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marine snail Tegula species
Brian Applegate1, Meghan Burkhart1, Hunter Caddow1,
Brighton Gover1, Mary-Frances Kantola1,
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Ray A. Enke3 and Lani U. Gleason1*

1Department of Biological Sciences, California State University (CSU) Sacramento, Sacramento,
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In this era of climate change there is an urgent need to better understand the

mechanisms that allow organisms to thrive vs. fail in thermally stressful

environments. In particular, there is growing evidence that the “holobiont”

(host animal + microbiome community of bacteria, fungi, and archaea that live

in an organism) affects how organisms respond to environmental stressors such

as temperature and thus should be studied further. Rocky intertidal species such

as Tegula snails are ideal organisms for these types of studies because closely

related species exhibit variability in heat tolerance. Here, we assess potential

microbiome bacterial contributions to thermal tolerance in Tegula eiseni, Tegula

funebralis, and Tegula gallina that co-occur in southern California but occupy

different intertidal heights that vary in thermal stress exposure. 16S sequencing of

the V4 region of individuals of each species exposed to control conditions

(ambient temperature = 15°C) or a single short duration 5.5-hour heat stress

(maximum temperature = 34°C) revealed distinct bacterial communities across

species. Moreover, unique bacterial genera of the microbiome were significantly

enriched (more abundant) in each Tegula species. Lutimonas, Polaribacter, and

the exopolysaccharide (EPS)-producing bacteria Pelagicoccus were most

abundant in T. gallina, the species that occupies the highest intertidal heights

and thus experiences heat stress most frequently. These results suggest that

microbiome-derivedmetabolites such as EPS could be contributing to the higher

thermal tolerance of T. gallina.Overall, this study demonstrates that the bacterial

microbiome should be considered when examining mechanisms of thermal

tolerance in marine invertebrates.
KEYWORDS

microbiome, heat stress, 16S sequencing, marine mollusk, Tegula eiseni, Tegula
funebralis, Tegula gallina
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Introduction

Climate change is on track to cause a sixth mass extinction

event. Warming temperatures have thus far caused the extirpation

of 400 species (IPCC, 2022), and one third of marine animals could

become extinct in the next 300 years (Penn and Deutsch, 2022).

Thus, there is an urgent need to better understand the mechanisms

that differentiate organisms that thrive vs. fail in thermally stressful

environments. In particular, there is growing recognition among

organismal biologists that the “holobiont” (host animal +

microbiome community of bacteria, fungi, and archaea that live

in an organism) functions as an integrated unit (Lynch and Hsiao,

2019) and affects how organisms respond to environmental

stressors such as temperature (Alberdi et al., 2016; Hector et al.,

2022). Specifically, the microbiome is hypothesized to be associated

with thermal tolerance in a diversity of organisms including lizards

(Moeller et al., 2020), flies (Moghadam et al., 2017; Price et al.,

2025), aphids (Dunbar et al., 2007), corals (de Breuyn et al., 2025;

Ziegler et al., 2017), frogs (Fontaine et al., 2022), and several types of

algae (Quigley et al., 2020; Xie et al., 2013).

Specific bacteria of the microbiome can affect thermal tolerance

of the host by stimulating increased expression of stress response

pathways genes, such as heat shock proteins (Brumin et al., 2011;

Nakagawa et al., 2016; Porras et al., 2020) or by producing

protective metabolites and proteins (Burke et al., 2010; Dunbar

et al., 2007; Fontaine and Kohl, 2023). For example, some bacteria

produce exopolysaccharides (EPS), complex sugar polymers

excreted into the external environment that can protect against

extreme stress conditions such as high temperatures, low nutrients,

drought, salinity stress, and antimicrobial agents (Liu et al., 2013;

Nichols et al., 2005; Wagh et al., 2022; Wang et al., 2019). There is

evidence in tomato plants that EPS produced by plant-associated

plant-growth promoting rhizobacteria reduce the negative effects of

heat stress in the host plant (Morcillo and Manzanera, 2021).

Whether EPS produced by the microbiome could also be playing

a role in the thermal tolerance of marine invertebrate hosts

remains unknown.

Rocky intertidal organisms are commonly studied when

examining mechanisms of thermal tolerance because temperatures

in the intertidal vary across small spatial scales and microhabitats,

enabling comparisons of the same or related species that regularly

experience different degrees of thermal stress. Previous work

investigating microbiome differences in the intertidal has

demonstrated that the host microbiome varies across these

microhabitats and across temperature exposures. For example, 80%

of the bacterial assemblage differs across bivalve clams Ruditapes

philippinarum outplanted to three different intertidal levels that vary

in emersion time (Offret et al., 2020). The cirri microbiome of the

intertidal barnacle Semibalanus balanoides also varied across low vs.

high intertidal microhabitats, and Fucus algae congeners occupying

different heights of the intertidal zone vary in their microbiome

composition and structure (Quigley et al., 2020). Similar differences

have also been observed when comparing the microbiome of

intertidal mollusks across temperature treatments: the bacterial

community composition of the intertidal Sydney rock oyster
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Saccostrea glomerata changes following exposure to elevated heat

wave temperatures (Scanes et al., 2023). Microbial communities also

changed in response to elevated temperature in the mussels Mytilus

galloprovincialis, Perna canaliculus, and Mytilus coruscus (Ericson

et al., 2024; Li et al., 2019; Zhu et al., 2024).

In this study we focus on the Tegula genus of intertidal marine

snails on the west coast of the United States, looking specifically at

T. eiseni, T. funebralis, and T. gallina. These species are well

positioned to address questions regarding biological responses to

climate change because they occupy overlapping but distinct

geographic ranges and ecological niches (Hellberg, 1998). All

three species co-occur in southern California. T. eiseni occupies

the shallow subtidal zone (Schmitt, 1982) and is thus submerged

underwater more and exposed to extreme high air temperatures less

than the other two species. Conversely, T. gallina occupies the high

intertidal zone, coinciding with more frequent and prolonged

exposure to thermally stressful high air temperatures. T.

funebralis, whose tidal height ranges from +0.4 to +2.0 m above

mean lower low water (MLLW) in southern California (Gleason

and Burton, 2016b), occupies the mid to high intertidal zone. T.

funebralis and T. gallina co-occur at roughly the same tidal heights

in La Jolla and Bird Rock in San Diego County, California, but the

range of T. gallina extends higher (authors’ unpubl. data). The

phylogeny (Hellberg, 1998), heat shock response (Tomanek, 2002,

2005; Tomanek and Sanford, 2003; Tomanek and Somero, 1999,

2000), and transcriptome-wide response to heat stress (Gleason and

Burton, 2015) of these species are well characterized, and the field

microbiomes of T. eiseni and T. funebralis in southern California

have also been examined (Neu et al., 2019). However, to date no

work has been done comparing the microbiome of these species

exposed to varying temperatures. Thus, our knowledge about how

host species and heat stress affect the Tegula microbiome

remains limited.

The objective of this study was to examine whether the

microbiome contributes to thermal tolerance in Tegula intertidal

snail species that occupy different tidal heights and thus experience

distinct levels of thermal stress in the field. We exposed individuals

of each Tegula species (T. eiseni, T. funebralis, and T. gallina) to

control vs. heat stress conditions simulating a single low tide event

and performed 16S sequencing to characterize the bacterial

community present in each condition. Specifically, we used the

microbiome datasets to address the following questions: (1) does the

bacterial community differ across Tegula species?; (2) does the

bacterial community differ across control vs. heat stress

treatments?; and (3) which specific bacteria are enriched (i.e.,

significantly more abundant) in thermally tolerant and thermally

sensitive Tegula species?
Methods

Microbiome sample preparation

Medium sized Tegula eiseni, Tegula funebralis, and Tegula

gallina adults 15-20mm in shell diameter (n = 50 per species)
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were collected in the summer of 2022 from the southern California

site Bird Rock in San Diego County (32°48’N, 117°15’W; Figure 1).

Ideally Tegula would be collected from multiple southern California

locations, but as of 2022, sites that have been used for previous

research (Gleason and Burton, 2013, 2016b) no longer support

robust enough populations of T. funebralis for collection from the

field (Sato, 2001). Within 12 hours of collection from Bird Rock,

snails were transported to California State University, Sacramento

(Sac State) in plastic Nalgene bottles ~one quarter filled with

seawater from the collection site. Bottles were stored in a cooler

on ice to prevent extreme temperature fluctuations during

transport. At Sac State snails of all three species were moved to a

flow-through recirculating saltwater aquarium system containing

artificial seawater created using Instant Ocean Sea Salt mixed with

non-sterilized DI water to 32 ppt. All tanks were filled

approximately 80% with water, which allowed Tegula individuals

of all species to position themselves either fully submerged

underwater or towards the top portion of the tank out of water,

in air. The aquarium system was set to 15°C (with an allowable

offset of 2°C) and no temperature deviations above 17°C occurred.

Snails of all three species were regularly fed dried green algae sheets

ad libitum. Before the start of any experiments, snails (n = 50 per

species) were kept at these temperature and food conditions for a

common garden acclimation period of three weeks. Snails not used

in the experiments for this current study were used for other

projects in the Gleason Lab.

Following the common garden period T. eiseni, T. funebralis, and

T. gallina individuals were exposed to either 1) control 15°C

conditions (n = 3 per species) or 2) a 34°C heat stress over 5.5

hours to simulate a single low tide event, following the same 3°C

increase per 30 min ramping protocol as described in Gleason and

Burton, 2013 (n = 3 per species). Heat stress and control exposures

were conducted in air to simulate low tide conditions Tegula

individuals experience in the field. Each individual snail was placed

in an empty, sterile, capped 50 mL falcon tube that was then placed in

a temperature-controlled water bath to reach the desired
Frontiers in Marine Science 03
experimental temperatures (either 15°C for controls or 34°C for

heat stress). A foam tube holder was used to float each falcon tube at

the top of the water line and to ensure that each tube was held

underwater and thus exposed to the desired temperatures. At the

conclusion of the control or heat stress exposures, snails were frozen

in liquid nitrogen and kept at -80°C. Samples were collected

immediately after the 5.5-hour temperature exposure because a

heat stress event of this duration is sufficient to cause mortality for

all Tegula species, albeit at different maximum temperatures (authors’

unpubl. data). Therefore, this study examines the potential

microbiome responses correlated with these survival differences.

For sample processing, the shell of each frozen Tegula individual

was removed with an ethanol-cleaned woodworking vise, the

remaining body was rinsed with ethanol to remove surface bacteria,

the gonads and muscular foot were removed, and DNA was extracted

from 250 mg of the remaining whole-body tissue using a Qiagen

DNeasy PowerSoil Pro kit. This tissue processing ensured that 1)

microbiome differences based on gonadal sex differences did not

influence the data, and that 2) the microbiome living in/on organs

such as the gill, stomach, heart, etc. were examined (as opposed to the

exterior surface bacteria on the muscular foot). A previous study

found no differences in the microbiome of individual organs in T.

funebralis and T. gallina (Neu et al., 2019), and thus whole-body

tissue samples were used here. Using whole body samples, as opposed

to a single organ such as gill tissue that is in direct contact with the

surrounding seawater, also minimizes the likelihood that the

microbiome recovered from the Tegula hosts is heavily influenced

by the ambient seawater microbiome (Li et al., 2022). No negative

controls were used during DNA extraction because swabbing the air

or an empty microfuge tube is not a true negative control for a whole-

body tissue sample (Hornung et al., 2019); however, we were

consistent when taking all samples, which is important for

minimizing technical variation and is especially important when a

true negative control is difficult to obtain (Vandeputte et al., 2017).

All extracted DNA from 18 total samples was quantified with a UV-

Vis Nanodrop spectrophotometer (range 51.2 – 329.9 ng/uL).
FIGURE 1

Graphical representation of the experimental set up from field collection of T. eiseni, T. funebralis, and T. gallina snails to tissue preservation
following exposure to heat stress or control conditions. Picture of aquaria tanks by Andrea Price. Created in BioRender. Gleason, L. (2025) https://
BioRender.com/bijkuqa.
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16S sequencing

A 350 bp region of the bacterial V4 region of the 16S rRNA gene

was amplified using indexed forward (5’-GTGCCAGCMGC

CGCGGTAA-3’) and reverse (5’-GGACTACHVGGGTWTCTAA

T-3’) primers (Kozich et al., 2013) using the following protocol: 94°

C for 3 min, 35 cycles of 94°C for 45 sec, 50°C for 60 sec, 72°C for 90

sec, and finally 72°C for 10 min. PCR reactions were performed in

25 uL volumes and contained 12.5 uL 2x Phusion High-Fidelity

DNA Polymerase Master Mix (NEB), 5 uL ddH2O, 1.25 uL of each

primer (10 uM), and 5 uL of template DNA. Amplifications were

verified on a 1% agarose gel with GelRed and pooled. A double-

sided bead cleanup using Cytiva Sera-Mag SpeedBeads Carboxyl

Magnetic Beads (Fisher Scientific) was carried out to remove

primer-dimers and a low amount of off-target larger PCR

products. Quality and concentration of the pooled library was

checked using a Bioanalyzer (Agilent, Santa Clara, CA, USA) and

NEB’s Library Quant Kit for Illumina following the manufacturer’s

standard protocol. The library representing 18 total samples was

then sequenced on an Illumina MiniSeq, yielding 300bp PE reads,

using a mid-output reagent cartridge at the James Madison

University Center for Genome and Metagenome Studies

(CGEMS). Before loading, the library was combined with

Illumina’s PhiX control (30:70 16S:PhiX) to ensure a high-quality

run despite the low diversity of the 16S library.
Sequence read processing and bacterial
identification

All 16S rRNA amplicon sequences were processed using the

QIIME2 bioinformatics pipeline as implemented in the Purple Line

workflow of DNA Subway that is designed for analyzing

microbiome metabarcoding data (Bolyen et al., 2019). Before

bioinformatics analysis all primers and sequencing adapters were

removed. DADA2 (Callahan et al., 2016) was used to trim low

quality reads using the following parameters: truncLenF = 250;

truncLenR = 231. After trimming to retain only high-quality reads,

all samples were rarefied to a maximum depth of 33,529 sequences.

We used a sampling depth of 3933 and the classifier Greengenes2

(515F/806R) to identify bacterial taxa in each sample. The

Greengenes2 classifier was chosen due to its compatibility with

NCBI taxonomy, optimization for 16S rRNA amplicon sequencing,

and design to work seamlessly with QIIME 2 workflows and

plugins. The plot_bar function of the phyloseq package was used

to visualize the relative abundances of the 25 most common

bacterial genera with abundance counts of 400 and above.
Assessment of microbiome differences

Alpha diversity was calculated in the metabarcoding Purple Line

workflow of DNA Subway using Pielou’s Evenness (Pielou, 1966) and

Faith’s Phylogenetic Diversity (Faith, 1992), following the approach of

previous microbiome papers such as O’Connell et al., 2018. Pielou’s
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Evenness assesses, independent of sample size, the relative abundance

distribution of species, with a higher value indicating more evenness

(i.e., a relatively equal number of bacteria in each taxon). Faith’s

Phylogenetic Diversity assesses how many phylogenetically diverse

bacterial taxa are present, with a higher value indicating more richness

(i.e., more evolutionarily distinct bacterial taxa). Pielou’s Evenness and

Faith’s Phylogenetic Diversity are appropriate alpha diversity metrics

for our dataset because, unlike alternative metrics such as Chao1 and

Observed ASVs, these chosen metrics do not depend on singleton

values that are removed as part of the denoising algorithm during

DADA2 processing (Cassol et al., 2025). Moreover, given that our

sample size per treatment group is relatively small, Faith’s

Phylogenetic Diversity is an appropriate metric for this study

because it requires a lower sample size to identify statistical

significance compared to alternative alpha diversity metrics such as

Shannon and Chao1 indices (Kers and Saccenti, 2022).

We used Bray-Curtis distances to assess beta diversity of

samples. NMDS plots were created using the metaMDS function

in the R package vegan (Oksanen et al., 2001). To determine

whether species or treatment significantly affected the

microbiome, we conducted a Permutational multivariate analysis

of variance (PERMANOVA) using the adonis2 function in the R

package vegan with 9,999 permutations. We used the betadisper

function of the vegan package to assess PERMANOVA results for

heterogeneity of variance. We used the linear discriminant analysis

Effect Size (LEfSe) tool (Segata et al., 2011) as implemented in the R

package yingtools2 version 0.0.1.174 (Taur, 2024) to identify specific

microbial taxa that are enriched, or found significantly more often,

in each Tegula species compared to the others. The R package

ggplot2 was used to generate and customize all figures. Lastly, for

each treatment (control vs. heat stress), bacterial genera that are

found 1) only in a single species, 2) in two of the three species, and

3) in all three species were identified and visualized in Venn

diagrams using the onl ine tool avai lable at https : / /

bioinformatics.psb.ugent.be/webtools/Venn/.
Results

Microbiome comparison across species
and treatments

A total of 348,662 reads were sequenced across all 18 samples (9

total control samples plus 9 total heat stress samples), and 284,649

reads were retained after all filtering steps. From these filtered reads

1406 total amplicon sequence variants (ASVs) were identified

(Figure 2). The dominant taxa identified in Tegula samples were the

phylum Proteobacteria. Regarding alpha diversity, average (± SEM)

Pielou’s Evenness values for T. eiseni, T. funebralis, and T. gallinawere

0.63 ± 0.042, 0.07 ± 0.041, and 0.69 ± 0.027, respectively (Figure 3A).

Average (± SEM) Faith’s Phylogenetic Diversity values for T. eiseni, T.

funebralis, and T. gallina were 11.27 ± 0.59, 15.19 ± 1.09, and 14.19 ±

1.42, respectively (Figure 3B). There were no significant differences in

alpha diversity across the three Tegula species using either Pielou’s

Eveness or Faith’s Phylogenetic Diversity indices (Kruskal-Wallis
frontiersin.org
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[pairwise], p>0.05; Figure 3). Therefore, there are no significant

differences in the relative abundance distribution of bacteria

(Pielou’s Evenness) or in the amount of evolutionarily distinct

bacterial taxa (Faith’s Phylogenetic Diversity) across the three

Tegula species. PERMANOVA results indicate that the microbiome

communities were significantly different across the three Tegula

species (df = 2, F = 2.758, p = 0.0016, and betadisper p = 0.392).

Control vs. heat stress treatments were not significantly different from

each other (df = 1, F = 1.958, p = 0.0511, and betadisper p = 0.0568;

Figure 4), although the interaction between species and treatment was

significant (df = 2, F = 1.789, p = 0.0370).
Enriched and unique microbial taxa

Significantly enriched bacterial genera with higher relative

abundance were identified in each of the three Tegula species
Frontiers in Marine Science 05
(Table 1) . For T. eiseni , the genera Tunicat imonas ,

Halomicronema, and Mycobacterium were enriched (linear

discriminant analysis [LDA] log scores = 2.89, 3.24, and 4.90,

respectively; Figure 5). T. funebralis had four enriched bacterial

genera: Polynucleobacter, Shewanella, Fluviicola, and Rubritalea

(LDA log scores = 2.67, 3.59, 3.73, and 3.89, respectively). Lastly,

the three bacterial genera Pelagicoccus, Polaribacter, and Lutimonas

(LDA log scores = 2.12, 3.26, and 3.52, respectively) were

significantly more abundant in T. gallina. These enriched bacteria

are unlikely to be a sampling artifact of the ambient environment

because they occur at relatively low frequencies (Figure 2); in

previous Tegula microbiome studies, most bacterial OTUs were

not shared between T. funebralis and algal and water samples, and

the OTUs that were shared were the most abundant ones (Neu

et al., 2019).

As shown in Figure 6A, under control conditions T. eiseni had

the least unique bacterial taxa (36 genera, 26.5% of the total genera
FIGURE 3

Alpha diversity across the three Tegula species calculated using Pielou’s Evenness (A) and Faith’s Phylogenetic Diversity (B) metrics.
FIGURE 2

Taxa abundance plot of Tegula microbiomes under control (C) and heat stress (HS) conditions. Each vertical bar represents a different individual (TE,
T. eiseni; TF, T. funebralis; TG, T. gallina), with bars grouped according to 1) species and 2) condition (n = 3). Each bar represents the relative
abundance of bacterial taxa in that individual’s microbiome. Only taxa identifiable down to the genus level and with more than 400 counts are
included here.
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identified; Supplementary Table 1), including three members of the

Flammeovirgaceae family. In contrast, T. gallina had the most

unique bacterial taxa (50 genera, 38.2% of the total genera

identified). Unique taxa in T. gallina include two members of
Frontiers in Marine Science 06
each of the following families: Alcaligenaceae, Cytophagaceae,

Peptostreptococcaceae, and Rhodobacteraceae. Under heat stress

conditions this pattern was different: T. gallina had the least

unique bacterial taxa (20 genera, 15.4% of the total genera
FIGURE 4

Non-metric multidimensional scaling (NMDS) plot of Tegula microbiomes under control (circles) and heat stress (triangles) conditions. n = 3 for each
treatment group (e.g., T. eiseni control). Each data point represents an individual snail, with T. eiseni shown in pink, T. funebralis in green, and T.
gallina in blue.
TABLE 1 Average abundance in raw number of sequences (± SEM) of bacteria genera identified in linear discriminant analysis (LDA) to be significantly
enriched in (i) T. eiseni, (ii) T. funebralis, and (iii) T. gallina..

Bacteria genus
T. eiseni T. funebralis T. gallina

Control Heat stress Control Heat stress Control Heat stress

Significantly enriched in T. eiseni

Mycobacterium 1728.0 ± 960.53 2737.7 ± 2048.61 0 ± 0 0 ± 0 3 ± 3.0 0 ± 0

Halomicronema 136.7 ± 124.26 8.67 ± 7.69 0 ± 0 14 ± 12.06 0 ± 0 0 ± 0

Tunicatimonas 2.33 ± 1.45 19.33 ± 15.51 0 ± 0 0 ± 0 0 ± 0 0 ± 0

Significantly enriched in T. funebralis

Rubritalea 52.0 ± 30.45 0 ± 0 97.0 ± 29.61 679.0 ± 282.01 79.0 ± 32.88 106.0 ± 50.74

Fluviicola 18.0 ± 9.45 0 ± 0 103.0 ± 20.25 545.3 ± 356.36 1.33 ± 1.33 0 ± 0

Shewanella 0 ± 0 0 ± 0 271.0 ± 37.61 60.0 ± 34.08 1.33 ± 1.33 9.67 ± 7.31

Polynucleobacter 0 ± 0 0 ± 0 3.67 ± 1.86 19.67 ± 13.42 2 ± 1.15 2.33 ± 2.33

Significantly enriched in T. gallina

Lutimonas 6.67 ± 6.67 4.0 ± 2.65 199.0 ± 62.39 47.67 ± 15.07 154.7 ± 63.53 270 ± 183.70

Polaribacter 5.0 ± 5.0 6.33 ± 3.48 86.0 ± 77.54 21.33 ± 4.98 23.0 ± 15.31 37.67 ± 16.67

Pelagicoccus 0 ± 0 0.67 ± 0.67 0 ± 0 0 ± 0 1.67 ± 0.88 7.0 ± 5.57
For each species, data for control and heat stress conditions are presented in separate columns.
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identified; Supplementary Table 2), including two members each of

the Flavobacteriaceae and Verrumicrobiaceae families. Heat-

stressed T. funebralis had the most unique bacterial taxa (61

genera, 32.3% of the total genera identified), including three

members each of the families Moraxellaceae and Pirellulaceae

(Figure 6B). There were three bacterial genera found only in T.

eiseni under both control and heat stress conditions: Owenweeksia,

Tunicatimonas, and Jannaschia. Five bacterial genera were only

found in T. funebralis under both control and heat stress conditions:

Clostridium, Aquicella, Croninitomix, Plantomycete, and
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Roseovarius. There were no taxa present only in T. gallina under

both control and heat stress conditions.
Discussion

The microbiome of the intertidal marine snails T. eiseni, T.

funebralis, and T. gallina significantly differs across species. These

differences are driven by both unique (i.e., bacteria that are only

present in one of the three Tegula species) and enriched (i.e.,
FIGURE 6

Number of unique vs. shared bacteria genera identified in each Tegula species under control (A) and heat stress (B) conditions.
FIGURE 5

Linear discriminant analysis (LDA) log scores for the significantly enriched (i.e., more abundant) bacterial genera in each Tegula species (T. eiseni in
pink, T. funebralis in green, and T. gallina in blue).
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bacteria that are significantly more abundant in one of the three

Tegula species) bacterial genera.
Microbiome communities significantly
differ across species

Proteobacteria is the most common bacterial phyla across all

three Tegula species – this is consistent with previous work in

marine animals such as snails, limpets, red abalone, corals,

copepods, fish, and barnacles (Bayer et al., 2013; Brown et al.,

2020; Dorosz et al., 2016; Dudek et al., 2014; Givens et al., 2015; Neu

et al., 2019; Ousley, 2023). However, at the genus level the microbial

community composition significantly varies across Tegula species.

Notably, these differences persisted after a common garden

acclimation period in which all individuals were housed in the

same flowthrough aquarium system, ate the same dried algae diet,

and were exposed to the same submersion times in the same

recirculating artificial seawater. Overall, these differences across

species are consistent with previous work in Tegula

(Chlorostoma) eiseni and Tegula (Chlorostoma) funebralis

examined directly from the field from La Jolla, California (Neu

et al., 2019). Our results also match findings in other marine species

such as sponges and algae. De Castro-Fernández et al. (2023)

reported that in four different demosponge species, samples

clustered together in non-metric multidimensional scaling

(NMDS) space according to species (De Castro-Fernández et al.,

2023). Moreover, in an experimental design similar to this current

study, the microbiome composition and structure significantly

varied across three Fucus algae congeners occupying different

heights of the intertidal zone and thus experiencing different

levels of abiotic stress (Quigley et al., 2020). Notably, our results

provide evidence for phylosymbiosis, in which the microbiomes of

more closely related species are more similar to each other. As seen

in Figure 4, in multivariate NMDS space the microbiome of T. eiseni

is distinct from the other two species T. funebralis and T. gallina,

who are more closely related to each other (Hellberg, 1998). Such

phylosymbiosis has also been observed when comparing the

microbiomes of Chlorostoma (now Tegula) and Littorina

intertidal snails (Neu et al., 2019) and of different tropical sponge

species (Easson and Thacker, 2014).

Evolutionary codivergence of the microbiome with these Tegula

species is one possible explanation for microbiome differentiation,

but several other explanations, such as habitat filtering, should also

be considered and investigated further (Mazel et al., 2018).

Microbial communities are sensitive to environmental parameters

such as pH and temperature; potential differences in the gut

environment between T. eiseni, T. funebralis, and T. gallina could

be contributing to their distinct microbiomes (Neu et al., 2019). Neu

et al. also hypothesized that field-collected T. eiseni and T.

funebralis could be differentially ingesting microbes through

distinct dietary inputs (Neu et al., 2019). Moreover, the cirri

microbiome differences in barnacles occupying low vs. high

intertidal microhabitats was thought to be due to differential

exposure to and/or time underwater (Brown et al., 2020).
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Comparing the microbiome of T. eiseni, T. funebralis, and T.

gallina individuals collected directly from the field to those that

have been in a lab common garden environment could help

determine how much influence the distinct microhabitats of each

species have on their microbiome. Similarly, explicitly manipulating

diet and/or time underwater in a laboratory setting could also

provide further insight into the mechanisms of microbial

differentiation across species.
Microbiome communities do not
significantly differ across treatments

We did not observe significant microbiome differentiation

between individuals exposed to control vs. heat stress conditions

for 5.5 hours. The microbiome ofMytilus coruscus larvae exposed to

elevated seawater temperature for 4 hours was also similar to the

microbiome of control individuals (Zhu et al., 2024), perhaps

indicating that a heat stress period longer than several hours is

required to elicit clear differentiation of the microbiome. This lack

of differentiation contrasts what has been observed in other

intertidal marine mollusks. In Haliotis rufescens red abalone,

another type of marine snail, control individuals had a distinct

microbial composition compared to heat stressed individuals

(Ousley, 2023). Similarly, in the intertidal Sydney rock oyster

Saccostrea glomerata exposure to elevated heat wave temperatures

significantly changed bacterial community composition (Scanes

et al., 2023). Microbial communities also changed in response to

elevated temperature in the mussel Mytilus galloprovincialis (Li

et al., 2019). One potential cause for the lack of significant

differentiation between control and heat stress Tegula

microbiomes is high interindividual variability magnified by a

small sample size (n = 3 per species per treatment). For example,

as shown in Table 1, the abundance of bacterial genera varied widely

across individuals of the same species and treatment, especially

among T. eiseni control samples with regards toMycobacterium and

among T. gallina heat stress samples with regards to Lutimonas and

Polaribacter. Ultimately, the small sample size used in this study

limits the statistical power and our ability to reliably detect

meaningful biological difference across treatments. Thus, the fact

that we did not identify significant differences in the microbiome

between control and heat stress treatments could be an artifact of a

small sample size.
Enriched bacteria in Tegula eiseni

In T. eiseni, the species with the lowest thermal tolerance,

enriched bacteria could be contributing to infection and apoptotic

cell death under heat stress conditions. Mycobacterium is much

more abundant in T. eiseni under both control and heat stress

conditions compared to T. funebralis and T. gallina. This is a

pathogenic bacteria that is known to infect other marine mollusks

(Davidovich et al., 2020), and enrichment of this taxa could suggest

an increased risk of disease in T. eiseni, especially under heat stress
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conditions. Another taxa enriched in T. eiseni, Halomicronema, is a

cyanobacteria that has also been found in marine sponges (Caroppo

et al., 2012). Notably, some compounds produced by the

Halomicronema genus can trigger apoptotic cell death

(Mutalipassi et al., 2019). In other marine mollusks such as the

oyster Crassostrea virginica, the density of apoptotic cells increased

after exposure to high temperatures of 26 and 30°C (Rahman and

Rahman, 2021). Rahman and Rahman (2021) hypothesized that a

high level of reactive oxygen species (ROS) could be contributing to

this increase in apoptosis (Nash et al., 2019; Nash and Rahman,

2019). Our results suggest components of the microbiome could

also be contributing to the induction of apoptosis in heat sensitive

marine mollusks, and should be investigated further. The last

enriched bacterial genus in T. eiseni, Tunicatomonas, has also

been isolated from sea anemones, but there is only one known

species, and not much information is available on this taxon (Yoon

et al., 2012).
Enriched bacteria in Tegula funebralis

Three bacterial genera were significantly enriched in T.

funebralis and were more abundant in heat stress vs. control

conditions: Rubritalea, Fluviicola , and Polynucleobacter.

Rubritalea belongs to the class Verrucomicrobiae (Yoon et al.,

2007) and bacteria of this genus also increase in abundance

following high temperature exposure in corals and sponges. For

example, in Turbinaria peltata corals repeated heatwaves led to

increases of the beneficial bacteria Rubritalea tangerine that

facilitates coral health and growth (Zhai et al., 2024). Zhai et al.

(2024) hypothesized that such changes in the microbiome could

represent adaptive stress responses to improve survival of the coral

host under marine heat wave conditions. Moreover, heat wave

exposed Crella incrustans sponges produced larvae with

significantly more Rubritalea marina (Strano et al., 2023). How

this bacterial genus functions during high temperatures, and the

potential mechanisms that allow these bacteria to benefit marine

invertebrate hosts, remain unknown and require further

investigation. Fluviicola, the second genera enriched in T.

funebralis, is a gram-negative rod-shaped bacterium in the class

Flavobacteriia, family Cryomorphaceae. In this current study

Fluviicola was more abundant in heat stress vs. control samples,

which contrasts previous results in green-lipped mussels: in Perna

canaliculus Fluviicola was more abundant in control vs. heat stress

individuals (Ericson et al., 2024). Other studies in marine mollusks

found that Fluviicola abundance was high in razor clams exposed to

hyposalinity stress (Yang et al., 2024) and that Fluviicola was more

abundant in younger vs. older Pacific oyster spat (Zhong et al.,

2024). Lastly, bacteria in the genus Polynucleobacter were also

significantly more abundant in T. funebralis. Polynucleobacter can

be either free-living or symbiotic (Miklós et al., 2023) and are often

associated with ciliates (Vannini et al., 2007) and hydra (Fraune

et al., 2010; Fraune and Bosch, 2007). In the cold-water adapted

hydra Hydra oligactis Polynucleobacter was positively correlated

with hydra population size, although the mechanism for this effect
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requires further research (Miklós et al., 2023). In contrast to the

current findings in this study, Polynucleobacter abundance was

lower at higher temperatures in H. oligactis (Miklós et al., 2023).

Overall, any hypotheses about the potential relationship between

Polynucleobacter and T. funebralis should be interpreted with

caution because the overall abundance of Polynucleobacter was

relatively low (Table 1).

In contrast to the other three bacterial genera that were

significantly more abundant in T. funebralis, the genus

Shewanella was more abundant in control vs. heat stress samples.

These results match previous papers that have identified bacteria in

this genus that are adapted to low temperatures (Kloska et al., 2020;

Zhao et al., 2010). In general, Shewanella are gram-negative, aerobic

and facultatively anaerobic g-Proteobacteria (Garrity and Holt,

2001; Gauthier et al., 1995; MacDonell and Colwell, 1985; Satomi

et al., 2003; Venkateswaran et al., 1999). Shewanella have been

isolated from a variety of marine invertebrates including

hydrocorals, the benthic marine “peanut worm” (Ivanova et al.,

2004), the sea urchin Sterechinus neumayeri (González-Aravena

et al., 2016), and the soft coral Alcyonium antarcticum (Webster and

Bourne, 2007). Notably, exopolysaccharides (EPS) produced by

Shewanella have been isolated from Antarctic sponges (Caruso

et al., 2018). These EPS were more abundant at low temperatures,

and they are thought to serve protective functions under low

temperature stress conditions (Lo Giudice and Rizzo, 2022).

Although this current study did not expose any individuals to low

temperatures, the fact that Shewanella was significantly more

abundant in T. funebralis, the only Tegula species examined in

this study whose geographic range extends up to Vancouver Island

on the western coast of North America, suggests that this bacterium

could be contributing to T. funebralis’ ability to withstand the lower

temperatures indicative of the northern parts of its range. For

example, sites occupied by T. funebralis in northern California

can reach absolute minimum temperatures of 8.8°C, which is

roughly 5-6°C colder than the absolute minimum temperatures in

southern California, where T. eiseni and T. gallina reside (Gleason

and Burton, 2016b).
Enriched bacteria in Tegula gallina

Lutimonas was found in relatively high abundance in T. gallina

under both control and heat stress conditions. These results

contrast a previous study that observed a decrease in Lutimonas

under heat stress conditions in Pacific white shrimp Litopenaeus

vannamei (Duan et al., 2021). Lutimonas is a nitrifying bacteria that

degrades ammonium (Fu et al., 2009). In other marine mollusks

such as the ark shell Scapharca subcrenata (Jiang et al., 2020) and in

Daphnia (N. Nash et al., 2022), elevated temperatures increase

ammonia excretion rates. High levels of ammonia are known to

have an array of negative consequences for aquatic invertebrates

(Zhang et al., 2023); thus, the relatively high abundance of

Lutimonas in T. gallina, even under heat stress conditions, could

suggest that the microbiome helps regulate ammonia levels to

prevent toxic overaccumulation.
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Our finding that the genus Polaribacter is enriched in T. gallina,

including under heat stress conditions, contrasts a previous study in

another marine mollusk Mytilus galloprovincialis that found

Polaribacter was a dominant genus under control conditions, but

its abundance decreased when water temperature was increased (Li

et al., 2019). However, in other marine invertebrates, including the

mussel Mytilus coruscus (Li et al., 2019) and the common yellow

spongeM. acerate (De Castro-Fernández et al., 2023), abundance of

Polaribacter was also high under heat stress conditions. Polaribacter

has also been detected in seawater (Fukui et al., 2013; Yoon et al.,

2006) and in diatom phytoplankton blooms (Xing et al., 2015).

Overall, not much is known about this genus, and further research

must be done before hypotheses regarding the ability of this genus

to increase heat tolerance of T. gallina can be formed.

The third and final bacterial genus that was enriched in T.

gallina is Pelagicoccus. Pelagicoccus, a member of the family

Puniceicoccaceae, contains four different species (Feng et al., 2021;

Yoon et al., 2007). These species have previously been isolated from

sea grass (Yoon et al., 2007), seawater (Yoon et al., 2007), and

marine sediment (Feng et al., 2021). Based on the genomic analysis

performed by Feng et al., it is thought that all bacteria in this genus

produce exopolysaccharides (EPS) to better cope with extreme

stress conditions, including high temperatures, low nutrients,

drought, salinity stress, and antimicrobial agents (Liu et al., 2013;

Nichols et al., 2005; Wagh et al., 2022; Wang et al., 2019). For

example, EPS are produced in hydrothermal vent communities

exposed to extreme high temperatures (Nichols et al., 2005).

Importantly, there is evidence in other species that EPS produced

by bacteria have positive effects on their host: EPS produced by

plant-associated plant-growth promoting rhizobacteria reduce the

negative effects of heat shock and growth in plant hosts such as

tomatoes (Morcillo and Manzanera, 2021). It is possible the

Pelagicoccus observed in this study could similarly be contributing

to host thermal tolerance in T. gallina, although current evidence is

merely correlational and it is not currently known if the relatively

low abundance of Pelagicoccus would be sufficient to produce

beneficial effects. Ultimately, more direct functional experiments

are needed to confirm whether this particular bacterium plays a role

in T. gallina’s high thermal tolerance.
Study design limitations

As with any study, there are limitations that should be considered.

Most notably, we did not collect or sequence environmental samples

from the field or the lab to characterize the surrounding microbial

habitat (e.g., seawater and/or artificial seawater in the aquarium

system) of the Tegula snails. Although we did surface sterilize each

sample by thoroughly rinsing tissue samples with ethanol before

extracting DNA (Brown et al., 2020; Neu et al., 2019), we

nevertheless cannot determine whether the Tegula microbiome

communities we characterized are subsets of the surrounding

bacterial community in the artificial seawater and/or the algal diet of

the snails. In particular, because Tegula snails were housed in non-
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sterile artificial seawater during the three-week common garden period,

it is possible this water was an environmental source of bacteria that

contributed to the Tegula microbiomes analyzed in this study. We do,

however, note that a similar study conducted in the Gleason Lab’s same

aquarium system found that the fecal microbiome of juvenile red

abalone Haliotis rufescens was significantly different from the

microbiome of the surrounding aquarium water (Ousley, 2023).

Regarding the potential effects of feeding snails dried green algae

sheets, a previous study of Haliotis rufescens red abalone marine

snails fed red vs. brown vs. green algae found significant differences

in the microbiomes of snails fed the distinct diets (Guo, 2017). Thus,

the choice of diet in our current study could have affected the

microbiome composition of the Tegula snails. Specifically, Guo

(2017) found that bacteria in the Mollicutes and Alphaproteobacteria

classes and in the Mycoplasma genus were more abundant in H.

rufescens fed green algae diets compared to red and brown algae diets.

Thus, the abundance of these bacteria may also be enriched in our

current study that used a green algae diet.

Additional limitations of study design include the fact that this

study used a relatively small number of samples (n = 3 per species

per treatment). As noted above, this small sample size could have

amplified the high degree of interindividual variability and

contributed to the lack of significant variation detected between

control and heat stress microbiome samples. Although previous

similar microbiome studies in marine snails have used similar

sample sizes (Y.-J. Zhu et al., 2021), we do acknowledge that our

results may not be representative of each Tegula species’ full range of

biological responses to high temperature conditions. Similarly, this

work investigates the microbiome from a single field site in San

Diego, California. Neu et al., 2019 found that for T. funebralis, Bray-

Curtis dissimilarities significantly distinguish snails from north vs.

south of Point Conception along the California coast (although the

southern site only had a sample size of two). Thus, our findings likely

cannot be generalized to T. funebralis individuals from further north

in California. Previous studies using RNA sequencing and ddRAD

sequencing have identified gene expression and gene sequence

differences across geographically distinct T. funebralis populations

in northern and southern California that experience unique climates

and differ in thermal tolerance (Gleason and Burton, 2015, 2016a).

To determine if there are also microbiome differences within a single

Tegula species across different geographic regions, future work could

sample and subsequently compare the microbiome of T. eiseni and

T. gallina from multiple additional sites in southern California (e.g.,

Abalone Cove in Los Angeles County, Aliso Beach in Orange

County, La Jolla in San Diego County), and T. funebralis from

northern (e.g., Slide Ranch in Marin County, Pigeon Point and

Pescadero in San Mateo County) and southern (e.g., Abalone Cove

in Los Angeles County, Aliso Beach in Orange County, La Jolla in

San Diego County) California sites, population size permitting (Sato,

2001). Lastly, this study only examines the bacterial component of

the microbiome. Any fungal (Chin et al., 2020; Grice, 2015),

archaeal, and viral components of the holobiont that could also be

contributing to thermal tolerance or host-microbiome interactions

are thus not captured in our current dataset.
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Future research

At this point it is unknown if the bacterial species we observed

in the T. eiseni, T. funebralis, and T. gallina microbiomes are

transient (i.e., driven by external factors or stochastic processes)

or resident (i.e., explicitly selected for by the host). Resident

bacterial species that are a stable, persistent part of the

microbiome are more likely to contribute to host thermal

tolerance, and thus distinguishing resident vs. transient bacteria

in each Tegula host remains an important area of future research.

To distinguish these different factions of the Tegula microbiome,

further research could follow the approach of Unzueta-Martıńez

et al. (2022) to differentiate transient vs. resident bacteria in the

Eastern oyster Crassostrea virginica. To identify resident bacteria,

we could 1) identify any microbiome differences in Tegula species

collected directly from multiple different field sites, and 2)

determine if these differences persist after several weeks of

common garden acclimation in an identical environment.

Alternatively, we could determine if certain bacteria persist in

each Tegula host in sterile seawater that doesn’t contribute any

environmental bacteria (Lokmer et al., 2016, 2016). To identify

transient bacteria, we could again collect individuals from multiple

different field sites and identify bacterial differences in Tegula

individuals held in a common garden environment vs. those

sampled directly from the same field site (Unzueta-Martıńez

et al., 2022).

In addition, to date, we have only characterized the microbiome

following a short 5.5-hour heat stress representative of a single low

tide period in the field. No assessment has yet been performed of the

recovery period following this heat stress; in other words, it is not

yet known if the microbial community reverts to the same

“baseline” composition after return to non-stressful control

conditions. Current marine invertebrate research directly

addressing this question is limited, although results in another

marine mollusk the green-lipped mussel Perna canaliculus indicate

that the microbiome of recovered heat stress samples is more

similar to control samples than to sustained heat stress samples

(Ericson et al., 2024). Overall, based on the sampling design of this

current study, we cannot make any conclusions about the

holobiont’s long-term response to heat stress in Tegula species.

Thus, more research is needed examining the microbiome at

various time points after heat stress to fully understand how the

microbiome of Tegula individuals affects thermal tolerance,

especially for these intertidal species that regularly experience

multiple stressful low tides in a single day.
Conclusion

This study demonstrates that the microbiome of Tegula species

is distinct and suggests that components of the microbiome could

be contributing to the differential thermal tolerance of T. eiseni, T.

funebralis, and T. gallina intertidal snails. Specifically, the

pathogenic bacteria Mycobacterium is significantly enriched in the
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thermally sensitive T. eiseni, and the nitrifying bacteria Lutimonas

and the exopolysaccharide-producing bacteria Pelagicoccus are

significantly enriched in the thermally tolerant T. gallina. Overall,

our results provide further insight into how the microbiome differs

across host congeners living in uniquely stressful microhabitats and

illustrate the additional information gained when considering non-

genetic mechanisms of thermal tolerance.
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SUPPLEMENTARY TABLE 1

Lists of bacteria found to be common or unique across the three Tegula
species under control conditions, as shown in the Venn diagram in Figure 6A.

Bacteria representing each region of the Venn diagram are listed in separate

tabs (TE, T. eiseni; TF, T. funebralis; TG, T. gallina). Each bacterium is listed
across a single row, with the different taxonomic classifications (e.g. kingdom,

phylum, class, order, family, genus) shown in separate columns.

SUPPLEMENTARY TABLE 2

Lists of bacteria found to be common or unique across the three Tegula

species under heat stress conditions, as shown in the Venn diagram in

Figure 6B. Bacteria representing each region of the Venn diagram are listed
in separate tabs (TE, T. eiseni; TF, T. funebralis; TG, T. gallina). Each bacterium

is listed across a single row, with the different taxonomic classifications (e.g.
kingdom, phylum, class, order, family, genus) shown in separate columns.
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