
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Joshua Patterson,
University of Florida, United States

REVIEWED BY

Antonella Lavorato,
Universidad de Guadalajara - Centro
Universitario de la Costa Puerto Vallarta
Biblioteca, Mexico
Charlotte Moritz,
CMOANA Consulting, French Polynesia

*CORRESPONDENCE

Amelia J. F. Errington

meli2432@hotmail.co.uk

RECEIVED 13 June 2025

ACCEPTED 02 September 2025
PUBLISHED 25 September 2025

CITATION

Errington AJF, Moody K and Le Berre T (2025)
Multi-specific coral spawning and monsoonal
transitions: assemblage-level observations
from Baa Atoll, Maldives.
Front. Mar. Sci. 12:1646721.
doi: 10.3389/fmars.2025.1646721

COPYRIGHT

© 2025 Errington, Moody and Le Berre. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 25 September 2025

DOI 10.3389/fmars.2025.1646721
Multi-specific coral spawning
and monsoonal transitions:
assemblage-level observations
from Baa Atoll, Maldives
Amelia J. F. Errington*, Kate Moody and Thomas Le Berre

Reefscapers, Male, Maldives
Coral reefs support a vast diversity of marine life but are increasingly threatened

by anthropogenic activities. To assess changes in community composition and

the recovery potential of coral reefs in a changing climate, documenting sexual

reproduction and understanding its environmental drivers are essential. Here, we

report the exact timing and reproductive strategies for 375 individual coral

colonies across 28 species from 10 genera between February 2024 and April

2025 at a near-shore reef in Baa Atoll, Maldives. We identify two peak periods of

multi-specific spawning, coinciding with the monsoonal transition seasons. We

note variations in spawning patterns within and between taxa, documenting the

occurrence of extended breeding via asynchronous spawning of colonies within

a species and split-spawning of individual colonies across lunar months and bi-

annual seasons. Our results show that larger spawning events in a given month

are significantly correlated with lower wind speeds, higher sea surface

temperatures, and higher levels of solar insolation. These findings highlight the

influence of environmental cues on the timing and extent of coral reproduction

and provide the first detailed spawning records for several non-Acropora genera

in the Maldives, contributing a critical baseline for future research.
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Introduction

Corals are autogenic ecosystem engineers; the complex structures they build support a

vast diversity of marine life and provide key services such as fisheries, coastal protection,

tourism and recreational activities (Grafeld et al., 2017; Graham and Nash, 2013;

Woodhead et al., 2019). Globally, coral reefs are threatened by anthropogenic stressors

such as ocean acidification, pollution and climatic changes (Emslie et al., 2024; Frölicher

et al., 2018; Hoegh-Guldberg, 1999; Hughes et al., 2017, 2003; Kleypas et al., 1999; Spalding

and Brown, 2015). Ocean warming events are a particularly prevalent threat to coral reefs,

as elevated sea surface temperatures (SST) can disrupt the reproductive cycles and

spawning synchrony of corals (Paxton et al., 2016; Shlesinger and Loya, 2019) and can
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cause bleaching-induced mortality on large scales (Baker et al.,

2008; Bruno and Selig, 2007; Hughes et al., 2018; Perry and Morgan,

2017a). Whilst coral bleaching can reduce a colony’s immediate

growth rates, reproductive output, and larval supply, studies have

shown coral reefs have the capacity to recover from mass bleaching

events (Cantin and Lough, 2014; Donati et al., 2025; Gilmour et al.,

2013; Gold and Palumbi, 2018; Gouezo et al., 2019; Graham et al.,

2024; Pisapia et al., 2016). Reef recovery and repopulation is driven

by the growth and reproduction of surviving colonies and the

successful settlement of recruits (Adjeroud et al., 2017; Gilmour

et al., 2013; Johnston et al., 2020). Hence, understanding the

reproductive patterns of coral at the colony level is key for

assessing how communities restructure following disturbances

and for evaluating impacts on ecosystem function.

Reef-building corals reproduce by brooding or, for most species,

via broadcast spawning events in which gametes are released into

the water column for external fertilisation at the surface (Harrison,

2011). The success of broadcast reproductive events is dependent on

synchronous release of gametes between colonies to enable cross-

fertilisation (Levitan, 2004; Oliver and Babcock, 1992; Willis et al.,

1985). The timing and extent of synchronous broadcast spawning

events can vary greatly within and between taxa and biogeographic

regions (Baird et al., 2022, 2009; Gouezo et al., 2020; Harrison, 2011;

Harrison and Wallace, 1990; Mangubhai and Harrison, 2008;

Moritz et al., 2025; Sheridan et al., 2025). An expansion of

research on coral spawning in recent years has revealed

reproductive patterns ranging from the highly synchronised mass

spawning of over 100 different coral species as documented on the

Great Barrier Reef (Babcock et al., 1986; Harrison et al., 1984; Oliver

et al., 1988; Willis et al., 1985), to temporal reproductive isolation of

24 coral species studied in the Gulf of Eliat (Shlesinger et al., 1998;

Shlesinger and Loya, 1985). Between these two extremes are records

of multi-specific spawning (Monfared et al., 2023), asynchronous

spawning (Gouezo et al., 2020), and extended breeding seasons

(Mangubhai and Harrison, 2008) in other regions (summarised in

Harrison, 2011). It has been hypothesised that there is a breakdown

of spawning synchrony at low latitudes due to weaker fluctuations

in environmental conditions that enable protracted breeding

seasons (Oliver et al., 1988), as supported by studies on Kenyan

reefs (Mangubhai and Harrison, 2008). However, synchronous

spawning has been recorded in other equatorial regions (Gilmour

et al., 2016; Gouezo et al., 2020; Monfared et al., 2023; Sheridan

et al., 2025; Sola et al., 2016; Wijayanti et al., 2019).

The timing of sexual reproduction of reef-building corals has

been linked to various environmental factors such as sea

temperature (Keith et al., 2016; Lin and Nozawa, 2023; Nozawa,

2012; Monfared et al., 2023; Sheridan et al., 2025), solar insolation

(Penland et al., 2004; van Woesik et al., 2006), regional wind fields

(van Woesik, 2010), moon phase, sunrise (Bronstein and Loya,

2011; Moritz et al., 2025), and sunset (Baird et al., 2022; Lin and

Nozawa, 2017). Whilst knowledge of coral reproduction has

expanded in recent years, fundamental background information

on the timing of spawning events is limited in some regions.

Elucidating our understanding of spawning patterns across vast
Frontiers in Marine Science
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geographic scales is key for assessing the reproductive phylogeny of

scleractinian corals and hence the impacts of climatic changes and

the potential for recovery of coral reef ecosystems.

The Maldivian archipelago is considered the world’s seventh

largest reef system (MEE, 2015). With 80% of all land area lying less

than 1 metre above sea level, the islands that comprise the Maldives

rely heavily on the 2,041 distinct coral reefs identified for

protection, and provision for the population (Dhunya et al., 2017;

Dryden et al., 2020; Naseer and Hatcher, 2004). In the Maldives,

observations of asynchronous coral spawning in diverse

assemblages over multiple lunar phases have been reported

(Harrison and Hakeem, 2007). Monfared et al. (2023) noted

extended breeding seasons of 22 species of Acropora over an 8

month period, detailing peak multi-specific spawning events

coinciding with the transitional monsoon period, and

asynchronous spawning between Acropora species and between

colonies of the same species over multiple lunar phases. Further,

Sheridan et al. (2025) assessed the degree of spawning synchrony of

Acropora and found that larger, multi-specific spawning events

occur more frequently than single species spawning events. These

studies reported exact timings of Acropora spawning and correlated

earlier spawning events relative to the full moon with lower tide

depths, wind speeds, daily precipitation and higher sea

surface temperatures.

However, to date, knowledge of spawning patterns and exact

spawning times of non-Acropora corals is comparatively limited.

Increasingly, restoration initiatives are utilising sexual reproduction

for reef replenishment, including larval propagation, assisted

fertilisation and selective breeding (Dela Cruz and Harrison,

2020; Harrison, 2024a, 2024b; Humanes et al., 2021; Koch et al.,

2022; Pollock et al., 2017; Randall et al., 2020). Such techniques rely

on accurately predicting when corals will spawn; advancing

knowledge on the months of spawning and exact time of

spawning for each region is pivotal for success and optimization

of these initiatives. With both asexual and sexual restoration

methods practised widely across the Maldives, understanding

reproductive patterns of corals at the assemblage level is key for

managing reef recovery via restorative intervention and for

predicting the extent of community shifts following bleaching

events. This study provides key baseline data for restoration

initiatives utilising sexual reproduction. Here, we document the

exact timing and sexual reproductive strategies for 375 individual

colonies of 10 different genera of corals between February 2024 and

April 2025. Data collection occurred before, during, and following

the fourth global bleaching event confirmed by the International

Coral Reef Initiative (International Coral Reef Initiative, 2024). This

study describes two peak seasons for multispecific spawning events

in Baa Atoll [as first identified for Acropora by Monfared et al.

(2023)], as well as taxon-specific differences in reproductive

synchronicity, noting instances of annual and bi-annual

spawning, split spawning of individual colonies of various genera

over multiple days in a lunar month and over multiple lunar

months in a year. To date, this study is the first to report exact

spawning times of non-Acropora genera in the Maldives.
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Materials and methods

Survey site

Coral spawning surveys were conducted from February 2024 to

April 2025 on a near-shore reef on the southern side of Landaa

Giraavaru, a resort island in Baa Atoll, Maldives (5.2862°N, 73.1121°

E). The “House Reef” site, approximately 1,300m2 in area, was chosen

for surveys based on accessibility from the shore and due to the

higher diversity of coral genera present on this reef in comparison to

other sites. The depth range of colonies surveyed was 1m-4m.
Reproductive maturity assessments

To inform for which lunar months nightly surveys would be

undertaken, reproductive maturity of colonies at the survey site was

assessed. For colonies of Acropora, an approximately 5cm fragment

was removed from the colony base using scissors; for Galaxea, a

single polyp was excised similarly to check for the presence or

absence of gametes (Baird et al., 2002; Craggs, Personal

Communication, August 26, 2024; Monfared et al., 2023).

Maturity assessments of Acropora colonies coincided with

ongoing coral restoration activities to reduce negative ecological

impacts, and between four and seven randomly selected Galaxea

colonies were surveyed in the week prior to the full moon

each month.

Additional opportunistic reproductive maturity assessments

were conducted on colonies of Astrea, Cyphastrea, Goniastrea and

Leptoria at restoration sites. Small fragments from these colonies

were removed using a hammer and a fine chisel, and examined for

the presence of gametes using a microscope (Adonstar AD407

Digital Microscope) (Craggs, Personal Communication, August

26, 2024; Whiting, Personal Communication, June 21, 2024).

Fragmentation of these genera for maturity assessments did not

take place between March 2024 and June 2024 to avoid causing

stress to colonies during the ongoing coral bleaching event

(International Coral Reef Initiative, 2024; Reefscapers, 2024).

From June 2024 onwards, only a proportion of colonies that

remained healthy throughout the bleaching event were

fragmented. Other genera later identified spawning were not

fragmented to assess reproductive maturity due to time

constraints, and as some had very small polyps that made positive

gamete identification difficult.

Colonies with gametes identified were noted and mapped on a

slate for observer reference, but not tagged at this stage;

reproductive maturity data was used only to inform when field

surveys should take place and was not included in analysis.
Spawning surveys

As spawning events are typically documented in accordance

with the lunar cycle (Babcock et al., 1994; Komoto et al., 2023),

nightly surveys to check for signs of coral spawning were conducted
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around the full and new moons. Upon observation of mature

gametes in any species, nightly surveys would take place from two

days prior to the full moon (FM) (FM-2) until seven days after the

full moon (FM + 7), and from two days prior to the new moon

(NM) (NM-2), until two days after the new moon (NM + 2) to

check for signs of coral spawning. Therefore, resulting surveys

occurred in March, April, October, November, and December

2024, and in March and April 2025. As spawning has been

observed over multiple lunar phases (Mangubhai and Harrison,

2008; Gouezo et al., 2020), opportunistic surveys (where weather

and staffing constraints allowed) in months where no mature

gametes had been observed took place. Where possible, “full

surveys” from FM-2 until FM + 7 and from NM-2 until NM + 2

took place, but if not possible “short surveys” from FM-1 until FM +

4 took place. Such opportunistic “full surveys” occurred in

February, May, and September 2024. Opportunistic “short

surveys” took place in June 2024 and in January 2025.

Nightly surveys were conducted by a minimum of two observers

via SCUBA or freediving from 19:00-20:30 local time, to encompass

known spawning periods of Acropora (Monfared et al., 2023) and

anticipated spawning times of massive and encrusting genera (Baird

et al., 2021). Observers would swim along a course routinely taken

on the reef and check colonies in which mature gametes had been

noted, as well as other corals from various genera for “setting”

(mature gametes visible in the mouth of the polyp prior to release)

or spawning (Monfared et al., 2023). If observed, divers would

remain in the water until the release of gametes was complete for all

colonies. Accurate time of spawning onset was obtained by placing

surveyors in a specified area of the routinely taken course and

ensuring setting colonies were frequently checked to document the

moment of gamete release. In the event that a colony was observed

setting but spawning onset was not recorded, the colony was

fragmented the following day. If a loss of gametes was recorded

then we would deduce that the colony had spawned (Monfared

et al., 2023).

During nightly surveys, spawning colonies were temporarily

tagged with numbered cloth ties (tied on to nearby stable substrate)

for ease of identification the following day. The following data was

collected for each colony in-situ using dive slates: cloth tie number,

colony ID (if a permanent identification tag was already present on

the spawning colony), time at which setting was first observed, exact

time of spawning onset, depth, genus, species (if known), location

on the reef relative to coral frames planted for restoration activities

(each with GPS coordinates noted), and reproduction type

(hermaphroditic/gonochoric, specifying egg/sperm release where

known). Where time constraints allowed, pictures of spawning

colonies were also taken with a digital camera for reference

(Olympus Tough TG-6 digital camera) (Figure 1).
Spawning and environmental condition
database

The following day, colonies spawning the night prior were

located and temporary cloth ties were removed. If a colony
frontiersin.org
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already had a permanent identification (ID) tag, no further

information would be collected. Colonies recorded spawning for

the first time were given a permanent ID tag with a unique colony

ID for future monitoring of spawning events at the individual

colony level. Five high-quality pictures of each colony would be

taken: ID tag in-shot with the colony, and a wide-shot, mid-shot,

close-up and scaled-shot of the colony for positive identification to
Frontiers in Marine Science 04
genus level (and species where possible) using the Indo-Pacific

Coral Finder (Kelley, 2022) and Corals of the World (Veron et al.,

2025). These images were stored in a photo ID database for

reference. Genetic testing would be required to confirm species

identification but was not done for this study.

The unique colony ID was input into a spawning database along

with the data collected from the night of spawning so reproductive
FIGURE 1

Images to show setting and spawning in various coral species. (A) Spawning in Goniastrea retiformis. Photograph by Amelia JF Errington. (B) Setting
in Astrea curta. Photograph by Amelia JF Errington. (C) A bundle ready for release in Goniastrea pectinata. Photograph by Amelia JF Errington. (D)
Spawning in Cyphastrea micropthalma. Photograph by Amelia JF Errington. (E) Spawning in Dipsastrea matthai. Photograph by Amelia JF Errington.
(F) Bundles of eggs ready for release in Galaxea fascicularis. Photograph by Amelia JF Errington. (G) Setting and onset of spawning in Montipora
tuberculosa. Photograph by Kate P Moody. (H) Spawning in Echinopora spp. Photograph by Amelia JF Errington.
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patterns of individual colonies could be followed over time.

Additional data input included the date of spawning, the day of

spawning relative to the nearest full moon, and the lunar month of

spawning (eg the March 2024 full moon (FM) was on 25th March,

but spawning was recorded on April 1st (FM + 7); for these

colonies, lunar month of spawning was recorded as March). The

environmental factors solar radiation and wind speed were obtained

using a weather station located on Landaa Giraavaru (Gill

Instruments GMX 500 Maximet). Moon phase (Moon Giant,

2025), average daily sea surface temperature (SST) (Sea

Temperatures, 2025), sunset time, and depth of the low tide

closest to sunset (Tideschart, 2025) on days where spawning

occurred were gathered for Baa Atoll. The day of spawning

relative to the full moon was recorded and spawning time in

minutes after sunset for each colony was calculated. Average

monthly SST, wind speed and solar insolation were calculated

across all days of each calendar month for the duration of the study.
Statistical analysis

To assess whether environmental factors such as sea surface

temperature (SST), wind speed, and solar insolation influence the

occurrence of coral spawning, a generalized linear model (GLM)

with a binomial distribution and logit link was fitted. Spawning

occurrence was used as a binary response variable, coded as 1 if

spawning of any species/genus occurred in a given month and 0 if it

did not. Univariate models were fitted separately for each predictor

variable: average SST, average wind speed, and average solar

insolation, each measured during the month preceding the

spawning event. Model fit was assessed using residual deviance,

Akaike Information Criterion (AIC), and pseudo-R² statistics.

To examine whether environmental variables influence the

proportion of colonies spawning each month, beta regression was

fitted. The monthly proportion was calculated as the number of

colonies of any genus/species to spawn in a given month divided

by the total number of spawning events recorded throughout the

study period of all species/genera combined. Three univariate

beta regressions were conducted using average SST, wind speed,

and solar insolation (per lunar month) as explanatory variables.

Model diagnostics, including Pearson residual plots, Q-Q plots, and

pseudo-R², indicated that beta regression assumptions were adequately

met. Multicollinearity among predictors was assessed, and a strong

negative correlation between SST and wind speed (r = -0.71) was

identified, which prevented multivariable modeling. Final model

selection was based on AIC values.
Results

A total of 449 observations of spawning from 375 individual

colonies of 10 different genera (Acropora (N = 162), Astrea (N = 9),

Astreopora (N = 16), Cyphastrea (N = 21), Dipsastrea (N = 20),

Echinopora (N = 1), Galaxea (N = 60), Goniastrea (N = 134),

Montipora (N = 25) and Porites (N = 2)) were recorded at Landaa
Frontiers in Marine Science 05
Giraavaru, Baa Atoll, between February 2024 and April 2025

(Table 1). The majority of studied coral species (99.3% of colonies

observed) released gametes in multi-specific spawning events

during two peak seasons; in March and April (N = 326) and

between October and December (N = 120) (Figure 2).

All colonies recorded spawning released gametes approximately

one to three hours after sunset (Figure 3) within a few days of the

full moon (Figure 4). Depending on the taxa, spawning occurred as

a single event or extended spawning patterns (via asynchronous

spawning amongst colonies of a species and/or split spawning of

individual colonies) was observed.

Neither SST (p = 0.200) nor wind speed (p = 0.071) were

statistically significant predictors of the probability of spawning

occurrence in the binomial GLM (Table 2). However, solar

insolation was a significant predictor (p = 0.047), with a positive

association (b = 2.079 ± 1.046), indicating that higher solar insolation

increased the likelihood of spawning occurring in a given month.

In the beta regression analysis, all three environmental variables

(average SST, wind speed, and solar insolation) were found

to significantly influence the proportion of colonies spawning

per month (Figure 5). Average wind speed had the strongest effect

(b = –0.709 ± 0.219, p = 0.001), with a negative association, suggesting

that higher wind speeds were associated with a lower proportion of

colonies spawning (Table 3). SST also showed a significant positive

effect (b = 0.701 ± 0.304, p = 0.021), indicating increased spawning

with higher SST. Solar insolation was similarly positively associated

with the proportion of spawning events (b = 0.585 ± 0.250, p = 0.019).
Species-specific spawning patterns
observed

Spawning patterns differed within and between species of

Acropora . Some species spawned in both peak seasons

(A.gemmifera, A.humilis, A.plantaginea and A.secale) via

asynchronous spawning of different colonies or via individual

colonies undergoing multiple gametogenic cycles in a year. Some

species spawned only in March/April (A.aspera, A.digitifera,

A.hyacinthus, A.millepora, A.muricata, A.nasuta and A.samoensis)

and some species spawned only between October and December

(A.polystoma, A.rosaria and A.squarrosa).

Colonies of Galaxea fascicularis (N = 60) exhibited varied

spawning patterns. We commonly noted individual colonies

spawning over consecutive days and months in a year.

Asynchronous spawning within the population was also

documented, as some colonies spawned only in March/April

(29%) and some only between October and December (39%). Bi-

annual spawning was also recorded as some colonies (32%)

spawned in both peak seasons.This species exhibits pseudo-

gynodioecious reproduction; we noted that, for the duration of

this study, colonies first recorded spawning one gender would

spawn the same gender in future reproductive events.

Colonies of Goniastrea retiformis were observed spawning in both

peak seasons. In contrast to many other genera, spawning was noted in

only one month of each peak season; in March 2024 (N = 55),
frontiersin.org
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November 2024 (N = 11), and April 2025 (N = 68). No split-spawning

over consecutive lunar months was noted, and release of gametes only

once per year was recorded for each colony. In some colonies,

spawning would occur over consecutive days over the full

moon period.
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Cyphastrea micropthalma, Cyphastrea chalcidium, Dipsastrea

matthai, Echinopora spp., Goniastrea pectinata and Porites lobata

released gametes in multi-specific spawning events in March/April.

Spawning of Astreopora myriopthalma colonies occurred as a multi-

species event following the December full moon.
TABLE 1 A summary of spawning records from Baa Atoll, showing the number of colonies, years and month of spawning, day of spawning relative to
full moon and earliest time of spawning onset for each species.

Genus Species

Number of
colonies
recorded
spawning

Spawned
years

Months of
spawning

Day of spawning
relative to full
moon (+)/(-)

Earliest time
of spawning
onset

Reproduction
type

Acropora aspera 7 2024 April -2 20:05:00 Hermaphroditic

Acropora cytherea 1 2025 April +3 20:22:00 Hermaphroditic

Acropora digitifera 19 2024, 2025 April -2, -1, +5 20:32:00 Hermaphroditic

Acropora gemmifera 6 2024 April -2, -1 19:57:00 Hermaphroditic

Acropora humilis 10 2024, 2025 April, November -2, -1, +3, +6 20:08:00 Hermaphroditic

Acropora hyacinthus 3 2024, 2025 April -2, -1, +5 20:42:00 Hermaphroditic

Acropora millepora 31 2024, 2025 April -2, -1, +3, +4 20:26:00 Hermaphroditic

Acropora muricata 2 2024 April -2, -1 20:29:00 Hermaphroditic

Acropora nasuta 16 2024 April -2, -1 21:00:00 Hermaphroditic

Acropora plantaginea 27 2024
March, October,
November

+2, +6, +14 19:27:00 Hermaphroditic

Acropora polystoma 6 2024 November +6 19:57:00 Hermaphroditic

Acropora rosaria 5 2024 October +13, +14 19:54:00 Hermaphroditic

Acropora samoensis 13 2024 April -2, -1 20:27:00 Hermaphroditic

Acropora secale 14 2024 March, November +5, +6 19:57:00 Hermaphroditic

Acropora squarrosa 2 2024 November +6 19:57:00 Hermaphroditic

Astrea curta 9 2024, 2025 March +4, +5, +6, +7 19:45:00 Hermaphroditic

Astreopora myriopthalma 16 2024 December +2, +3, +4, +5 19:12:00 Hermaphroditic

Cyphastrea chalcidium 2 2024 March +5 19:26:00 Hermaphroditic

Cyphastrea micropthalma 19 2024, 2025 March, April +4, +5, +6, +7 19:28:00 Hermaphroditic

Dipsastrea matthai 19 2024, 2025 March, April +5, +6, +7 19:55:00 Hermaphroditic

Echinopora spp. 1 2024 March +5 20:16:00 Hermaphroditic

Galaxia fascicularis 60 2024, 2025

March, April,
October,
November,
December

+3, +4, +5 19:09:00 Gonochoric

Goniastrea pectinata 5 2024, 2025 March +2, +3 19:29:00 Hermaphroditic

Goniastrea retiformis 129 2024, 2025
March, April,
November

-1, 0, + 1, +2, +3, +4, +6 19:51:00 Hermaphroditic

Montipora efflorens 3 2024 September -1, 0 19:33:00 Hermaphroditic

Montipora monasteriata 17 2024, 2025
March, April,
November

+2, +4, +5, +6, +7 19:26:00 Hermaphroditic

Montipora peltiformis 5 2024
November,
December

+3, +4 19:23:00 Hermaphroditic

Porites lobata 2 2025 March +4 19:05:00 Gonochoric
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Montipora species were observed spawning in multiple months of

the year, with inter-specific spawning asynchrony noted but

synchronised spawning within species. Colonies of M. monasteriata

(N = 17) spawned predominantly in March/April, with only one
Frontiers in Marine Science 07
colony recorded spawning in November. Colonies of M.peltiformis

(N = 5) spawned in November and December. Colonies ofMontipora

efflorens (N = 3) released gametes outside of the identified peak

spawning seasons, spawning in September 2024 as a singular event.
FIGURE 2

Monthly coral spawning observations by genus overlaid with daily averages of environmental variables. Back circles refer to months in which spawning
occurred for each genus. Blue circles indicate the monthly average values of environmental factors, wind speed (m/s) (A), sea surface temperature (°C)
(B) and solar insolation levels (kWh/m²/day) (C). The number of spawning observations for each genus is shown on the y-axis as N= X.
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Multi-specific spawning

Multispecific spawning events coincided with sharp seasonal

declines in average wind speed (Figure 2A), which occurred

consistently each year in March and November. Multispecific

spawning events also occurred in April during periods of

declining wind speeds (2.50 to 2.08 m/s). A smaller multispecies

spawning event was noted in December during a period of

increasing wind speed (1.88 to 2.19 m/s).

Solar insolation levels revealed two main peaks a year; in March

and a smaller peak in September. Multi-specific spawning events

occurred during these peaks and were additionally observed during

the subsequent months, occurring during periods where solar

insolation declined (Figure 2C). There was no coral spawning
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observed during the months containing the lowest solar

insolation levels or during periods when solar insolation was

increasing towards that of dual maxima.

SST rises and falls in a biannual cycle, with distinct peaks in April

and November (Figure 2B). The largest multispecific spawning events

coincided with sharp rises and/or peaks in SST in March, April and

November. Spawning was also observed in the months surrounding

these maxima, extending from October through to December.
Discussion

The results of this study expand on previous observations of

Acropora coral spawning in the Maldives (Monfared et al., 2023;
FIGURE 3

The spawning time relative to sunset for various coral species. The black circles represent the mean observed spawning time for each species
recorded. The associated error bars display the range of time spawning was observed across all individual colonies of that species. The number of
spawning colonies for each species was totaled and placed under the y-axis labels, in the form of (N=X).
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Sheridan et al., 2025) and provide new information about the exact

time of spawning onset and months of spawning for 13 species of 12

genera of non-Acropora corals in this region. We support the

identification of two peak spawning seasons in the Maldives by

Monfared et al. (2023) in March and April and between October

and December, in which large, multispecific spawning events occur.

We note variations in spawning patterns within and between taxa,

documenting the occurrence of extended breeding via

asynchronous spawning of colonies within a species and split-

spawning of individual colonies across lunar months. We also

note the occurrence of spawning as an annual or bi-annual event

for individual colonies, demonstrating that the number of annual

reproductive cycles and degree of spawning synchrony varies

among taxa in this region. Our data suggests varied and complex

patterns of reproduction and provides crucial foundational
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observations of coral spawning in the Maldives, a data-deficient

region where little is known about the reproduction of non-

Acropora corals.

Varied spawning patterns were observed between taxa in this

study. Goniastrea retiformis colonies spawned in only one peak

season per year. Temporal segregation between March/April and

November spawning cohorts, coupled with a single gametogenic

cycle annually may reduce gamete encounter rates and the chance

of successful fertilisation (Shlesinger and Loya, 2019). Conspecific

coral populations that spawn in different seasons may become

reproductively isolated and experience limited gene flow, which

over time can lead to genetic divergence (Rosser, 2015; Rosser et al.,

2020). While our single-year dataset limits long-term inferences,

these findings warrant further investigation into the genetic

structure of G. retiformis populations in the Maldives. Region-
FIGURE 4

The spawning day relative to the closest full moon. The black circles represent the mean observed day that spawning occurred per species. The
associated error bars indicate the range of days in which colonies of each species spawned relative to the nearest full moon. The number of
colonies recorded spawning for the duration of this study is noted in the y axis (N=x).
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wide data collected over extended time periods is needed to assess

the degree of temporal segregation and potential for genetic

divergence in this population.

Contrastingly, spawning of individual colonies over bi-annual

spawning seasons was noted in Galaxea fascicularis and some

colonies of Acropora humilis, A.plantaginea and A.secale. Split-

spawning, where coral colonies release gametes over consecutive

lunar months, was commonly noted in colonies G.fascicularis, for

some species of Acropora, and for Cyphastrea micropthalma. This

reproductive strategy has been widely documented across multiple

taxa and regions (Baird et al., 2022, 2009; Bastidas et al., 2005;

Bauman et al., 2011; Foster et al., 2018; Hock et al., 2019;

Kongjandtre et al., 2010; Moritz et al., 2025; Willis et al., 1985).

Split-spawning may lead to multiple smaller or staggered spawning

events, reducing reproductive synchrony and gamete encounter

rates, and increasing the vulnerability of gametes released to

predation (Oliver and Babcock, 1992). However, whilst large

spawning events maximise gamete encounter rates, at high

gamete densities polyspermy can reduce fertilisation success

(Levitan, 2004); as such, split-spawning may increase local

fertilisation success by preventing gamete saturation. Further, by

releasing gametes over multiple days following the full moon and in

consecutive lunar months, the risk of total reproductive failure in a

single event is reduced (Babcock et al., 1986; Harrison et al., 1984).

Split-spawning can enable corals to realign reproductive timing

with favourable environmental conditions, particularly when lunar

cycles may cause spawning to occur outside optimal windows

(Foster et al., 2018; Hock et al., 2019). Split-spawning is often

associated with suboptimal environmental conditions in the lead-up

to the full moon, or when thermal or photic thresholds are not met

synchronously across coral populations (Baird et al., 2009; Harrison

et al., 1984; Keith et al., 2016; Nozawa et al., 2015; Sweeney et al.,

2011). Foster et al. (2018) noted that years with slower seasonal rises

in SST showed increased incidences of split spawning, suggesting

strong environmental cues may drive more synchronised spawning

in a single lunar cycle. As such, corals in tropical regions where

seasonal changes are less distinct may show less synchronised

spawning. Split-spawning has been documented on the Great

Barrier Reef (GBR) and in Western Australia most commonly

when the full moon falls in the first half of the month (Baird

et al., 2011; Gilmour et al., 2009; Willis et al., 1985), but can also

occur when the full moon falls in the second half of the month

(Babcock et al., 1986; Foster et al., 2015). Our study shows that split-

spawning occurs in G.fascicularis and Acropora when the full moon
Frontiers in Marine Science 10
falls in both the first and second half of the month, supporting

observations of no consistent relationship between split-spawning

and full moon timing. Long-term studies have shown that split-

spawning is not an annual feature but rather occurs periodically

(Foster et al., 2018), but recent research on daytime spawning corals

has documented individual colonies of Porites rus spawning over

five consecutive months each year (Moritz et al., 2025); as such,

more data collected over extended time periods would be needed to

identify the extent, environmental drivers, and impact on successful

fertilisation of split-spawning in this region.

It has been hypothesised that equatorial reefs exhibit extended

breeding seasons due to weaker environmental seasonality enabling

multiple spawning events in a year (Oliver et al., 1988). Whilst the

results of some studies support this hypothesis (Mangubhai and

Harrison, 2008), others at similar latitudes have countered it (Baird

et al., 2002; Chelliah et al., 2015; Guest et al., 2005b; Monfared et al.,

2023; Gouezo et al., 2020; Novriansyah et al., 2023; Penland et al.,

2004; Sola et al., 2016; Wijayanti et al., 2019). Bouwmeester et al.

(2021) used data from 90 sites across the Indo-Pacific and found no

correlation between latitude and reproductive synchrony,

indicating that other factors drive reproductive synchronicity. In

the Maldives, Monfared et al. (2023) noted that Acropora corals

spawn over an extended period of eight months of the year. Further

analysis of the degree of spawning synchrony found that Acropora

corals in the Maldives spawn most frequently and in greater

numbers during multispecific spawning events than they do in

single species events, with 95.1% of colonies in Baa Atoll and 96.7%

of colonies in North Male Atoll spawning during multispecific

events (Sheridan et al., 2025). Our study concurs with these findings

and reveals that previously unstudied genera at the same site in Baa

Atoll also follow similar patterns, indicating similar environmental

drivers of spawning.

The timing of peak spawning seasons in the Maldives coincide

with the transition between the southwest and northeast monsoon,

characterised by a reversal in wind direction and current (Aleem,

2013; Litster, 2016; Schott et al., 2009; Su et al., 2021). Similar

patterns have been noted on other equatorial reefs (Wijayanti et al.,

2019) and a global analysis spanning seven regions by van Woesik

(2010) revealed that regional periods of low wind speeds were often

tightly coupled with mass spawning events. Transitional periods of

reduced wind intensity offer evolutionary advantages for coral

reproduction by increasing successful fertilisation (Babcock et al.,

1994) and enhancing larval retention, ultimately supporting local

recruitment and population resilience (Elmhirst et al., 2009).
TABLE 2 Results of binomial generalised linear models to explore the influence of environmental conditions (sea surface temperature, wind speed
and solar insolation) on the occurrence of coral spawning.

Environmental factor Estimate (± SE) Z value P value R² (McFadden) AIC

Wind Speed (m/s) -3.816 ± 2.113 -1.806 0.071 0.470 15.671

SST (°C) 1.35 ± 1.050 1.280 0.200 0.086 24.270

Solar Insolation 2.079 ± 1.046 -1.987 0.047 0.260 20.400
Shown are regression coefficients (b ± SE), test statistics (z), p-values, McFadden’s pseudo-R², and AIC for each univariate model. Results are given in bold. Significance was found at p < 0.05.
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However, low current (induced or not by wind) may limit the

dispersal of larvae to other reef systems, reducing larval exchange

between reef systems and genetic mixing, impacting

metapopulation resilience (Cowen et al., 2000; Jones et al., 2009).

As an archipelago comprising approximately 1,192 islands spread

across 26 geographic atolls (Maldives National Statistical Bureau,

2020), more research from different regions is needed to assess the

extent of larval dispersal and genetic connectivity in the Maldives.

In this study, while wind speed was not a significant predictor of

the occurrence of spawning in a given month, it had the strongest

influence on the proportion of colonies spawning each month. The

largest multispecific spawning events observed occurred in March,

April and November (annually); periods that displayed abrupt

drops in average wind speed. Notably, these months coincided

with the transitional periods between monsoon seasons in the

Maldives. The Hulhangu (Southwest) monsoon occurs from May

to September, while the Iruvai (Northeast) monsoon occurs from

December to February (Aleem, 2013). These results are consistent

with equatorial studies conducted in Palau (Penland et al., 2004),

the Karimunjawa Archipelago in Indonesia (Wijayanti et al., 2019),

Singapore (Guest et al., 2005a) and in Baa and North Malè Atolls in

the Maldives (Monfared et al., 2023; Sheridan et al., 2025), all of

which documented large multispecific coral spawning during the

inter-monsoonal periods. These transition phases mark distinct and

pronounced environmental shifts that may act as major spawning

cues for gamete release in regions where wind conditions are rarely

calm (van Woesik, 2010), and where changes in SST and solar

insolation are less pronounced than in reefs at higher latitudes.
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The duration of the gamete release is understood to be

correlated with sustained periods of low wind speeds (van

Woesik, 2010). A study on Kenyan reefs at a similar latitude to

this study (4°S) found no evidence of a main spawning period to be

during the inter-monsoon season; instead, a protracted breeding

season of approximately 8 months was observed (Mangubhai and

Harrison, 2008). This may be linked to Kenya’s less sharply defined

seasonal wind transitions, with spawning occurring predominantly

during the Northeast monsoon (December to March), when

conditions are relatively calm and stable. Whilst our study

concurs with findings of two peak spawning seasons in the

Maldives coinciding with monsoonal transitions, we consider that

extensive surveys of spawning in Acropora in this region revealed

asynchronous spawning occurring outside of these peaks during the

Northeast monsoon (Monfared et al., 2023; Sheridan et al., 2025).

These patterns suggest that where there is no abrupt drop in wind

speed, the persistence of calm conditions over a sustained period of

time may too serve as a cue for coral spawning.

Monsoonal transitions are typically associated with rapid increases

in sea surface temperature (SST), which have been identified as a key

driver of coral spawning across various temporal and vast geographic

scales (Keith et al., 2016; Novriansyah et al., 2023). SST has been shown

to influence both gametogenic development and the timing of gamete

release, with several studies correlating earlier or more synchronous

spawning events with higher SSTs (Howells et al., 2014; Lin and

Nozawa, 2023; Moritz et al., 2025; Nozawa, 2012; Monfared et al.,

2023; Sun et al., 2024). Moritz et al. (2025) noted that at both large

scales and at the individual colony level, increases in temperature
FIGURE 5

Effect of environmental conditions on the proportion of colonies to spawn per month based on the results of beta regression model. The
explanatory variables included in the model are average monthly (A) wind speed (m/s), (B) sea surface temperature (SST) (°C) and (C) daily solar
insolation (kWh/m²/day). The black line indicates the relationship between the environmental variables and proportion of colonies to spawn. The
grey shading indicates the 95% confidence interval. Rug marks along the x-axis displays the distribution of observed data points. P-values, AIC and
R2 are exhibited within each panel.
TABLE 3 Results of beta regression models testing the effects of environmental conditions (sea surface temperature, wind speed and solar insolation)
on the proportion of colonies to spawn each month.

Environmental factor Estimate (± SE) Z value P value R² (McFadden) AIC

Wind Speed (m/s) -0.709 ± 0.219 -3.238 0.001 0.436 -44.555

SST (°C) 0.701 ± 0.304 2.308 0.021 0.281 -44.468

Solar Insolation 0.585 ± 0.250 2.338 0.019 0.2793 -47.749
Significant results are given in bold. Proportion of colonies spawning per month (response) was calculated as the total number of colonies spawning each month divided by the total number of
colonies recorded spawning for the duration of this study. Model fit was evaluated using McFadden’s pseudo-R² and AIC. Significance was found at p < 0.05.
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induced earlier spawning. The role of SST as a spawning cue appears to

vary by region and species. As such, peak spawning months could be

inferred from rapid rises in SST, but not months where few colonies

spawned. Sheridan et al. (2025) noted that while change in SST was a

significant predictor of the number of colonies to spawn within a

month, it did not significantly predict the month in which spawning

occurred. Our study suggests that SST influences the intensity of

spawning rather than the timing, as a higher proportion of colonies

spawning in a given month were significantly correlated with higher

average monthly SSTs. Sheridan et al. (2025) also found that Acropora

species differed in their response to SST changes indicating that thermal

cues alone do not universally regulate spawning patterns. In Palau,

Gouezo et al. (2020) recorded spawning over an extended period of

nine months with no consistent correlation between SST and the

timing of reproductive events, suggesting that temperature alone may

not serve as a universal proximate cue. These studies underscore the

complexity of coral reproductive cues and highlight the need for further

research to understand the interplay of various environmental factors

influencing coral spawning.

Solar insolation cycles play an important role in entraining the

endogenous reproductive rhythms of corals on broad seasonal

scales (Mangubhai and Harrison, 2008; Gouezo et al., 2020; van

Woesik et al., 2006). Studies have shown that in some equatorial

regions the rate of change of solar insolation is a reliable predictor of

coral spawning, with gamete release often occurring after the peak

of solar insolation maxima, during the subsequent fall (Mangubhai

and Harrison, 2008; Gouezo et al., 2020; van Woesik et al., 2006;

Penland et al., 2004). Our study found that solar insolation

significantly influenced both the likelihood of spawning

occurrence and the proportion of colonies spawning in a given

month. This dual influence underscores its importance as a key

environmental cue. Studies have demonstrated that a combination

of increased solar irradiance and high SST can result in oxidative

stress to coral tissues (Yakovleva et al., 2009; Hoegh-Guldberg and

Jones, 1999). As such, timing spawning to occur after peak solar

insolation may serve as an evolutionary advantage to improve larval

viability and reduce post-spawning stress on parent colonies. These

studies highlight the complex interplay of multiple environmental

factors influencing scleractinian coral spawning.
Conclusion

This study provides new insights into the timing, synchrony, and

species-specific patterns of coral spawning in the Maldives, offering the

first detailed records for several non-Acropora genera in this region.

We found that larger spawning events in a given month were

significantly correlated with lower wind speeds, higher sea surface

temperatures, and increased solar insolation, highlighting the influence

of environmental conditions on both the occurrence and extent of coral

reproduction. Because more frequent and severe bleaching events can

damage the reproductive fitness of corals, studying the successful
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reproduction and recruitment of surviving colonies is central to

maintaining coral populations and restoring reef structure and

function. Understanding when and how corals reproduce is critical

for evaluating the potential of coral populations to recover following

disturbance. With restoration initiatives in the Maldives increasingly

utilising sexual reproduction (e.g. larval propagation and assisted

fertilisation), these findings serve as an important baseline for reef

managers, researchers, and restoration practitioners. However, as this

study is based on a single year of observations from one atoll, caution

must be taken in extrapolating trends across space and time. Long-

term, region-wide monitoring is needed to identify the environmental

drivers of coral spawning and assess how spawning patterns may shift

under future climate scenarios.
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