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Mesoscale eddies are recognized as an important driver of environmental and
microbial dynamics in the Pacific Ocean. However, their specific impact on
microbial community vertical distribution remains underexplored. In contrast
with the surrounding waters, a cyclonic cold eddy can provide nutrients to the
photic zone, increasing primary production and altering microbial communities.
A field investigation was conducted in the West Pacific Ocean during cyclonic
cold eddy propagation to determine the impact of cold eddies on bacteria and
picophytoplankton. Within the cold eddy region, dissolved inorganic nitrate
concentrations were higher than those in adjacent water at 100-m depth. Flow
cytometric analyses were used to estimate the abundances of picoplankton
populations (heterotrophic bacteria and picophytoplankton) in seawater samples
collected from the surface to 1,000 m. In this study, Prochlorococcus was the
dominant component of abundance at depths above 100 m (62% to 95%).
Interestingly, when compared to outside of eddy stations, cyclonic eddy-
affected regions had the lowest maximum value of Synechococcus and
Prochlorococcus. In contrast to Synechococcus and Prochlorococcus, the
distribution pattern of picoeukaryotes abundance showed maxima values (>0.4
x 10% cells mL™) at 100-200-m depth within cyclonic eddy-affected regions.
Overall, the abundance of bacteria was approximately 2 X 10° cells mL™ at the
surface and increased to >4 x 10° cells mL™ at 200-m depth at stations outside
the eddy. However, peaks in bacterial abundance were observed at 50-m depth,
and abundance decreased with increasing depth in the cyclonic eddy-affected
regions. In the oligotrophic open ocean, our findings contribute to a better
understanding of the biological response of mesoscale eddies.
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1 Introduction

There is no doubt that mesoscale eddies are prevalent nearly
everywhere in the world’s oceans (Chelton et al., 2011; Chelton
et al., 2007). Biogeochemical variables and processes are strongly
influenced by mesoscale eddies (McGillicuddy et al., 1999; Patel
etal,, 2020). There is generally an increase in primary production in
cyclonic cold eddies and a decrease in primary production in
anticyclonic warm eddies (He et al., 2019; Xiu and Chai, 2011).
Cyclonic eddies are characterized by enhanced nutrients, which is a
key mechanism for transporting nutrients into the euphotic zone
(Klein and Lapeyre, 2009). According to some previous studies,
cyclonic cold eddies play a significant role in altering the vertical
flux of nutrients by shifting pycnoclines (Mahaffey et al., 2008), and
approximately 20%-40% of marine ecosystem nutrients are
provided by cyclonic cold eddies (McGillicuddy et al., 2003). As a
result, during the formation of cyclonic eddy systems, chlorophyll a
(chl a) concentrations increase (Retnamma et al., 2015) along with
new production (Levy et al., 2018; McGillicuddy et al., 2007). This
process also impacts the composition and activity of different
microbial communities, particularly phytoplankton communities
(Baltar et al., 2010; Bibby et al., 2008; Paterson et al., 2013; Rii et al.,
2008; Rodriguez et al., 2003).

In marine ecosystems, picoplankton populations are microbial
components of plankton communities that include
picophytoplankton and heterotrophic bacteria (HB). They are
also crucial to the biogeochemistry and dynamics of the marine
food web (Azam and Malfatti, 2007). Picophytoplankton
communities [Synechococcus spp. (SYNE), Prochlorococcus spp.
(PRO), and picoeukaryotes (PE)] contribute substantially to the
total phytoplankton biomass in marine ecosystems, usually
contributing 50%-90% of the total chl a in oligotrophic waters
(Agawin et al., 2000). Much attention has recently been paid to the
impact of mesoscale eddies on phytoplankton communities
(McGillicuddy, 2016; McGillicuddy et al., 2007). It has been
shown that cold eddies during the developmental phase
frequently showed higher chl 4, a higher proportion of PRO, and
a decrease in SYNE (McGillicuddy et al., 2007) as a result of eddy-
driven upwelling, which may provide significant amounts of
nutrients to support primary productivity in the subtropical
oceans. Additionally, picophytoplankton maintained its
dominance regardless of cold or warm eddies in tropical and
subtropical open waters, where PRO was responsible for up to
82% of phytoplankton primary productivity (Casey et al., 2007). In
addition to picoplankton, HB is a major consumer of dissolved
organic matter (DOM) and plays a significant role in both nutrient
and carbon cycling (Ducklow, 1999). Although the primary
productivity and chl a within these mesoscale features are
relatively high, little information is available regarding how HB
responds to mesoscale eddies. The HB response caused by eddy-
induced upwelling is complex and not fully understood. In some
studies, bacterial abundance is higher in cold-core eddies of the NE
Atlantic (Harris et al., 1997; Thyssen et al., 2005), while others have
found no difference between bacterial biomass inside and outside
cyclonic eddies (Gonzalez-Benitez et al., 2001; Tarran et al., 2001).
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In addition, there are limited studies on the associated bacterial
production (BP) response to eddy-induced phytoplankton blooms.
Bode et al. (2001) found higher BP near the Canary Islands in a
cold-core eddy area than in the surrounding waters. The present
study compares the environmental dynamics across a cold eddy and
those of the microbial community. In particular, we examine the
vertical distribution patterns of autotrophic (PRO, SYNE, and PE)
and heterotrophic (HB) picoplankton populations from the surface
to deeper waters (1,000-m depth) across a cold eddy. The study
presents a comprehensive picture of biological responses to
mesoscale eddies. The paper emphasizes the importance of
integrating biological, physical, and chemical factors into
explanations of how mesoscale eddies affect oceanic
biogeochemistry. Our hypothesis is that the upward advection of
deep and relatively cold nutrient-rich water within cyclonic cold
eddies results in an increase in PE abundance and HB abundance.

2 Materials and methods
2.1 Sampling

The present investigation was conducted during a research
cruise aboard the New Ocean Research I in March and April
2024. In this cruise, a calibrated conductivity-temperature-depth
(CTD) profiler (Seabird SBE 911plus CTD) was used to measure the
temperature, salinity, and chl a fluorescence profiles at each station
(Figure 1). Moreover, the transect (which included six stations from
A0 to A5) was the area that covered one cold eddy (CE) and where
the biological variables (microbial communities) were determined
(Figure 1). Hydrographic measurements were obtained using a
Seabird model SBE 911plus CTD system. CTD-mounted rosette
samplers with 10-L Niskin bottles were used to collect samples at 12
different depths ranging from surface water to 1,000-m depth.

2.2 Analysis of physical, chemical, and
biological parameters

A calibrated CTD profiler (Seabird SBE 911plus CTD) was used to
measure the temperature, salinity, and chl a fluorescence profiles at
each station. Flow cytometry (FCM) and nutrient and chl a
concentration measurements were conducted on water column
samples collected at each depth. The biochemical variables were
measured in three replicated samples to ensure data quality. The
nutrients in seawater samples were measured as previously described
by Gong et al. (1995). Chl a analysis of water samples was carried out
after extraction and filtration (25 mm GF/F) using an in vitro
fluorometer (Turner Design 10-AU-005) (Parsons et al., 1984).

2.3 Flow cytometric analyses

To enumerate HB, PRO, SYNE, and PE, seawater samples were
collected from each treatment, preserved in paraformaldehyde (0.5%
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A map of sea level anomaly (m) and sampling stations in the study area. The background is the sea surface height (SSH; m, colored) based on
satellite oceanographic sea level anomaly (SLA) data from AVISO (http://www.aviso.altimetry.fr) during the study period. The arrows indicate the sea
surface current. The green underlines indicate the six sites (AO—A5) where measurements of the microbial community were conducted during the cruise.

final concentration), and flash-frozen. The samples were analyzed in
the laboratory using a Beckman Coulter CytoFLEX S flow cytometer
(Indianapolis, IN, USA) equipped with a 488 nm air-cooled argon-
ion laser as well as a standard 525-nm filter and a SYBR signal
detection system. TE buffer staining with SYBR Green I was used as
blank controls to detect and eliminate buffer noise. Fluorescent
microspheres (Molecular Probes Inc.) with a diameter of 1 um
were used as an internal standard. As described by Hammes and
Egli (2010), HB samples were stained with SYBR Green I (1:10,000
final concentration) for 15 minutes in the dark before being processed
using FCM. Picophytoplankton was divided into three groups
(SYNE, PRO, and PPE) based on flow cytometric analysis, where
red fluorescence is caused by chl a (>650 nm) and orange
fluorescence is caused by phycoerythrin (578 nm), and light scatter
signals (SSC) are according to Calvo-Diaz and Moran (2006).

Afterward, cell abundance (cells L") of picoplankton was then
converted to biomass (ngC L") using constant conversion factors
based on the literature on oligotrophic systems similar to our study
region, ie., 20, 56, and 112 fgC cell”! for HB, PRO, and SYNE,
respectively (DuRand et al, 2001; Lee and Fuhrman, 1987). In
addition, a value for the carbon-content-per-cell of PE has been
taken from the literature, which is 1,010 fgC cell™! of PE (Garrison
et al., 2000).
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3 Results

3.1 Distribution of environmental variables

As presented in Figure 2, there was a clear difference in
hydrography across the cold eddy. Both isothermal and isopycnal
gradients are clearly raised in the center of the cold eddy to the
surface water, which may cause a difference in salinity and
temperature between the center and the surrounding water
(Figures 2A, B). Based on the vertical distribution of temperature
and salinity along the transect, a dome structure was observed at the
center of the eddy (Figure 2). At station A3, the temperature ranged
from 18.1°C to 26.9°C, and salinity was between 34.73 and 34.83 psu
in the upper 200-m depth (Figures 2A, B). Comparing the vertical
profiles of environmental parameters at the six stations, the shallow
waters of the cold eddy (station A3) displayed lower temperatures
and higher salinities (Figure 2).

Above 100 m, Figures 3A, B show very similar temperatures and
salinities, with warm waters mixed down to 100 m and the
thermocline located between 100 and 600 m (Figure 3A). A cold
eddy can potentially affect variations in nutrients in the upper 100-
m layer. The concentrations of NO; distribution (Figure 2C)
present low values (<0.1 pM) at 100 m at all stations, except in
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FIGURE 2

Vertical variations of (A) temperature (°C), (B) salinity (psu), and (C) NOs concentrations at 100-m depth during the cruise. Stations are indicated at

the top of each panel.

the core of the cyclonic eddy (station A3) (0.35 uM), where the
uplifting of cold deep waters brings nutrients to the upper 100 m.

3.2 Vertical distribution of
picophytoplankton

A comparison of the vertical distributions of SYNE and PRO is
shown in Figure 4 to determine whether the cold eddy impacts
picophytoplankton abundance. The abundance of PRO was the
highest across the cold eddy, while the abundance of SYNE was
generally an order of magnitude lower at depths above 100 m
(Figure 4). At all stations, however, SYNE abundance was higher

Frontiers in Marine Science

than PRO abundance below 200 to 1,000 m (Figure 3). Overall, the
abundances of SYNE and PRO were high within 100-m depth,
declining with depth and becoming extremely low at all stations
(Figure 3). The maximum abundances of SYNE and PRO were
observed in shallow waters (<100 m) at all sampling stations
(Figure 4). Interestingly, when compared to other stations,
cyclonic eddy-affected regions (stations A3 and A4) had the
lowest maximum values of SYNE and PRO. As can be seen in
Figure 5, there were significant differences in the depth at which the
maximum abundances of SYNE and PRO were observed in the
center and outside of the cold eddy. Additionally, vertical
distribution patterns of PE within the euphotic zone were found
to be highly influenced by the cold eddy and the variability in
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FIGURE 3

Vertical profiles of (A) temperature (°C) and (B) salinity (psu) across the stations.

hydrographic parameters. In contrast to SYNE and PRO, the
distribution pattern of PE abundance showed maxima values
(>0.4 x 10° cells mL™") at 100-200-m depth within cyclonic
eddy-affected regions (stations A2, A3, and A4) (Figure 6) during
the study period. The highest values were observed at stations A2,
A3, and A4, which were four to seven times higher compared to
those at adjacent stations (Figure 6). Among only
picophytoplankton populations, PRO accounted for 62% to 95%
of the total autotrophic abundance above 100-m depth across the
cold eddy (Figure 7). A similar pattern was observed between the
percentage of PRO abundance and depth, where the peak value was
reached at 100 m and then declined with depth (Figure 7). In
particular, stations A2, A3, and A4 at 300-400 m, where the cold
eddy influenced the region, also showed a secondary peak and had
an S type on the vertical patterns of the percentage of PRO
abundance (Figure 7).

3.3 Vertical distribution of bacterial
abundance

As for vertical variations, all stations reported high variability in
the upper 200 m of the HB abundance assessment (Figure 8).
Overall, the abundance of HB was approximately 2 x 10° cells mL ™"
at the surface and increased to >4 x 10 cells mL ™" at 200-m depth at
stations A0, Al, A4, and A5 (Figure 8). However, peaks in HB
abundance were seen at 50-m depth at A2 and A3 (Figures 8C, D).

We calculated carbon biomass estimates based on the
abundance of cells and the conversion factors at various depths
and stations. As shown in Figure 9, the biomass of HB was
positively correlated with the biomass of picophytoplankton at all
stations when picophytoplankton biomass was less than 2,000 ngC
L (p < 0.05). We observed a similar trend in HB biomass at all
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stations, which did not increase as picophytoplankton biomass
increased above 2,000 ngC L! (Figure 9). Moreover, we also
found that HB was positively correlated with temperature at each
station (Figure 10). Nevertheless, we found maximum biomass of
HB (7,000-9,500 ngC Lfl) at stations A0, Al, A4, and A5, where
picophytoplankton biomass was low and temperature was
approximately 20 °C at 200-m depth.

4 Discussion

Understanding how oceanic physical processes influence
phytoplankton and microbial communities is key to
understanding physical-biological interactions. An important
component of ocean circulation energy is produced by mesoscale
eddies, which directly influence nutrients and phytoplankton
distribution. Traditional nutrient supply mechanisms, such as
winter mixing, cannot provide enough nutrients to the euphotic
zone to compensate for production estimates in the oligotrophic
zone (Jenkins and Goldman, 1985). Nutrient supply to the surface
of the open sea is believed to be facilitated by eddy pumping. Over
the past decades, numerous studies have shown that mesoscale
eddies play an important role in ocean biogeochemistry by
modulating the efficiency of the biological pump (Keppler et al.,
2024; Siegel et al., 1999). It is well known that cyclonic cold eddies
tend to enhance the biological pump by increasing nutrient supply,
thereby enhancing primary production (Garcon et al, 2001;
McGillicuddy et al., 2007) and favoring larger phytoplankton cells
(Vaillancourt et al., 2003).

In deep waters, where picoplankton and environmental variables
cannot be detected by satellites, it remains unclear how perturbations
of complex physical processes affect the plankton community
structure and function of the microbial food web. To explore the
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right.

potential impacts of mesoscale eddies on biological ecosystems
(mainly viruses, bacteria, and picophytoplankton), we investigated
environmental and biological variables along a transect in the West
Pacific Ocean. As previously reported, picophytoplankton
predominated during anticyclonic eddies when nitrate supply was
insufficient. This was because picophytoplankton requires fewer
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nutrients than microphytoplankton. As a result of cyclonic eddies,
large phytoplankton species may accumulate in oligotrophic waters
(Vaillancourt et al., 2003). There is, however, evidence that in tropical
and subtropical oligotrophic waters, picophytoplankton is always
dominant regardless of the presence of cyclonic or anticyclonic eddies
(Casey et al., 2007; Chen et al., 2007).
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FIGURE 5

A comparison of the peak values of SYNE (orange) and PRO (red)
throughout the water column. The abundance scales for PRO and
SYNE are different. The depth measurements on each value indicate
the depth where highest SYNE or PRO abundance was recorded.
Error bars represent standard deviations of three replicated samples.
SYNE, Synechococcus spp.; PRO, Prochlorococcus spp.

4.1 Response of picophytoplankton to cold
eddy

There are generally two or three orders of magnitude more PRO
than SYNE in the nutrient-depleted surface waters of open oceans
(Partensky et al., 1999). Even though the two genera often co-occur,
they have very different geographical distributions. In warm,
oligotrophic oceans, PRO is dominant, while SYNE is more
prevalent in coastal areas and mesotrophic, temperate oceans
(Partensky et al., 1999). In the present study, PRO was abundant
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FIGURE 6
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above 100 m, with a contribution exceeding 60% (60%-95%) of
picophytoplankton abundance, while SYNE abundance was higher
than PRO below 200 m in deep waters over the cold eddy. In
nutrient-limited waters, PRO and SYNE were highly competitive
(Tsiola et al., 2016), and PRO had an advantage over SYNE when
heterotrophic bacteria existed (Calfee et al., 2022). This may explain
the dominance of PRO in the oligotrophic waters in our study. In
addition to nutrients, other factors (such as light and temperature)
can also be affected by mesoscale eddies. PRO mainly occurs from
the surface of oligotrophic oceans to a depth of 150 m (Kettler et al.,
2007), and it has specific temperature requirements (Johnson et al.,
2006). It has also been suggested previously that PRO is highly
sensitive to temperature and that PRO cannot tolerate low
temperatures; the low boundary of temperature for PRO to exist
is approximately 15°C-20°C (Flombaum et al., 2013; Sohm et al.,
2015). The optimal growth temperature for PRO in laboratory
cultures is between 24°C and 28°C (Chen et al., 2014. We observed
that the temperature was approximately 25°C within 100 m of
depth, which is an area where PRO is more abundant in this study
(Figure 4). SYNE, however, is associated with surface mesotrophic
regions and has a broader geographic distribution (Flombaum et al.,
2013). It has also been suggested that the predominance of PRO in
nutrient-depleted surface waters of subtropical oceans is linked to a
preference for recycled or organic nutrients and a high rate of urea
utilization (Fawcett et al., 2011; Painter et al., 2008; Zubkov et al.,
2003). The results of our study support the theory that PRO makes
up a substantial part of microbial communities in open ocean
ecosystems, likely having a significant effect on the carbon cycle
in oligotrophic areas.

A number of ocean studies have reported that eddies
significantly affect phytoplankton community composition
(Brown et al.,, 2008; Chen et al., 2007; Rii et al., 2008; Wang et al.,
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Vertical distribution of PE from surface to 1,000 m at different stations. The black lines indicate stations A0, Al, and A5, where lower values appear in
the euphotic zone (A). The red lines indicate stations A2, A3, and A4, where higher values appear in the euphotic zone (B). PE, picoeukaryotes.
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PRO, Prochlorococcus spp.; PE, picoeukaryotes. Panels labeled (A—F) show results from stations AO to A5, as marked on the right.

2016; Yun et al., 2015). A cyclonic cold eddy, for example, can
increase phytoplankton abundance in a numerically picoplankton-
dominated environment (Vaillancourt et al., 2003). In the South
China Sea, both diatoms and picoplankton thrive in the cold eddy
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(Chen et al., 2007). In tropical and subtropical waters,
picophytoplankton dominates regardless of cold or warm eddy
states, where PRO can represent up to 83% of total
phytoplankton primary productivity (Casey et al, 2007). In the
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present study, across the cold eddy above 100-m depth, PRO
contributed 60% to 90% of the abundance, which is consistent
with previous studies (Casey et al., 2007). However, there was a
significant decrease in SYNE and PRO abundances in the cyclonic
eddy area (stations A3 and A4) compared with other stations at
100-m depth (Figure 4). It is well known that PRO subgroups are
physiologically and genetically specified as either high light-adapted
(HL) or low light-adapted (LL) ecotypes (Bemal et al.,, 2018). In
most cases, HL ecotypes are found in nutrient-depleted surface
waters, while LL ecotypes mainly inhabit the deep euphotic zone
near or at the nutricline (Moore et al., 2002). According to previous
research (Moore et al., 2002), several HL strains of PRO cannot
utilize nitrates and nitrites as nitrogen sources, as they lack the
required assimilation genes. As a result, they thrive in stable
oligotrophic conditions (Bouman et al., 2011) by utilizing
ammonium from surface waters (Rocap et al., 2003). In this
study, under the influence of the cold eddy, deeper waters were
pushed upward, bringing up nutrient-rich waters (higher nitrate
and nitrite) that are less supportive of HL-PRO growth. There is a
possibility that the lack of utilizable nutrients for HL-PRO resulted
in a decrease in PRO abundance at the eddy center (station A3)
(Figure 5). As an explanation for PRO dominance, we believe that
its environment adaptability and differentiation of PRO ecotypes
reflect its continuous adaptation to the changing marine
environment (Yan et al., 2020). However, we found that stations
A2, A3, and A4 at 300-400 m, where the cold eddy influenced the
region, also showed a secondary peak and had an S type on the
vertical patterns of the percentage of PRO abundance (Figure 6). It
is possible that the LL-PRO ecotype was increased during this
period while deeper waters were being pushed upward, which may
explain these patterns. Some PRO biomass maxima were found in
deeper layers and are likely governed by physiologic responses to
light and nutrients (Johnson et al., 2006; Zinser et al., 2007).

In the present study, a difference was also observed in the
vertical distribution and abundance of PE among the stations. The
availability of nutrients, temperature, and light affects
phytoplankton growth (Gerhard et al., 2019). An eddy of cyclonic
current lifts the nitracline, increasing both light intensity and
nutrient availability (Kahru et al., 2007). Compared to outside the
eddy, PE was more abundant inside or around the edge of the eddy
(stations A2, A3, and A4) (Figure 6) and was found in the relatively
high nutrient subsurface waters at 100-m depth (NO; > 0.3 uM;
Figure 2C). The result of our study supports the hypothesis that the
advection of cold and relatively deep water within cyclonic cold
eddies results in an increase in PE abundance, as it shows that PE
was four- to sevenfold more abundant in cyclonic cold eddies than
outside them in the tropical North Pacific. There were similar
results also found in the cyclonic eddy region, in which PE
abundance was maximal at 145 m outside and 100 m within the
edge of the cyclonic eddy (Kang et al., 2022). An explanation for
these effects can be found in the case of a cyclonic eddy that is
dominated by its isopycnals and nutricline (Ning et al., 2008). There
is a common pattern in which picophytoplankton communities are
influenced by eddies, which is different from other water systems.
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4.2 Response of bacteria to cold eddy

It is also important to note that ocean physical processes affect
HB abundance and activity. In marine ecosystems, physical
processes, such as mesoscale eddies, upwelling, and coastal jets,
may alter the chemical properties of the water, which may affect the
function of HB communities (Zhang et al., 2011). The influence of
mesoscale eddy on HB is not well understood. It has been reported
that the abundance of HB in NE Atlantic cold-core eddies has
increased (Harris et al., 1997; Thyssen et al.,, 2005), while others
report no difference in the depth-integrated HB biomass inside or
outside cyclonic eddies (Tarran et al., 2001). The results of our study
did not show significant differences (ANOVA, p > 0.05) in the
abundance of HB at surface waters across stations. Furthermore,
HB abundance is relatively high outside or at the edge of the
cyclonic cold eddy at 200-m depth (Figure 8). However, peaks in
HB abundance were seen at 50-m depth in the stations (stations A2
and A3) influenced by the eddy (Figures 8C, D). A possible
explanation is that deeper waters were pushed upward by the cold
eddy, resulting in the changed depth of peak HB values between
stations inside and outside the cold eddy (Figure 8). There was a
similar situation with picophytoplankton. A cold eddy pushed the
maximum values of SYNE and PRO at station A3 upward to 25 and
75 m, respectively (Figure 5). Furthermore, cyclonic eddies display
distinct HB community compositions, which greatly affect
community structure (Baltar et al., 2010). It is important for
future research to consider the coupling between the HB and
physical processes (Galand et al., 2010) to understand the
diversity and function of marine HB.

In general, three major types of control have been identified as
being responsible for HB biomass and activity variability
worldwide: temperature, resource availability (i.e., bottom-up
control), and losses to predators and viruses (i.e., top-down
control) (Moran et al,, 2017). According to the present study, the
HB-picophytoplankton biomass is strongly related (Figure 9), as
was observed in oligotrophic oceanic northern Gulf of Mexico
waters (Liu et al., 2004). In surface waters with low nitrate+nitrite
concentrations, results by Linacre et al. (2015) revealed that bacteria
from surface to 1,000 m were generally controlled by available
dissolved organic matter, which is consistent with other studies in
the meso- and bathypelagic zones (Meador et al., 2010; Santinelli
et al,, 2010). In addition to resource availability controlling HB
abundance, temperature also played a role in this study (Figure 10).
Abiotic factors such as temperature vary considerably in many
natural systems, which may affect the relative importance of
bottom-up versus top-down processes (Hoekman, 2010).
Additionally, our results (Figure 9) showed that the HB biomass
at all stations did not significantly increase as picophytoplankton
biomass increased above 2,000 ngC L%, which was observed within
the mixed layer (<100 m). It is likely that top-down control, such as
viral lysis or grazing by nanoflagellates, limits HB abundance,
especially in the upper layer of this study. This layer has sufficient
nutrients from the upwelling effect, indicating higher microbial
biomass and activity. Supporting this, Cho et al. (2000) reported
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that bacterial ingestion rates by heterotrophic nanoflagellates in the ~ Subtropical Gyre showed higher viral production rates in the
mesopelagic layer are as high as those in the euphotic layer, cyclonic eddy (cold eddy) compared to the anticyclonic eddy
suggesting strong top-down regulation of bacteria. Similarly, a  (warm eddy), where they estimate that the mortality from viral
study by Weissenbach et al. (2024) in the North Pacific  lysis ranged from 37% to 171% of bacterial standing stock per day in
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the cyclonic eddy. This highlights how eddy physical effects can
modulate microbial and viral dynamics.

5 Conclusion

As a result of our sampling, we gain a deeper understanding of
the impact of cold eddy features on oceanic environmental factors
(temperature, salinity, and nutrients) and picoplankton communities.
Cold eddy has a significant impact on the distribution of hydrological
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and nutrient profiles and is associated with differential responses
between communities of picoplankton. We found that PRO was
abundant above 100 m, with a contribution exceeding 60% (60%-
95%), while SYNE abundance was higher than PRO below 200 m to
deep waters within the cold eddy. However, there was a significant
decrease in SYNE and PRO abundances in the cyclonic eddy area
compared with other stations at 100-m depth. On the contrary, PE
was more abundant inside or around the edge of the eddy compared
to outside the eddy. Furthermore, HB abundance is relatively high
outside or at the edge of the cyclonic cold eddy at 200-m depth.
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However, peaks in HB abundance were observed at 50-m depth in the
stations influenced by the eddy. As demonstrated in this study, cold
eddy systems play a crucial role in transporting microbial populations
and highlight that mesoscale eddies have distinct functions in the
distribution of picoplankton in the ocean.
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