal reconstruction challenge (Xie et al., 2021).

Niknazar et al. proposed a blind source separation technique for

nonlinear and chaotic signals by leveraging dynamic similarity

measures combined with a relaxed non-Gaussianity assumption,

successfully handling the separation of Gaussian components

(Niknazar et al., 2021). Li et al. further introduced a D-CNN

model that effectively mitigates structural redundancy, functional

ambiguity, and amplitude uncertainty in underwater acoustic

source separation under complex environmental conditions.In

contrast to other signal modalities such as audio and speech, AIS

signals possess an intermittent framing structure (Li et al., 2024). By

integrating dedicated temporal and spatial feature-extraction

modules, the network can simultaneously capture local spatial

patterns and long-range temporal dependencies, thereby aligning

more naturally with the characteristics of AIS training sequences

and data frames (Shao et al., 2020, Gu et al., 2023, Jiang et al., 2024).
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Considering that AIS signals are typically transmitted in marine

environments and are severely affected by multipath effects, noise

interference, and potential multi-channel interference, the

introduction of GAN networks can further optimize the statistical

properties of the separated signals (Sun et al., 2022, Liu

et al., 2022a).

Therefore, to address the issue of low AIS signal separation

accuracy in USVs operating in complex waters, this paper proposes

a TSeq-GAN-based BSS algorithm. By accurately separating AIS

source signals, the algorithm enhances the recognition and

perception capabilities of USVs in complex environments, thereby

improving their autonomous navigation. The main contributions of

this paper are as follows:
Fron
1. To address the susceptibility of AIS signals to multipath

propagation, shadow fading, and waveinduced interference

in maritime environments, the proposed algorithm

integrates a parallel CNN-LSTM architecture into the

GAN-based generative-adversarial framework, enabling

effective filtering of localized noise bursts and sustained

suppression of short-term disturbances.

2. The proposed algorithm constructs a randomized AIS

signal dataset by substituting conventionally ordered

training corpora with data streams generated using varied

pseudo-random seeds, diverse source signals, and multiple

sequence lengths. This strategy effectively mitigates mode

collapse and reduces both dictionary bias and overfitting.

3. The proposed algorithm is grounded in the principle of

multi-objective optimization, incorporating mean squared

error loss, interference suppression loss, and statistical

correlation loss to enable the network to adaptively satisfy

multidimensional constraints, thereby balancing the

requirements of multiple task objectives.

4. Under low SNR conditions, we conducted simulations to

separate random signals with varying numbers of mixtures,

validating the effectiveness, robustness, and generalizability

of our method. Our approach outperforms other BSS

algorithms by at least 9.841%.
2 The proposed method

2.1 Brief introduction of BSS model

The traditional model for linear mixing and separation of

signals is that the source signals S = ½s1, s2,…, sm�⊤ and noise N =

½n1, n2,…,nm�⊤ are input into the channel. In this case, the noise is

predominantly additive white noise, and the effect of the channel on

the mixed signal is abstracted as the matrix A. Thus, the

instantaneous mixing model is X = AS + N (in this paper, the

noise signal is considered part of the channel’s influence, which is

incorporated into A), where X represents the mixed signal observed

by the receiver from M sources. Therefore, by estimating the

channel matrix, i.e., the separation matrix W, the separation of
tiers in Marine Science 03
the mixed signal can be achieved. After passing through the

separation matrix, the instantaneous mixing model becomes Y =

½y1, y2,…, ym�⊤ = WX = WAS, where W = A⊤, thus enabling the

separation of the mixed signal (Cardoso, 1999).

Traditional linear mixing models are suitable for open water

environments with high signal-to-noise ratios and low interference.

However, in complex maritime environments, signal propagation

for USVs is affected by various nonlinear factors, such as multipath

effects, Doppler shifts, sea waves, weather changes, and

electromagnetic interference between vessels. Therefore, in

intelligent USV navigation scenarios, blind source separation

often involves nonlinear mixing problems. The source continuous

signals S(t) = [s1 (t),s2 (t),…,sn(t)] are mixed through a nonlinear

system and arrive at the receiver. The resulting received mixed

continuous signals are denoted as X(t) = [x1 (t),x2 (t),…,xm(t)], and

the nonlinear mixing model can be expressed as Equation (1):

X(t) = f (S(t))

∀ i ≠ j, I(si(t); sj(t)) = 0

(
(1)

where S(t) represents the vector form of n source signals, X(t)

denotes the m-dimensional mixed signals, f() is a nonlinear vector

function indicating that each observed signal xi(t) is the result of a

nonlinear transformation applied to all source signals, and I()

represents the mutual information among the signals.
2.2 TSeq-GAN structure design and
analysis

This paper addresses the limitations of conventional BSS

algorithms in processing nonlinear mixing models, including

restrictive assumptions on nonlinear mixing, insufficient handling

of correlations and dynamic variations among source signals, and

high sensitivity to noise and interference. To overcome these issues,

a TSeq-GAN network is proposed for the separation of mixed AIS

signals under a nonlinear mixing model. The flowchart of the

proposed BSS algorithm is presented in Figure 1. Upon receiving

the raw AIS mixed signal with added noise, the signal is normalized

to render it suitable for neural network input. The generator then

combines the processed signal with random noise and attempts to

generate a counterfeit signal resembling the true AIS source signal.

Since AIS signals are modulated using GMSK, the GMSKmodulated

signal is considered most similar to the source signal; hence, it is

used as the real signal, which, together with the generator-produced

counterfeit signal, is fed into the discriminator. The discriminator

determines whether the generated signal is genuine or counterfeit.

Through this adversarial process, the generator continuously refines

its network parameters to produce signals that closely approximate

the real source signals, while the discriminator simultaneously

improves its ability to distinguish between genuine and

counterfeit signals. When the discriminator can no longer

differentiate between them, the source signal is effectively

obtained (Goodfellow et al., 2020).

The traditional GAN generator consists of a multilayer

perceptron (MLP) architecture with fully connected neurons,
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meaning each neuron is connected to all neurons in the preceding

layer. This simple fully connected structure limits the MLP’s ability

to effectively capture spatial structures or temporal dependencies in

sequential data. Therefore, this work introduces CNN and LSTM

networks into the generator of the conventional GAN framework to

optimize the MLP architecture. The TSeq-GAN network structure

is illustrated in Figure 2. This novel architecture can automatically

capture multidimensional temporal and spatial features from the

raw input during end-to-end training. These features not only

contain information about the source signals but also implicitly

represent noise characteristics, thereby naturally achieving a

denoising effect during the separation process.In the TSeq-GAN

network, the CNN extracts local features of the signal via

convolutional kernels, learning features across multiple scales,

which facilitates the recognition of AIS signals under low signal-

to-noise ratio conditions. Furthermore, the translation invariance

and local connectivity of convolution operations help suppress

Gaussian and impulse noise. The LSTM, a neural network

specialized for sequential data processing, captures temporal

correlations between preceding and succeeding signal frames

(Hochreiter and Schmidhuber, 1997), compensating for CNN’s

lack of temporal memory. More importantly, in the presence of

time-slot collisions, the LSTM enhances signal structure modeling

and reduces the risk of pseudo-separation.The GAN framework

approximates the distributional characteristics of the signals rather

than merely fitting point-to-point mappings. Therefore, the

proposed TSeq-GAN separation algorithm relies on the CNN

front-end to filter out high-frequency noise, the LSTM to model

contextual dependencies, and adversarial training in GAN to
Frontiers in Marine Science 04
eliminate pseudo-noise outputs, thereby effectively countering

noise interference.

Firstly, the mixed AIS signals are transformed into a matrix

format, which, on one hand, enhances the network’s ability to

process complex, variable, and noisy signals, and on the other hand,

fully leverages the CNN’s local feature extraction, the LSTM’s

temporal sequence modeling, and the GAN’s adversarial training

capabilities, particularly when dealing with highly nonlinear and

multimodal signals. Figure 3 illustrates the internal structure of the

generator. The generator receives as input two components: a

random noise vector Z(Z ∈ R(ds)) and a mixed signal matrix S

S ∈ R(N*N)
� �

.The matrix S is flattened into a vector S ∈ R(N*N),

which is then concatenated with the random noise vector S,

resulting in the combined input, as shown in Equation (2):

I =
Z

S

" #
I ∈ R(dz+N

2)
� �

(2)

The combined input is fed into the generator, where random

noise is introduced to enhance the diversity of the generated signals,

while the mixed signal provides useful features to guide the

generator’s learning. The combined signal I is expanded into a

three-dimensional vector I3D and input into the CNN layer. The

CNN layer consists of four 1D convolutional neural network layers.

The convolution operation in the first layer is given by the following

Equation (3):

X(l) = LeakyReLU Conv1D(l)(X(l−1))
� �

(3)

the output size of the convolution operation is given by X(l) ∈
RN�C(l)�T(l)

, where C(l) represents the number of channels and T (l) is

the temporal length, such that XCNN ∈ RN�C128�T . In the first

convolutional layer, the input channel is set to 1, the output

channel is 16, and the kernel size is 1 ∗ 3 to extract basic low-

level local temporal features. In the subsequent layers, the input

channels are sequentially 16, 32, and 64, and the output channels

are 32, 64, and 128, respectively. All convolutional layers use a

kernel size of 1 ∗ 3. These three convolutional layers progressively

increase the abstraction level of the features, capturing higher-level

signal patterns. After each convolutional layer, LeakyReLU, as

shown as Equation (4) is used as the activation function, with the

following formula for LeakyReLU:

LeakyReLU =
x if   x > 0

ax if   x ≤ 0

(
(4)

this activation function introduces non-linearity while retaining

negative value information. After feature extraction, to adapt to the

LSTM layer, XCNN is transposed to a dimension of N × T × 128, as

shown in equation: X(LSTM−in) = X⊤
CNN ∈ RN�T�128.

The input X is fed into an LSTM layer with 256 hidden units.

The LSTM layer is used to process the high-dimensional features

extracted by the convolutional layers, leveraging its memory

mechanism to capture long-term dependencies. The two stacked

LSTM layers provide powerful temporal modeling capabilities. The

temporal data processed by the LSTM is given by Equation (5):
FIGURE 1

AIS signals blind source separation flow chart.
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ht , ct = LSTM(X(LSTM−in), ht−1, ct−1) (5)

where ht ∈ R256 represents the hidden state used to capture

temporal features, ct represents the current cell state, ht−1 represents

the hidden state from the previous time step, and ct−1 represents the

cell state from the previous time step. The output of the LSTM layer

is the hidden state at the final time step, hfinal = hT ∈ RN�256,which

represents the global feature of the entire sequence, where hT is the

hidden state at the last time step.

The output of the LSTM layer is passed through two fully

connected layers. The first layer maps the high-dimensional

features, while the second layer outputs signal data that matches

the dimensionality of the real source signal. Each fully connected

layer uses the Tanh activation function to constrain the output

within the range of [−1,1], simulating the characteristics of the real

signal. The Equation (6) for the Tanh function is:

Tanh(x) =
exp   (x) − exp   ( − x)
exp   (x) + exp   ( − x)

(6)

the Tanh activation function normalizes the amplitude of the

generated signal, facilitating the comparison with the actual target

signal for loss computation. The output hfinal from the LSTM layer

is mapped through the fully connected layer as Equation (7):

Xoutput = Tanh(w2 · LeakyReLU(w1 · hfinal + b1) + b2) (7)

where w1 and b1 are the weight matrix and bias term of the first

fully connected layer, and w2 and b2 are the weight matrix and bias

term of the second fully connected layer, The signal network feature

extraction is shown in Figure 4.

The discriminator adopts a straightforward architecture: real

and generated signals are both input and then passed through three
Frontiers in Marine Science 05
fully connected layers that progressively reduce the feature

dimensionality. The first layer projects the input into a 256-

dimensional feature space; the second layer further compresses it

to 128 dimensions; and the third layer outputs a single probability,

representing the confidence that the input is a genuine AIS signal.In

this work, we use the AIS physical-layer Gaussian Minimum Shift

Keying (GMSK) waveform as the “real” signal in the discriminator

alongside the generator’s synthetic outputs. This design is justified

by two factors. First, the AIS protocol uniformly employs 9.6 kbps

GMSK modulation at the physical layer, so using the native GMSK

waveform as the ground truth guarantees that our evaluation

metrics align exactly with the operational AIS standard. Second,

GMSK’s continuous-phase nature—characterized by a constant

envelope, high spectral efficiency, and robustness to multipath—

ensures that the baseband waveform faithfully preserves the signal’s

critical time- and frequency-domain features. Consequently, our

chosen metrics can accurately quantify deviations between the

separated output and the standard modulated signal.For

nonlinear representation, each hidden layer uses a LeakyReLU

activation, and the final output layer applies a Sigmoid function

to yield a [−1,1] probability for binary classification.

Finally, we employ Mean Squared Error (MSE), Signal-to-

Interference Ratio (SIR), and continuous Mutual Information (cMI)

as objective metrics to assess the quality of the separated signals.
2.3 The introduction of adaptive
multidimensional constraint mechanism

The loss function of TSeq-GAN consists of both generator and

discriminator losses. The generator loss comprises adversarial loss,
FIGURE 2

TSeq-GAN structure diagram.
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mean squared error loss, interference suppression loss, and

statistical correlation loss. The adversarial loss is the conventional

GAN loss function that drives the adversarial game between the

generator and the discriminator, thereby improving the quality of

the generated model. The discriminator’s output, confined within

the range [0,1], represents an evaluation of the “realness” of the

input samples; hence, the cross-entropy loss function is employed.

To meet the demands of multi-source sensing in scenarios with

high traffic density and suboptimal communication conditions for

USVs, the generated samples must closely approximate the

distribution of real samples. Therefore, this paper implements a

multidimensional constraint mechanism within the generator by

jointly introducing mean squared error loss, interference

suppression loss, statistical correlation loss, and adversarial loss.

The overall loss is then backpropagated to update the generator’s

training parameters. The integration of these multidimensional

constraints optimizes the generator’s performance from multiple

perspectives, thereby enabling high-quality BSS of AIS signals.The

network adversarial loss in this algorithm is defined as Equation (8):

Ladv = −Ez PZ (z)½log   D(G(z))� (8)
Frontiers in Marine Science 06
Here, z denotes the noise distribution, G(z) represents the

sample generated by the generator G upon receiving z, and D (G

(z)) is the discriminator D’s output for G(z), which is a probability

value ranging from 0 to 1. The generator aims to minimize the

discriminator’s ability to distinguish the generated samples, driving

the output of the generated samples as close to 1 as possible. The

mean squared error (MSE) loss is defined as Equation (9):

LMSE =
1
No

N

i=1
(yi − G(z))2 (9)

where yirepresents the GMSK signal. The interference

suppression loss is defined as Equation (10):

LSIR = 10 log10
yik k22

yi − G(z)k k22+e

� �
(10)

where∥·∥2 represents the Euclidean norm, and e is set to a small

constant to prevent division by zero. The statistical correlation loss

is defined as Equation (11):

LcMI =
ðð
p(yi,G(z)) log 

p(yi,G(z))
p(yi)p(G(z))

dyidG(z) (11)
FIGURE 3

Diagram of the internal structure of the generator.
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where, p(yi,G(z)) is the joint probability density function of

yiand G(z), while p(yi) and p(G(z)) are their respective marginal

probability density functions. In the simulation program, the

mutual-inforegression function from scikit-learn is used to

estimate the mutual information between continuous variables.

Different loss components in the loss function may have varying

numerical scales; if one loss term has a significantly larger

magnitude, it could lead the model to overly optimize that

specific objective during convergence, thereby neglecting other

objectives and causing convergence difficulties or instability

during training. To meet the requirements of multi-objective

tasks and ensure training stability, optimal weight parameters for

each loss term have been determined through parameter tuning

experiments. The overall loss calculation for the generator network

is detailed as follows as Equation (12):

LG = l1LMSE + l2LSIR + l3LcML + l4Ladv : (12)

Since the discriminator’s objective is to distinguish real samples

from generated samples as accurately as possible, this study employs

the cross-entropy loss function to compute the loss for real samples

Lreal as shown as equation (14), and generated samples Lfake as

shown as equation (15), separately, and then sums them to obtain

the total discriminator loss LD as Equation (13):

LD = Lreal + Lfake (13)

Lreal = −Ey pdata(y)½log  D(yi)� (14)

Lfake = −Ez pZ (z)½log  (1 − D(G(z)))� : (15)
Frontiers in Marine Science 07
3 Experimental

This section primarily compares the proposed algorithm with the

FastICA (Jianwei et al., 2021), JADE (Deville et al., 2004), Successive

Interference Cancellation (SIC) (Ristaniemi and Huovinen, 2006),

Higher-order Statistics Algorithms (Lu et al., 2015), and AGAN

network (Sun et al., 2022) through comparative experiments, as well

as conducts ablation experiments with GAN, CNN-GAN, and

CNNLSTM configurations. The experimental results demonstrate

that the separation performance of the TSeq-GAN network

employed in this paper is significantly superior.
3.1 Experimental detail

This algorithm was trained for 1000 epochs on a computer

equipped with a 2.40 GHz Intel I5-9300H CPU, GTX 1650 GPU,

and 8GB of RAM, requiring approximately 86.1667 minutes.

During the initialization and preparation stages, the Adam

optimizer was used to update the parameters of both the

generator and the discriminator, with an initial learning rate set

to 0.0002. The training loop consisted of multiple epochs, and

within each epoch, both the discriminator and the generator were

trained in batches of 128.

In the experiments, specific weight parameters were assigned to

each component of the generator loss. The weight l1 for the MSE

loss was set to 0.4 to ensure that the generator prioritizes the

accuracy of signal generation, making the generated signal as

similar as possible to the target signal. The weight l2 for the
FIGURE 4

AIS signal spatial feature and time feature extraction schematic diagram.
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interference suppression loss was set to 0.01 to prevent the loss

function from overemphasizing SIR, thereby avoiding the excessive

optimization of SIR at the expense of other loss components. The

weight l3 for the statistical correlation loss was set to 0.5, which

helps the generated signal capture more signal structure and

features rather than merely minimizing the MSE. Finally, the

weight l4 for the adversarial loss was set to 0.05 to balance the

training process, ensuring that the generator does not merely

produce signals that satisfy the discriminator without being close

to the actual source signals.
3.2 Establishment of the AIS signal
simulation dataset

Because fixed datasets contain only a limited set of message

formats, coding schemes, and channel conditions, models trained

on them tend to overfit to these “seen” samples. Although the AIS

message format and modulation are standardized, the VHF channel

is subject to multidimensional variation—multipath fading, noise,

interference, antenna orientation, etc.—that changes dynamically in

both space and time. Consequently, a static dataset cannot fully

represent the true transmission environment. Moreover, the GAN-

based separation network proposed here is prone to mode collapse

if the training data lack diversity; in contrast, a dataset with richer

variability forces the generator to “cover” a wider distribution of real

signals and reduces the risk of memorizing specific examples,

yielding a more robust mapping.

To this end, our AIS signal corpus is generated via a stochastic

process that introduces maximal diversity in message content,

temporal structure, channel conditions, and noise statistics. Each

signal instance begins with a binary payload produced by a pseudo-

random number generator (PRNG), which is then encoded and

modulated using Gaussian Minimum Shift Keying (GMSK). The

modulated symbols are concatenated with a fixed control sequence

to create distinct message payload structures. To emulate realistic

transmission impairments, we inject additive white Gaussian noise

(AWGN) at randomly selected SNR levels and simulate channel

mixing via randomly generated noise matrices. As a result, the

dataset exhibits inherent randomness at every generation and

mixing stage, ensuring that each simulation run produces novel

signal realizations that satisfy the prerequisites of blind source

separation.To evaluate robustness, we benchmark the separation

performance under a channel SNR of 5 dB. Furthermore, to assess

the network’s behavior in dense maritime traffic scenarios, we

conduct experiments with varying numbers of simultaneously

mixed signals, thereby validating the algorithm’s ability to

disentangle AIS streams under different vessel-density conditions.

The baseband signal, after undergoing HDLC bit stuffing,

synchronization-sequence insertion with buffering, and NRZI

encoding, is then passed through a Gaussian low-pass filter to

impart Gaussian characteristics. The time-domain impulse

response of the Gaussian low-pass filter as Equation (16):
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exp   −
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2s 2

� �
(16)

where s represents the standard deviation of the Gaussian

function, which determines the extent of the pulse response’s

spread. After passing through the Gaussian low-pass filter, the

signal is modulated using Minimum Shift Keying (MSK) to

generate the AIS signal. The time-domain impulse response of the

Gaussian low-pass filter as Equation (17):

s(t) = cos  (2p fct + f(t)) (17)

where fc is the carrier frequency and f(t) is the instantaneous

phase of the signal. The carrier frequency band for AIS signal

modulation are 161.975MHz (international standard channel) and

162.025MHz (some countries have expanded their channels), and in

this paper, the carrier frequency is set to 161.975MHz. Therefore,

the GMSK signal can be represented as Equation (18):

S(t) = cos   2p fct + ph
Z t

−∞
b(t)hg(t)dt

� �
(18)

where the modulation index h is used to characterize the

modulation intensity of the signal, b(t) represents the baseband

signal, and the pulse shaping function hg(t) is used to filter the

baseband signal, thereby limiting the signal bandwidth and

controlling its signal characteristics.

To simulate the unpredictable Gaussian white noise interference in

real channel environments, the signal data is processed through a

Gaussian noise network for noise addition. Figure 5 illustrates the

baseband AIS signal, Figure 6 shows the GMSK-modulated signal, and

Figure 7 the schematic illustration of the modulated AIS signal mixture

(when there are four signal sources). Figure 8 depicts the schematic

illustration of the AIS signal mixture after noise interference (four

signals combined).
3.3 Comparison of experimental analysis

The comparative experiments are conducted in scenarios where the

channel conditions for USV navigation are poor, in order to verify the

separation performance of different algorithms for source signals. In this

study, the FastICA, JADE, SIC, Higher-order statistics algorithms,

AGAN, and TSeq-GAN networks are sequentially applied to separate

blind signals with 4, 6, 8, and 10mixed source signals. Meanwhile, MSE,

SIR, and cMI are used as evaluation metrics for the performance of

the algorithms.

Figure 9A illustrates the changes inMSE formixed signals separated

by six different algorithms after mixing with varying numbers of source

signals. Overall, the error between the mixed signals and the source

signals increases as the number of source signals rises. The TSeq-GAN

network proposed in this study shows MSE values of 0.1488, 0.1627,

0.1876, and 0.2321 for 4, 6, 8, and 10 mixed source signals, respectively,

with a reduction of at least 35.5252% in MSE compared to the mixed

signals. Figure 9B shows the changes in SIR for mixed signals separated
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by the six algorithms. Generally, the coherence of the separated signals

decreases as the number of mixed signals increases. The TSeq-GAN

network proposed in this study achieves coherence values of 9.3806,

8.0132, 7.8426, and 7.0178 for 4, 6, 8, and 10 mixed source signals,

respectively, with an improvement of at least 1.2287 times in the signal

coherence. Figure 9C illustrates the changes in cMI for mixed signals

separated by the six algorithms. Overall, the similarity between the

separated signals and the source signals decreases as the number of

mixed signals increases. The TSeq-GAN network proposed in this study

achieves cMI values of 2.1801, 1.6323, 1.4221, and 1.2073 for 4, 6, 8, and

10 mixed source signals, respectively, with a 3.5084-fold increase in

continuous mutual information. Therefore, based on the robustness

reflected by MSE, SIR, and cMI evaluation metrics, the TSeq-GAN

network outperforms the other algorithms in signal separation.

The experimental results show that the TSeq-GAN network

continuously adjusts the model through endto-end joint

optimization, rather than relying solely on analytical derivation or

local optimization. Unlike other algorithms in the comparative

experiments, the CNN and LSTM structures within the TSeq-GAN

network effectively capture local temporal dependencies and long-term

relationships in the random signals. The adversarial mechanism

between the generator and discriminator allows for adaptive model

adjustment. This network structure and joint optimization mechanism

enable better extraction of features from random signal sequences,

making the algorithm highly robust and generalized.
3.4 Ablation experiment analysis

In this section, we conduct an in-depth investigation into the

influence of each module within the TSeqGAN network on the
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performance of the separation algorithm. The experiments are

carried out under a SNR of 5 dB. By selectively removing

different layer structures in the TSeq-GAN network, we verify

that each module employed in this work contributes significantly

to enhancing the network’s overall performance.

The experimental data are divided into three parts for verification.

The first part involves a source signal mix of 3–4 signals, representing a

scenario where the USV operates in a open and sparse water

environment. The experimental results are shown in Table 1. The

second part involves a source signal mix of 5–6 signals, representing a

scenario where the USV operates in a low-traffic-density water

environment. The experimental results are shown in Table 2. The

third part involves a source signal mix of 7–8 signals, representing a

scenario where the USV operates in a medium-traffic-density water

environment. The experimental results are shown in Table 3. The fourth

part involves a source signal mix of 9–10 signals, representing a scenario

where the USV operates in a crowded water environment. The

experimental results are shown in Table 4. MSE is used to measure

the error between the generated signal and the true signal, SIR is used to

assess the strength of the separated source signals, and cMI is used to

evaluate the similarity between the extracted signals and the true signals.

In the open water environment, this network reduces MSE by at

least 28.1267%, improves SIR by at least 15.1262%, and enhances

cMI by at least 8.9196 compared to the other three networks. In

lower traffic density water environments, the network reduces MSE

by at least 19.8408%, increases SIR by at least 12.1445%, and

improves cMI by at least 1.752% compared to the other three

networks. In moderate traffic density water environments, the

TSeq-GAN network outperforms the others by reducing MSE by

at least 9.841%, increasing SIR by at least 13.1603%, and improving

cMI by at least 4.1104%. Similarly, when the USV operates in
FIGURE 5

AIS baseband signal diagram.
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crowded water areas, the network shows significant improvements

in MSE, SIR, and cMI compared to the other three networks, with

MSE decreasing by at least 27.9242%, SIR increasing by at least

10.0328%, and cMI improving by at least 16.962%.
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As demonstrated by some of the experiments, the multi-level

feature structure of the TSeq-GAN network proposed in this study

enables the network to simultaneously handle both short-term and

long-term dependencies of signals, while adaptively learning to generate
FIGURE 6

GMSK modulation signal diagram.
FIGURE 7

Positive-definite mixture observation diagram for four signal sources.
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separation results that align with the true distribution of the signals. This

multi-level feature extraction and generation capability makes themodel

more powerful in BSS tasks compared to other independent network

structures. Furthermore, through adversarial training, the TSeq-GAN

network can effectively learn the separation characteristics of signals

even in high-noise environments, complex interference, and nonlinear

signal mixtures, ensuring that the model possesses good robustness and

generalization capabilities. In contrast, other independent network

structures are relatively weaker in handling complex noise and

interference within the signals.
3.5 Analysis of network time complexity

Due to the significant efficiency differences among various

network architectures, this section presents a time performance

comparison experiment between the TSeq-GAN network and other

networks, such as the Attentional GAN, when the number of mixed

sources is 4, as shown in Table 5.

Although the TSeq-GAN network is not the most optimal in

terms of computational efficiency, its signal extraction accuracy

improves by up to 70.7662%, the quality of generated signals

improves by up to 1.2287 times, and the similarity with the

source signals increases by up to 3.5084 times. Considering the

complex scenarios that USVs encounter during autonomous

navigation, which are subject to varying degrees of noise,

interference, and multipath effects, the accuracy of AIS signal

separation directly influences the USV’s ability to assess the

positions of surrounding vessels. Therefore, while timeliness is

important for real-time signal processing, in BSS tasks in this

scenario, if the accuracy of the algorithm cannot be guaranteed,

the results of real-time processing will be meaningless.
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3.6 Sensitivity analysis of TSeq-GAN
parameters

Figures 10A, B illustrate the variations in MSE, SIR, and cMI,

respectively, as the loss weights are adjusted. In this experiment, a

global sensitivity analysis method is employed. Based on the

correspondence between the magnitudes of the different loss

functions and the overall performance, parameters l1 and l4 are

adjusted simultaneously to observe changes in the overall model

performance, while parameters l2 and l3 are adjusted concurrently

to assess the overall performance variations. Consequently, a total

of four sets of comparative experiments are conducted: in one

scenario, with l1 and l4 held constant, one group increases l2 and
l3 to 0.05 and 0.7, respectively, while another group increases them

to 0.1 and 0.9; in another scenario, with l2 and l3 fixed, one group
decreases l1 and l4 to 0.05 and 0.005, respectively, and another

group increases them to 0.1 and 0.01, respectively.
4 Conclusion

In summary, to address the perception challenges faced by USVs

operating in complex traffic environments and adverse channel

conditions—particularly the limitations of traditional BSS algorithms

in modeling capability and separation stability—this study constructs a

randomly generated AIS signal dataset tailored for complex interference

scenarios and innovatively proposes a TSeq-GAN-based blind source

separation method. This approach integrates temporal modeling and

spatial feature extraction mechanisms into the generator structure of a

GAN, significantly enhancing the model’s robustness to strong noise

interference and time-slot collisions without relying on additional

denoising modules. Moreover, this architecture improves the model’s
FIGURE 8

Positive-definite mixture observation diagram with added noise for four signal sources.
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deep understanding and representation of AIS signal features, effectively

achieving high-precision separation of target signals in low signal-to-

noise ratio environments.The proposed method not only demonstrates

a fusion-based innovation in model architecture but also achieves

significant breakthroughs in algorithm performance and adaptability
Frontiers in Marine Science 12
to practical scenarios, revealing broad application potential in maritime

intelligent perception.

The experimental results indicate that, compared to traditional

algorithms, the network proposed in this paper shows significant

improvement in the extraction of source signals from mixed AIS
FIGURE 9

Separation results of different algorithms. (A) Comparison results of MSE for different algorithms. (B) Comparison results of SIR for different
algorithms. (C) Comparison results of cMI for different algorithms.
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TABLE 1 The separation performance table of each network when the mixed number of source signals is 3 to 4.

The impact of mixing various source signals on
different network performances

3 sources 4 sources

Algorithm MSE↓ SIR
(dB)↑ cMI↑ MSE↓ SIR(dB)↑ cMI↑

GAN(Baseline) 0.4163 6.2351 2.1039 0.5090 5.2281 1.3109

CNN-GAN 0.1831 7.8903 2.0309 0.1865 7.8621 1.5120

CNN-LSTM 0.4376 3.8170 0.8378 0.4862 3.8818 0.8079

TSeq-GAN(Ours) 0.1316 9.0838 2.2926 0.1488 9.3806 2.1801
F
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TABLE 2 The separation performance table of each network when the mixed number of source signals is 5 to 6.

The impact of mixing various source signals on
different network performances

5 sources 6 sources

Algorithm MSE↓ SIR(dB)↑ cMI↑ MSE↓ SIR(dB)↑ cMI↑

GAN(Baseline) 0.7108 4.5946 1.1962 0.8563 4.2361 1.0876

CNN-GAN 0.1885 7.1901 1.5183 0.2122 6.9468 1.4028

CNN-LSTM 0.4230 3.4827 0.9463 0.6987 2.7863 0.9433

TSeq-GAN(Ours) 0.1511 8.0633 1.5449 0.1627 8.0132 1.6323
TABLE 3 The separation performance table of each network when the mixed number of source signals is 7 to 8.

The impact of mixing various source signals on
different network performances

7 sources 8 sources

Algorithm MSE↓ SIR(dB)↑ cMI↑ MSE↓ SIR(dB)↑ cMI↑

GAN(Baseline) 1.0695 4.1844 1.1638 1.1627 3.9829 0.9633

CNN-GAN 0.2012 7.0553 1.4378 0.2598 6.6918 1.2134

CNN-LSTM 0.9033 1.6653 1.1084 0.9826 1.2060 1.0211

TSeq-GAN(Ours) 0.1814 7.9838 1.4969 0.1876 7.8426 1.4221
TABLE 4 The separation performance table of each network when the mixed number of source signals is 9 to 10.

The impact of mixing various source signals on
different network performances

9 sources 10 sources

Algorithm MSE↓ SIR(dB)↑ cMI↑ MSE↓ SIR(dB)↑ cMI↑

GAN(Baseline) 1.2418 3.7886 0.8898 1.3214 3.5022 0.7622

CNN-GAN 0.2428 6.8216 1.1029 0.3423 5.2366 0.9828

CNN-LSTM 1.3621 0.6523 1.2245 1.2317 0.0210 0.7624

TSeq-GAN(Ours) 0.1750 7.5060 1.4322 0.2321 7.0178 1.2073
TABLE 5 Comparison of the timeliness of AIS blind signal separation by neural networks.

The impact of mixing various source signals on
different network performances

Time
(Seconds)

Improved

Algorithm MSE SIR cMI

GAN(Baseline) 4.8263 70.7662% 79.4260% 66.3056%

CNN-GAN 10.6874 20.2145% 19.3142% 44.1805%

CNN-LSTM 10.1734 69.3953% 1.4166 1.6985

AGAN 6.1516 35.5252% 1.2287 3.5084

TSeq-GAN(Ours) 9.0736 / / /
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signals. The MSE, SIR, and cMI performance have all been notably

enhanced. Therefore, this network to some extent overcomes the

traditional BSS algorithms’ excessive reliance on the assumption that

source signals are independent and mixed signals are not independent,

offering higher robustness and generalization capability. Additionally,
Frontiers in Marine Science 14
the improvement in AIS signal BSS with this network will further

enhance the decision-making ability of USVs in complex waters,

improve the ability of USVs to accurately identify the positions and

dynamics of surrounding vessels, and provide real-time decision

support to enhance their autonomous navigation capabilities.

Furthermore, improvements in AIS signal blind source separation

are expected to enhance USV decisionmaking in complex waters,

improving its accuracy in identifying the positions and dynamics of

surrounding vessels and providing real-time decision support to boost

autonomous navigation capabilities. However, limitations remain in

handling real noisy signal data deficiencies and underdetermined

scenarios. Therefore, future work will focus on two key aspects: first,

validating network separation performance using real-world incomplete

signal data; second, achieving high-precision separation of

underdetermined mixed signals while further lightening the neural

network and reducing the number of antennas required on USVs,

thereby contributing to more precise autonomous navigation.
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