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Unmanned surface vehicles (USVs) nowadays have been widely used in ocean

observation missions, helping researchers to monitor climate change, collect

environmental data, and observe marine ecosystem processes. However, path

planning for USVs often faces several inherent difficulties during ocean

observation missions: high dependence on environmental information, long

convergence time, and low-quality generated paths. To solve these problems,

this article proposes a novel artificial potential field-heuristic reward-averaging

deep Q-network (APF-RADQN) framework-based path planning algorithm,

aiming at finding optimal paths for USVs. First, the USV path planning is

modeled as a Markov decision process (MDP). Second, a comprehensive

reward function incorporating artificial potential field (APF) inspiration is

designed to guide the USV to reach the target region. Subsequently, an

optimized deep neural network with a reward-averaging strategy is

constructed to effectively enhance the learning and convergence speed of the

algorithm, thus further improving the global search capability and interface

performance of USV path planning. In addition, the Bezier curve is applied to

make the generated path more feasible. Finally, the effectiveness of the proposed

algorithm is verified by comparing it with the DQN, A*, and APF algorithms in

simulation experiments. Simulation results demonstrate that the APF-RADQN

improves the interface ability and path quality, significantly enhancing the USV

navigation safety and ocean observation mission operation efficiency.
KEYWORDS

unmanned surface vehicles, reinforcement learning, deep Q-learning algorithm,
artificial potential field algorithm, path planning
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1 Introduction
In recent years, ocean observation missions such as collecting

high-resolution air-sea observations (Wills et al., 2023), oceanic

data collection (Zhao and Bai, 2023), and marine ecosystem

monitoring (Handegard et al., 2024) are deploying more and

more unmanned surface vehicles (USVs) due to their excellent

endurance, navigational stability, and maneuverability (Zhou et al.,

2021; Chiodi et al., 2021). Nevertheless, during environmental

observation missions, USVs sometimes need to sail in scenes

where either obstacle is complexly distributed, or the

environment lacks prior information. These situations may

increase the time spent on missions and the probability of

collisions, ultimately leading to increased resource consumption

and, in some cases, mission failure. To ensure ocean observation

missions are accomplished, it is necessary for USVs to get a feasible

path generated by path planning algorithms. An effective path

planning algorithm should not only generate collision-free routes

to ensure safe navigation but also optimize mission duration.

Therefore, it is crucial for USVs to adopt a suitable path planning

algorithm in ocean observation missions.

There have been many studies on path planning algorithms for

USVs, which can be broadly classified into the following three types:

1) traditional algorithms, 2) intelligent optimization algorithms,

and 3) machine learning algorithms.

The A* algorithm (Ma et al., 2022; Wang et al., 2025a) and the

artificial potential field (APF) algorithm (Liu et al., 2020) are widely

used traditional path planning algorithms. Although the A*

algorithm can efficiently identify feasible paths, the computation

of the A* algorithm increases significantly as the exploration space

increases. Thus, A* is unsuitable for open environments with

complex obstacles (Yu et al., 2019). The APF algorithm refers to

the concept of potential field in physics and utilizes the method of

potential field descent to obtain the target route (Li et al., 2021). Wu

et al. (2025) combined APF with RRT algorithm, proposing an

artificial potential field Bidirectional-Rapidly Exploring Random

Trees (APF B-RRT*) algorithm for multiple rolling path planning,

which is used for collaborative path planning of multiple UAVs.

However, with the increase of obstacles in the environment, the

APF algorithm will become chaotic and complex and may even

generate multiple zero potential energy points. These problems can

easily make the path planning fall into local optimization, resulting

in failure to reach the target point.

Commonly used intelligent optimization algorithms include

particle swarm algorithms (PSO) (Antonakis et al., 2017) and

their variants, genetic algorithms (GA) (Tsai et al., 2011) and

their variants, and fuzzy logic algorithms, ant colony algorithms

(Shi et al., 2022), etc. Although intelligent optimization algorithms

require fewer computations and are easier to handle path planning

under complex environmental constraints than traditional

algorithms, they still have drawbacks, such as easily falling into

local optimum and high dependency on environmental data.

Therefore, traditional path planning methods and intelligent

optimization path planning algorithms make it difficult to
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effectively solve path planning problems in complex and lack of

prior knowledge environments.

Because of the high efficiency of data production and excellent

ability to solve complex problems, machine learning algorithms

have been utilized in the field of path planning in recent years.

Machine learning based algorithms include deep learning (DL),

reinforcement learning (RL), deep reinforcement learning (DRL),

imitation learning methods, etc. Al-Kamil and Szabolcsi (2024)

proposed a path planning algorithm that combined supervised and

unsupervised learning methods. Literature (Ionescu, 2021; Jin et al.,

2024; Santos et al., 2022), also used deep learning for solving path

planning problems. Reinforcement learning (RL), as a kind of

machine learning, allows USVs to learn the optimal driving

strategy and obtain the optimal path in the continuous

interaction with the environment. In terms of path planning,

reinforcement learning methods show great potential for

application in complex environments (Pflueger et al., 2019; Wang

et al., 2020; Wang et al., 2025b). Literature (Wang et al., 2024c) used

Q-learning and improved the greedy strategy in path planning and

obstacle avoidance problems for robots. Literature (Low et al., 2019)

proposed an algorithm combining Q-Learning and the Flower

Pollination Algorithm (FPA), which was applied to Autonomous

Mobile Robot (AMR) path planning, effectively addressing the slow

convergence issue of traditional Q-Learning algorithms. However,

the traditional Q-value table-based reinforcement learning method

causes the Q-value table to increase rapidly when the state space and

action space increase, leading to the occupation of a large amount of

computational and storage resources, resulting in a decrease in

computational speed and convergence speed (Tan et al., 2024).

Therefore, signally using DL or RL still has problems that are highly

dependency on historical data and poor capability of solving high

dimensional state problems.

Deep reinforcement learning (DRL) combines reinforcement

learning with deep learning. This combination makes DRL both

having the decision-making ability of reinforcement learning and

the generalized fitting ability of deep learning. Thus, the DRL

algorithm solves the problem of dimensional explosion and

enables reinforcement learning to deal with multi-dimensional

state and action space. In recent years, deep reinforcement

learning has been widely used in the autonomous control and

path planning of unmanned vehicles such as UAVs, underwater

robots, and other boats (Yang et al., 2023; Chu et al., 2023; Xiaofei

et al., 2022; Yu et al., 2022; Wang et al., 2024b). The deep Q-network

(DQN) algorithm, as a kind of deep reinforcement learning, utilizes

a deep neural network instead of a Q-value table. Since the DQN

algorithm is simple and intuitive, many scholars have carried out

research on path planning based on this algorithm and its variant

algorithms. Wang et al. (2024a) proposed a risk and reliability

critic-enhanced safe hierarchical reinforcement learning (RA-

SHRL) algorithm based on the International Collision Avoidance

Rules (COLREGs) for solving the collision avoidance decision in a

multi-vessel encounter scenario. Su et al. (2022) proposed a target-

oriented double deep Q-learning network (D2QN) based collision

avoidance and trajectory planning algorithm for USVs to collect

data from ocean detection networks. Yang et al. (Xiaofei et al., 2022)
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proposed a DQN-based global path planning algorithm for the

amphibious USVs path planning problem. Zhu et al. (2021)

proposed an Improved Dueling Deep Dual Q Network (IPD3QN)

based on prioritized experience replay to solve the problem of slow

and unstable convergence of traditional DQN algorithms for

unmanned ships’ path planning. Wen et al. (2020) proposed a

novel path planning method based on a neural network RL path

system, which enables a mobile robot to navigate to the terminal

area without colliding with any obstacles or robots, and the method

has been successfully applied to the mobile robot experimental

platform. It is worth noting that some researchers combine the APF

algorithm with deep reinforcement learning algorithms to

accelerate the training process. Hu et al. (2025) proposed a fuzzy

A* quantum multi-stage Q-learning artificial potential field

algorithm, which utilizes different algorithms in different path

planning stages. Li et al. (2025) adopted the APF algorithm in the

action selection policy. However, directly applying the DQN

algorithm to USV path planning still has the following problems:

1) As the complexity of the environment rises, the learning

efficiency and convergence speed of the DQN algorithm

decreases. 2) The traditional DQN path planning method

performs poorly in terms of safety, and the robot is at risk of

getting too close to the edges of the obstacles. 3) Paths planned by

traditional reinforcement learning usually have low smoothness.

In ocean observation missions, the high complexity of obstacles’

distribution complicates traditional path planning methods, making

it difficult to guarantee both safety and efficiency. Therefore, an

algorithm that can avoid collisions with obstacles while maintaining

path efficiency is proposed. This study introduces a path planning

algorithm based on artificial potential field-heuristic reward-

averaging deep Q-network (APF-RADQN) framework, which

incorporates collision avoidance awareness using a comprehensive

reward function. After optimizing the path, the Bezier curve is

applied to smooth the path, ensuring the smoothness and feasibility

of the planned path. The main contribution points of this paper are

summarized as follows:
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1. A novel comprehensive reward function is established, which

incorporates the risk factors of multiple obstacles distributed

environments, ensuring that the USV reaches the target

position while avoiding obstacles in a complex environment.

2. The APF-RADQN framework is proposed, which

incorporates a novel network update mechanism and

path smoothing method to enhance both the convergence

speed and path smoothness of the algorithm.

3. Experiments are designed for multiple scenarios, which

show that the proposed APF-RADQN algorithm

outperforms both the DQN algorithm and traditional

algorithms listed in complex scenarios.
The remainder of the article is organized as follows. Section 2

describes the Markov decision process (MDP) of the USV path

planning problem, the DQN algorithm, and the APF algorithm.

Section 3 describes the application of the Markov model for USV

path planning, the comprehensive reward function, and the APF-

RADQN framework to USV path planning. Section 4 describes

comparison experiments with several algorithms in different

environments. Section 5 presents the conclusion and future works.
2 Materials and methods

USV path planning, as shown in Figure 1, refers to the automatic

generation of optimal routes byUSVs from the starting point (SP) to the

target point (TP) without colliding with obstacles such as reefs and

buoys in a smooth manner based on environmental information and

numerous constraints in the absence of human intervention (Lan et al.,

2022). Through the related literature (Xi et al., 2022; Zhang et al., 2019),

the USV path planning process can be classified as a serious MDP.

Specifically, the USV takes the action only related to the current state.

After adopting the chosen action, the USV obtains a reward form the

environment and enters the next state. The USV expects to learn an

optimal policy in the continuous interaction with the environment. The
FIGURE 1

USV path planning.
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optimal policy maximizes the cumulative rewards to the USV and

ultimately generates an optimal path based on this policy. Based on the

above description, the MDP and the DQN algorithm are

described below.
2.1 Markov decision process

In an MDP, a USV can be abstracted into an agent with the

corresponding attributes of the USV. MDP can be expressed as a

four-tuple M = ½S,A, P,R�,where S is the finite set of states in the

environment, st is the state at the time t, A presents the set of all

actions that the agent can execute, atpresents the action performed

by the agent at the time t, P presents the state transfer probability,

averaging the probability that the state stmoves to the next state st+1,

and R is the reward function. Based on the observed current state st ,

the agent chooses the action atto execute and enters the next state

st+1, and the environment gives the agent a reward rt+1when the

agent enters the state st+1. Figure 2 illustrates the MDP that models

the interaction between the agent and the environment.

The agent aims to acquire the optimal policy through the

learning process. The optimal policy enables the agent to

maximize the return for every episode. For each episode, the

return Gt is calculated as the discounted sum of rewards rt . The

return Gt can be expressed as Equation 1:

Gt = rt+1 + g rt+2 + g 2rt+3 + · · · = o
∞

k=0

g krt+k+1    g ∈ ½0, 1� (1)
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where rt is the reward that the agent obtains at step t. g is the

discount factor, which represents the relationship between the

immediate reward and the long-term reward.

The state value function is the value of state s in the

environment under policy p . State value function can be

expressed as Equation 2:

Vp (s) = Ep ½Gt jSt = s� = Ep ½o
∞

k=0

g krt+k+1jSt = s� (2)

Similarly, action value function Qp (s, a) is the value of taking

action a in state s under policy p . The action value function Qp (s, a)

presents the expected cumulative reward when USV takes action a

in state s under policy p . The action value function Qp (s, a) can be

expressed as Equation 3:

Qp (s, a) = Ep ½Gt jSt = s,At = a� = Ep ½o
∞

k=0

g krt+k+1jSt = s,At = a� (3)

The Bellman optimality equation for the state value function

and the action value function can be expressed as Equations 4, 5:

V*(s) = max
a

E½rt+1 + gV*(st+1) st = s, at = a�j (4)

Q*(s, a) = E½rt+1 + gmax
a

Q*(st+1, at+1) st = s, at = a�j (5)

Where V* and Q* present the maximum state value and action

value of the state s under the optimal policy p*. The optimal policy

can be determined by p∗(s) = argmaxQ∗(s, a).
FIGURE 2

USV Markov decision process.
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2.2 Deep Q-network

In this section, the DQN algorithm is used to solve the USV

path planning problem. The DQN algorithm, as a representative

deep reinforcement learning method, effectively combines Q-

learning with deep learning. This combination enables the DQN

algorithm to obtain the optimal policy in a high dimensional state

space without relying on prior information about the environment

(Mnih et al., 2015). Therefore, the DQN algorithm can enable

agents to generate optimal paths under conditions of limited

external environment information.

The neural network is used to fit the Q-table in the DQN

algorithm, as shown in Equation 6. During the training process, the

agent constantly interacts with the environment to generate

experience data. Specifically, the agent uses the Q-evaluation

network to get the next action a at the state s, and executes the

action according to a certain action selection probability e. The
commonly used action selection probability function is e�greedy,

which can be expressed as Equation 6:

p(a j s) =
1 − e

A(s)j j ( A(s)j j − 1), for the greedy action

e
A(s)j j , for the other  A(s)j j − 1 actions

(

(6)

Where p(a s)j is the policy that agent will take at the state s, and

A(s)j j is the number of actions associated with s

After executing the action, the agent enters into the next state s0

while obtaining a reward r. Through this process, the experience

data of the interaction between the agent and the environment are

stored in the form of tuples (s, a, r, s0). Then, the experience caches
in the replay buffer.

The difference between the Q-evaluation network and the Q-

target network is the way to use empirical data and update the

network. Specifically, the Q-evaluation network directly derives state

values based on the current state s, while the Q-target network

calculates state values based on the next state s0 and the reward

r earned. By calculating the error between the Q-evaluation and

Q-target networks, the parameters of the Q-evaluation network can

be updated. While for the parameters in the Q-target network,

the network parameters of the Q-evaluation are directly copied to

the Q-target network at a certain time interval. The calculation of the

Q-target network can be expressed by the Equation 7:

Qtarget = r + gmax
a

Q(s0, a; q−) (7)

where max
a0

Q(s0, a0; q−) is the maximum value of the Q-

evaluation network output, a0 is the action taken by the agent at

the state s0, and q− is the Q-target network’s parameter.

The loss function L(q) is defined by the mean square deviation

between two action values predicted by Q-evaluation network and

Q-target network, which can be expressed as Equation 8:

L(q) = E½(Qtarget − Qeval(s, a; q))
2� (8)

where Qeval(s, a; q) denotes the output of the Q-evaluation

network and q denotes the parameters of the network.
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2.3 Artificial potential field

The Artificial Potential Field (APF) algorithm first appeared

in a paper published by Oussama Khatib in 1985 (Khatib, 1985).

The APF algorithm assumes that there exists a gravitational force

on the target point and a repulsive force on the obstacle point.

The gravitation force can attract the agent to go to the target

point, while repulsive force makes the agent stay away from

obstacles and avoid colliding with obstacles. The agent is

subjected to the field force at every point on the map. The field

force is equal to the sum of the gravitational and repulsive forces

at that point.

The gravitational field can be expressed as Equation 9:

Uatt(h) =
1
2
xr2(h, hgoal) (9)

where x is the gravitational coefficient, r(h, hgoal) is the distance
between the location h of the agent and the location hgoal of the

target point.

The gravitational force exerted by the target point on the agent

can be derived by calculating the gradient of the gravitational field.

The gravitational force can be expressed as Equation 10:

Fatt(h) = −xr(h, hgoal) (10)

In order to avoid the collision between the agent and obstacles,

the repulsive field exhibits a different property from the

gravitational field. For the repulsive field, the closer the agent is

to the obstacle, the larger the repulsive field becomes. The repulsive

field can be expressed as Equation 11:

Ures(h) =
1
2 k(

1
r(h,hobi)

− 1
robi

)2 0 < r(h, hobi) ≤ robi

0 r(h, hobi) > robi

(
(11)

where k is the repulsion coefficient, r(h, hobi) is the distance

between the location h of the agent and the location hobi of the ith

obstacle obi. robi is the maximum repulsive force range of the

obstacle obi. When the agent leaves the repulsive force range of the

obstacle, the agent is no longer subject to the repulsive force of

this obstacle.

The repulsive force generated by obstacles can be derives by

calculating the gradient of the repulsive force field. The repulsive

force can be expressed as Equation 12:

Fres(h) =
k( 1

r(h,hobi)
− 1

robi
) mr(h,hobi)
r(h,hobi)2

0 < r(h, hobi) ≤ robi

0 r(h, hobi) > robi

(
(12)

The combined force acting on the agent is a superposition of

gravitational and repulsive forces, so the combined force acting on

the agent can be written as Equation 13:

F(h) = Fatt(h) + Fres(h) (13)

The gravitational force generated by the target point will make

the agent move toward the target point, and the repulsive force

generated by the obstacle will prevent the agent from approaching

the obstacle. Through the superposition of gravitational force and
frontiersin.org
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repulsive force, the agent can avoid the obstacle and reach the

target location.

However, as shown in Equation 13, the agent is ultimately

subject to the combined force of the gravitational force and the

repulsive force. In some special cases, there may be a situation

where the repulsive force is balanced with the gravitational force, as

shown in Figure 3. In addition, when obstacles are gathered at the

annex of the target point, it is possible that the combined repulsive

force of the obstacles will be greater than the gravitational force at

the target location, and thus, the target location will no longer be the

point with the smallest potential field in the whole map, resulting in

the agent not being able to reach the target location.
Frontiers in Marine Science 06
3 APF-RADQN-based path planning
algorithm

In this section, a MDPmodel of the USV is first established. The

MDP model primarily consists of the state space, the action space,

and the reward function. Secondly, an APF-RADQN framework

based on improved network error calculation is proposed, which is

used to solve the MDP model of USV path planning. Then, the

optimal path is obtained by the path smoothing method.
3.1 MDP model for USV route planning

1. State space: Grid map-based metric modeling is the

mainstream environmental map building method (Koval et al.,

2022; Wu et al., 2022). Meanwhile, unlike UAVs that can float or

dive, USVs only move on the surface of the water. In that case,

USVs are mainly concerned with the environmental state

information of the plane of movement where they are located.

Therefore, the three-dimensional spatial environment can be

converted into a two-dimensional planar environment, as shown

in Figure 4. The navigation environment of the USV is set as a two-

dimensional grid map environment of 60m*60m. According to the

distribution of obstacles in the environment, the obstacles are

represented by black grids, and the area that can be freely passed

is represented by white grids. Each of the grid is a square with a

width of 1 meter. In particular, in order to facilitate the construction

of the simulation map environment and to ensure the safe

navigation of the USV, obstacles that do not occupy a complete

grid in actuality are regarded as occupying a complete grid in the

gridded map. Additionally, the grid map-based environment is

determined in this study, which meaning when the agent takes

the action a at state st , then the next state st+1 of the agent is
FIGURE 3

Gravitational force and repulsive force balance.
FIGURE 4

Conversion of a 3D spatial environment into a 2D planar environment.
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determined. Thus, the state transfer probability P can be expressed

as P(st+1 st , a) = 1j .

The Euclidean distance is used to measure the distance between

the USV and the target point when calculating the path length. So,

the coordinate position (x, y) of the USV and the distance to the

target point DTi are introduced into the state space. The state space

equation of the USV can be expressed as Equation 14:

S =

x1 y1 DT1

x2 y2 DT2

⋮ ⋮ ⋮

xt yt DTt

2
666664

3
777775 (14)

2. Action space: typically, the propulsion, steering and other

motion states of a USV are realized by coordinating the thrust of

propellers with the deflection angle of its rudder. Although the

navigation process of USVs in real environments is continuous, the

navigation of USVs within a period of time can be regarded as

movement within a grid. Therefore, the navigation process of USVs

in real environments can be converted into a series of grid

movements of agents in grid maps. Moreover, in order to

simplify the USV’s motion model, in the path planning process, it

is assumed that the speed of the USV is certain, and at the same

time, the USV’s action space is decomposed into 8 directions A =

right;  down;  left;  up;  lower rightf ,  upper right;  lower left,

 upper leftg, i.e., the action space. The specific action space is shown

in Figure 5. Based on the above assumptions, the movement rules of

USV in the gridded map environment can be represented as

Equation 15:
Frontiers in Marine Science 07
(x0, y0) = (x + grid, y)

(x0, y0) = (x, y + grid)

(x0, y0) = (x − grid, y)

(x0, y0) = (x, y − grid)

(x0, y0) = (x + grid, y + grid)

(x0, y0) = (x + grid, y − grid)

(x0, y0) = (x − grid, y + grid)

(x0, y0) = (x − grid, y − grid)

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(15)

where (x, y) denotes the current position state of the USV, (x0, y0)
denotes the next position state of the USV, and grid denotes the width

of the unit grid. It is important to emphasize that each action

performed by the USV in the gridded map only allows it to move

to an adjacent grid.

3. Reward Function: In the MDP framework, the reward

function is used to evaluate the value of an action a taken by the

agent. In previous studies, an agent receives a positive reward when

it reaches the target location and a negative reward for entering a

forbidden zone such as an obstacle or a boundary. However, under

this reward distribution, all other states receive zero reward, which

causes the problem of reward sparsity in reinforcement learning.

This problem leads to difficulties for reinforcement learning

algorithms to find feasible solutions. Therefore, this paper

proposes a composite reward function Rt . The proposed reward

function makes it possible to receive a reward for agent at all state

during the training process. The composite reward function can be

expressed as Equation 16:

Rt = rt1 + rt2 + rt3 + rt4 (16)

where rt1 is the target reward function, rt2 is the obstacle

reward function, rt3 is the boundary reward function, and rt4 is the

potential field reward function.

Specifically, rt1 is usually set as a positive reward to motivate the

agent to reach the target position, and the target reward function

can be calculated by the Equation 17:

rt1 =
l1, DT ≤

ffiffi
2

p
2 grid

0, otherwise
    

(
(17)

Where l1 is a positive reward value, which is available when the

agent enters the target position. To improve the training efficiency

of the model, the task is considered completed when the agent

reaches a certain range of the target point. For the grid map, the task

is considered completed when the agent enters the grid where the

target point is located.

where DT is the Euclidean distance from the agent to the target

point, which can be expressed by Equation 18:

DTi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi − xtarget)

2 + (yi − ytarget)
2

q
(18)

During the navigation process, agent should avoid the collision

with obstacles in the environment. In grid-based map, the agent
frontiers
FIGURE 5

USV action space.
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should not drive into the grids labeled as obstacles on the map. The

obstacle reward function rt2 can effectively avoid the agent from

colliding with obstacles in the grided-based movement, and its

expression as Equation 19:

rt2 =
l2, OD < Rs

0, OD ≥ Rs

(
(19)

where l2 is a negative value indicating the penalty for the agent
to enter the range of an obstacle, OD is the Euclidean distance from

the agent to the closest obstacle to the agent, and Rs is the safe

distance that the agent should maintain from the obstacle.

Boundary rewards are used to limit the area of activity of an

agent. Ensure that the agent operates within a predefined range of

the environment. Boundary rewards can be defined as Equation 20:

rt3 =
l3,

x > max (xÞ or x < min (x)

y > max (yÞ or y < min (y)

 !

0, otherwise

8>><
>>: (20)

where reward l3 is a negative value, max (x) and min (x) are

the maximum and minimum horizontal coordinates of the

environmental map, max (y) and min (y) are the maximum and

minimum vertical coordinates of the environmental map.

When the agent explores the environment, if rewards are only

set at key points that directly affect the success or failure of the task,

such as target points, boundaries and obstacles, while rewards are

zero at other relatively unimportant locations, it will lead to slower

convergence of the algorithm, or even ultimately fail to obtain a

valid path. Therefore, continuous rewards are needed to provide

guidance to the agent during its exploration of the environment.

The successive rewards should have the ability to guide the agent to

the target location while avoiding factors such as obstacles and

boundaries. As shown in Equations 10, 12 and 13, the APF method

is characterized by a continuous distribution of potential field forces

in the map environment. Specifically, potential field forces point to

the target point at locations away from obstacles, and point in the

direction away from obstacles near obstacles. The motion direction

of the agent in the environment is shown in Equation 15. According

to the motion direction of the agent, the motion of the agent can be

rewritten in the form of vector as Equation 21:

a
→
  right= (x + grid, y) = (1, 0)

a
→
  down= (x, y + grid) = (0, 1)

a
→
  left= (x − grid, y) = ( − 1, 0)

a
→
  up= (x, y − grid) = (0,−1)

a
→
  lower_right= (x + grid, y + grid) = (1, 1)

a
→
  upper_right= (x + grid, y − grid) = (1,−1)

a
→
  lower_left= (x − grid, y + grid) = ( − 1, 1)

a
→
  upper_left= (x − grid, y − grid) = ( − 1,−1)

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

(21)

Therefore, in this paper, a potential field reward function is

proposed in combination with the APF method, the reward
Frontiers in Marine Science 08
function is expressed as Equation 22:

rt4 =as
→
· F(s)

→ ¼ as
→
��� ��� F(s)→��� ��� cos q (22)

where the reward rt4 is the dot product of the vector as
→
and

vector F(s)
→
, the vector as

→
is the action taken by the agent in the state

s, vector F(s)
→

is the potential force on the agent in the state s, cos q
is the cosine of the angle between two vectors, when 0 < qj j < p

2 , the

reward rt4 is positive, when p
2 < qj j < p , the reward is negative.

Figure 6 shows the reward rt4 distribution. In the situation of the

Figure 6, supposing the APF force is the unit, the angle q is p
6 , and

the action vectors are defined by the Equation 21.

Equation 22 demonstrates the relationship between action and

reward: the reward increases when the agent’s action direction

aligns with the artificial potential field; The reward decreases as the

action deviates from the potential field’s guidance; the reward

transitions to negative values if the agent’s motion opposes the

potential field direction. Through the guidance of the artificial

potential field, the agent can obtain a feasible path more quickly.
3.2 APF-RADQN framework for USVs

1. Deep Neural Networks: The DQN algorithm uses deep neural

networks (DNN) to approximate the action value function (Hadi

et al., 2022). In addition, both the Q-evaluation network and the Q-

target network use the same DNN network structure. The DNN

structure consists of an input layer, several hidden layers and an

output layer. The network parameters are trained through
FIGURE 6

Distribution of rewards.
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supervised learning. The input to the neural network consists of two

parts: 1) the environmental information collected by the sensors

and 2) the positional information of the USV. These inputs are

processed through the fully connected layer and finally the

computed results are output to the output layer. The output layer

gives the Q-values of all executable actions and finally selects the

action with the largest Q-value as the output of the network. In this

network structure, the rectified liner unit (ReLu) function is used as

an activation function between the input layer and each

hidden layer.

The ReLu function can be expressed as Equation 23:

s(x) =
x, x > 0

0, x ≤ 0

(
(23)

To improve the learning efficiency of the DNN, the adaptive

moment estimation (Adam) algorithm is used to optimize the

learning rate. The Adam optimizer enables adaptive updating of

the learning rate (Chen et al., 2024). Meanwhile, Adam optimizer

introduces a dynamic term to improve the stochastic gradient

descent of the neural network. Subsequently, the current network

is optimized through integration with the gradient explosion

prevention method, thereby enhancing the predictive capability of

the DQN algorithm.

2. Network reward-averaging strategy: as a key factor in

reinforcement learning, rewards influence the learning efficiency

and eventual convergence of the algorithm (De Moor et al., 2022).

Agents continuously acquire rewards in their interactions with the

environment and store these rewards in the experience replay

buffer. During the network training process, these reward-

contained experiences are also continuously used as training

inputs in the process of optimizing the deep network. Recent

studies show that optimizing the reward calculation in the DRL

training process can speed up learning and improve the

convergence of the network. (Naik et al., 2019; Sutton and Barto,

2020). To reduce the variance of the reward signal, the reward in

each training step subtracts from the average reward. In the DQN

algorithm, the network is updated by computing the temporal

difference (TD) error between the Q-evaluation and Q-target

values. Q-target value is calculated by reward and discounted

action value. Therefore, when calculating the Q-target value and

TD error, the reward obtained from the reward-averaging strategy

can replace the original reward received from the experience. The

Q-target network and the loss function, Equations 7, 8 can be

rewritten as Equations 24, 25:

Q0
target = r − rm + gmax

a
Q(s0, a; q−) (24)

L(q) = E((Q0
target − Qeval)

2) (25)

where Q0
target is the output of the target network subtracting the

mean value of the rewards, and rm is the mean value of the

historical rewards, which can be expressed by the Equation 26:

rmt+1 = rmt + hmean(d ) (26)
Frontiers in Marine Science 09
where h is the learning coefficient of the reward mean, d is the

difference between the Q0
target value and the Qeval value, r is the total

reward corresponding to the training step.

3. Path smoothing: The output of the APF-RADQN algorithm

is discrete, while the navigation of the USV is continuous. The

points generated by the algorithm need to be smoothed to make the

paths closer to the actual USV navigation. Bezier curve has the

advantages of high controllability, good path smoothing, and less

occupied computation (Song et al., 2021). Bezier curve is widely

used in curve smoothing related graphical processing work.

Therefore, the introduction of Bezier curve into the framework of

APF-RADQN algorithm can realize the end-to-end smoothing path

planning. the computational expressions of Bezier curve from the

first order to the third order are as Equation 27:

cki =
c0i , i = 0, 1, 2,…, n − k

(1 − t)ck−1i + tck−1i+1 , i = 0, 1, 2,…, n − k

(
(27)

where c0i represents the ith initial control point, cki represents

the ith K-order control point (k=1, 2, …, n), and t represents the

scale factor.

According to Equation 27, the formula for n-order control

points always contains two n-1 order control points, thus the

formula for n-order control points can be finally calculated from

the initial control points. Second-order Bezier curves ensure

smoothness of paths and have faster computation speeds than

higher-order Bezier curves. Therefore, multiple second-order

Bezier curves are used in series for smoothing the path as

Equation 28:

B(t) = (1 − t2)c0i + 2(1 − t)c0i+1 + t2c0i+2, t ∈ ½0, 1� (28)

where c0i , c
0
i+1 and c0i+2 denote three consecutive initialization

control points.

4. USV path planning process: in summary, the flowchart of the

APF-RADQN algorithm applied to USV path planning is shown in

Figure 7. The pseudocode of the algorithm is shown in Algorithm 1 .

The flow of Code 1 is depicted roughly as follows.

Step 1: First, set the training parameters, mainly including state

space, action space, reward, initial learning rate, etc. (line 1); second,

establish Q-evaluation neural network and Q-target neural network;

third, randomly initialize the parameters q and q−, and make q =

q− (line 2).

Step 2: USV explores the environment. The environment is first

reset before the start of each episode (line 5). During the exploration

process, the current state inputs to the Q-evaluation network and

the response action is calculated. The resulting action is executed

according to the e� greedy policy. The USV interacts with the

environment to receive rewards r and the next state s (lines 7-10).

Step 3: Update process of Q-evaluation and Q-target network.

First, the sampled data collected during exploration are saved in the

experience replay buffer, and then a batch of experience data are

randomly selected from the experience replay buffer for updating

the current network (lines 11-15). The Q-target network and the Q-
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evaluation network are computed using empirical data, and then

the error between the networks is computed and updated rm.

Second, the loss function is computed and the parameters of the

Q-evaluation network are updated based on the backpropagation of

the gradient of the neural network. Third, update the parameters of

the Q-target network (lines 17-18).

Step 4: After multiple rounds of training, save the final training

parameters of the network and the USV output optimal path (lines

21-23).
Fron
1: Input: environment map; action set A; learning rate a

; discount factor g ; reward-averaging factor h;

experience replay pool maximum size D; mini-batch M;

APF parameters x,k; exploration probability e.

2: Initialize network parameters q and q−, let q = q−,

initialize policy p, initialize rm, and initialize the

replay buffer.

3: Set maximum episode mmax and maximum step nmax.

4: for episode = 1: mmax:

5: Reset the environment.

6: for step = 1: nmax:

7: Get the state s from environment.

8: Calculate the action value through the

Qeval network.

9: Choose action according to e�greedy algorithm.

10: Receive reward Rt and go to s0.

11: Store transition (s,a,r,s0) into replay buffer d.

12: if d > D:

13: Remove the first transition from

replay buffer.

14: end if

15: Sample a mini-batch transition M from

replay buffer.

16: Calculate the target Q value by (24).

17: Calculate the loss function by (25) and reward

mean by (26).

18: Update the target network occasionally.

19: end for

20: end for

21: Obtain policy p(s) = argmaxa∈A Q(s,a, q−).

22: Smooth the path of USV by (28)

23: Output: The trajectory of the USV
Algorithm 1. APF-RADQN Algorithm.
4 Experimental simulation

In order to verify the feasibility of the proposed APF-RADQN

algorithm, the simulation model of the proposed APF-RADQN

algorithm and the other three path planning algorithms is

established in PyCharm platform, and three 60*60 dimension

grid-based map environments are established for the visualization

of the results. The hyperparameter configurations of the APF-
tiers in Marine Science 10
RADQN algorithm are summarized in Table 1. The operating

system used for testing algorithms is Windows 11. The hardware

configuration: CPU is Intel i9 13900hx, GPU is Nvidia RTX 4060,

8G video memory. The proposed APF-RADQN algorithm is

compared with the baseline algorithm in the same three unknown

obstacle environments to verify the effectiveness and superiority of

the APF-RADQN algorithm.
4.1 Baseline algorithms

Comparison algorithms are described as follows:
1. APF: The APF algorithm quickly and flexibly plans an

effective path by calculating the gradient of the potential

field in the environment. The path trajectory can maintain

a safe distance from obstacles.

2. A*: The A* algorithm accurately guides the robot to explore

the environment by utilizing the principles of breadth-first

search and best-first search. These search methods ensure

the shortest path could be found in the limited state space.

3. DQN: The DQN algorithm obtains empirical data through

the agent’s continuous interaction with the environment,

uses the empirical data to train the deep neural network,

and finally obtains the optimal path through the neural

network. Meanwhile, the state space, action space and

reward function are the same of the proposed APF-

RADQN algorithm.
Based on the advantages of APF algorithm, A* algorithm and

DQN algorithm, the performance of different algorithms for planning

path results in three aspects: 1) path length; 2) path smoothness; and 3)

algorithmic inference time (IT) are evaluated to evaluate the superiority

and effectiveness of the proposed APF-RADQN algorithm.

In addition, the computational complexity of all the compared

algorithms is shown below. The computational complexity of the

proposed APF-RADQN algorithm isO(EP*N), which is the same as

that of the conventional DQN algorithm, where N is the step

number in each episode and EP is the number of episode, The

computational complexity of the A* algorithm is O(N1 logN1),

where N1 denotes the number of nodes. The computational

complexity of the APF algorithm is O(N2*M), where N2 denotes

the number of iterations and M denotes the number of obstacles.
4.2 Environmental simulation experiments
and results

In this paper, three environments A, B, and C with different

terrain features and obstacle densities are designed and tested. USV

didn’t learn three environments in advance to evaluate the

performance of the proposed APF-RADQN algorithms and

compare algorithms. First, three key performance indicators

(KPIs) are established to evaluate the performance of various path

planning algorithms. KPIs include average path length, average
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number of path corners, and algorithm inference time. The planned

paths of these 4 algorithms in 3 different simulation environments

are given in Figures 8–10, and the KPI values are given in Table 2.
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4.2.1 Path analyses of environment A
In Figure 8, the distance between SP and TP is relatively long in

environment A. Trap areas do not easily impede the agent. All four

algorithms can find collision-free routes. However, there are some

differences in details, where the APF algorithm requires the most

steps and the A* algorithm has the greatest risk of collision.

In the APF algorithm, shown in Figure 8a, the target point

continuously attracts the agent, while the agent experiences a

repulsive force only near obstacles. This mechanism explains why

the path generated by the APF algorithm is closer to obstacles than

the APF-RADQN generated one during initial navigation phases.

With the approaching of the target point, the gravitation force is

declared. Thus, the agent in the APF algorithm stays away from

obstacles gradually. The comparison with the A* algorithm is

shown in Figure 8b. Because the A* algorithm is only searching

nearby points at each point, the path planned by the A* algorithm

can’t maintain enough safety distance to obstacles when the agent

passes through obstacles, as shown in Figure 8c. The two paths

generated by the DQN and APF-RADQN algorithms are similar in

nature. However, the APF-RADQN algorithm can generate a

smoother path.

4.2.2 Path analyses of environment B
In Figure 9, the distance between SP and TP is relatively short in

environment B. Trap areas do not easily impede the agent. The
FIGURE 7

Algorithm flow chart.
TABLE 1 Algorithm parameters.

Name of parameters Value

Action space size 8

Learning rate a 0.001

Discount factor g 0.96

e�greedy value e 0.01

Replay buffer size 30000

Mini-batch size 64

Target network update step 20

Hidden layers size 4

Number of neurons 256

Activation function Relu

APF parameters (x, k, r) (0.6, 0.05, 2)

reward mean factor h 0.001

(l1, l2, l3) (10, -10, 10)
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FIGURE 8

Planned path in environment A. (a) Compared with the APF algorithm, (b) Compared with the A* algorithm, (c) Compared with the DQN algorithm.
FIGURE 9

Planned path in environment B. (a) Compared with the APF algorithm, (b) Compared with the A* algorithm, (c) Compared with the DQN algorithm.
FIGURE 10

Planned path in environment C. (a) Compared with the APF algorithm, (b) Compared with the A* algorithm, (c) Compared with the DQN algorithm.
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obstacles in the upper left map are distributed symmetrically. In this

environment, all four algorithms can generate the collision-free

path to reach the target point, while the APF algorithm generates

the longest path, and the A* algorithm has the worst smoothness.

The symmetrical zone makes the APF algorithm set a much

broader repulsive force range than usual in case of falling into zero

potential energy points. But these parameters setting leads to the

longest path in this environment, as shown in Figure 9a. The other

three algorithms have a similar beginning path, but the A*

algorithm’s planned path is quite near obstacles because of

its algorithm searching method (Figure 9b), and the DQN

algorithm generated some unnecessary turns near the target

point (Figure 9c).

4.2.3 Path analyses of environment C
A more complex environment than the previous two maps is

shown in Figure 10. The distance between SP and TP is relatively

short in environment C. The obstacles around the SP are formed as
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a trap that easily impedes the agent. In this environment, all four

algorithms can generate a collision-free path to reach the target

point. However, the A* algorithm fell into the trap and had the

longest path.

The agent’s movements at the start need to move in the opposite

direction to the target point. This detour examines the interface

ability of all four algorithms. As shown in Figure 10a, the APF

algorithm can find a way to get out of the initial obstacle because of

the combined force. However, multiple obstacles complicate the

potential field, resulting in a lot of meaningless turns in the path.

Figure 10b shows the dilemma of the A* algorithm at the early stage.

Due to the research method of the A* algorithm, the agent cannot

foresee the block between the target point and itself. This

disadvantage makes the agent get into the trap at the very

beginning. Both the DQN algorithm and the APF-RADQN

algorithm show outstanding interface ability in Figure 10c.

However, the DQN algorithm is still taking more turns than the

APF-RADQN algorithm.
TABLE 2 Algorithmic KPIs.

Environment No. Algorithm name
KPIs

Average path length (m) Number of corners Inference times (s)

Env.1

APF-RADQN 96.55 6 0.261

DQN 99.28 7 0.239

APF 102.11 10 0.814

A* 100.98 9 1.484

Env.2

APF-RADQN 75.04 4 0.154

DQN 76.5 4 0.136

APF 82.04 5 0.612

A* 78.03 4 0.775

Env.3

APF-RADQN 74.48 3 0.282

DQN 78.21 4 0.277

APF 80.44 8 1.78

A* 83.38 6 1.91
FIGURE 11

Return curves. (a) Return in environment A, (b) Return in environment B, (c) Return in environment C.
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4.2.4 Convergence analyses
Figure 11 shows the training return curves of the DQN and

APF-RADQN algorithms in three different environments. The

action-valued network of the agent has not been sufficiently

trained in the early stage of training, and the derived strategies

are not reasonable enough, so the return curves fluctuate greatly.

Subsequently, the USV trains the neural network using the

empirical knowledge gained from exploring the environment,

then the output of the neural network is gradually close to the

real value, and finally, a more reasonable strategy is obtained, and

the reward curves are stabilized. Since the APF-RADQN algorithm

proposed introduces reward averaging to improve the network

error, fully utilizes the rewards from historical experience, and

balances the error brought by accidental exploration, the return

curve can converge faster in the early stage of training. As the

complexity of the environment increases, both DQN and APF-

RADQN need more exploration and training to learn the optimal

strategy and achieve return curve stabilization. Although the DQN

algorithm is able to achieve return curve stabilization after a period

of continuous learning, the overestimation of the Q-value leads to

slower convergence. By comparing the trend of return values of the

proposed APF-RADQN and DQN, it can be seen that the number

of iterative steps required for the APF-RADQN algorithm to reach

stable reward values in three different environments is reduced by

about 7.2%, 13.8% and 10.1%, respectively. Compared with the

DQN algorithm, the comparison results show that APF-RADQN

has higher learning efficiency, global search capability and

excellent convergence.
5 Conclusion

In this paper, an algorithm based on the APF-RADQN

framework, used for ocean observation missions of USVs, is

proposed to address the USV path planning problem. First, a

comprehensive reward function combined with the APF

algorithm is designed after establishing the USV path planning

MDP models, which guides the USV to reach the target area quickly

while ensuring that the USV maintains a safe distance from the

obstacles. Then, within the framework of the APF-RADQN, a Q-

value error calculation method is incorporated, which improves the

overall convergence speed and solving capability of the algorithm.

In addition, a Bezier curve algorithm is introduced to smooth the

discrete movements of the proposed path planning algorithm.

Finally, the APF-RADQN-based algorithm is validated in three

environments. Compared with DQN, APF algorithm and A*

algorithm, the proposed algorithm can find shorter and safer

paths and enhance the efficiency of ocean observation missions.

Nevertheless, the proposed algorithm still has some limitations.

The algorithm mainly considered the static environments in

ocean observation missions, which less consider the dynamic

environments and environmental factors such as wind and

current. These limitations may influence its usage in complex

marine environments. Moreover, the computation burden of the
Frontiers in Marine Science 14
proposed algorithm is quite high, leading to a long interface time.

The Future work will focus on improving the algorithm

performance in complex ocean observation missions, including

using real-time sensor detection to avoid dynamic obstacles, path

planning under uncertain environmental perturbations, and the

validation of practical algorithms in hardware-closed-

loop experiments.
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