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The international shipping market, as a vital pillar of global trade, is closely
intertwined with the crude oil market. Geopolitical conflicts—through
mechanisms such as supply disruptions, rising transportation costs, and
heightened market uncertainty—intensify volatility in both markets and amplify
their mutual spillover effects. Using data from November 1999 to August 2025
across three markets, this study applies the Diebold—-Yilmaz (DY) spillover index
and the DCC-GARCH model to analyze the dynamic linkages between the
shipping and crude oil markets, with a particular focus on volatility spillovers
among the three. The results show significant bidirectional volatility spillovers
between international shipping and crude oil markets, with the strongest
spillovers occurring within the shipping market itself, reflecting its high degree
of internal interconnectedness. Geopolitical conflict risk acts mainly as a net
receiver of volatility and, by triggering supply—demand imbalances, prompting
behavioral adjustments, and generating lagged policy effects, further amplifies
spillovers between shipping and oil markets. This study not only provides a new
perspective for understanding the interdependence of global energy and
shipping markets under geopolitical uncertainty, but also offers valuable
decision-making implications for policymakers and market participants in
managing risks.

KEYWORDS

geopolitical conflict risks, shipping market, crude oil prices, volatility spillover effects,
DY spillover index model, DCC-GARCH model

1 Introduction

Approximately 85%-90% of global trade is transported by sea, and key maritime routes
are often focal points of geopolitical conflicts. Shipping also serves as a core instrument for
implementing economic sanctions—during conflicts, the blockade of an adversary’s ports
can paralyze its economy (Rasshyvalov et al., 2024; Theodorou, 2024; Aropelto, 2025). As
one of the world’s most crucial energy sources, oil transportation is highly dependent on
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maritime shipping (Dalsgren et al., 2007; Gilbert and Pearl, 2012).
For example, about 20% of global oil supply passes through the
narrow Strait of Hormuz each day. If this chokepoint were closed
due to conflict, it could trigger soaring global energy prices and
widespread economic turbulence (Shichor, 2008; Ramadhani and
Marzaman, 2024; Brito and Jaffe, 2005).

In this study, geopolitical conflict risk (Geopolitical Risk, GPR)
specifically refers to the uncertainty in the global economy and
financial markets caused by international or regional political
events—such as wars, sanctions, terrorist attacks, and political
unrest (Salisu et al., 2022). In recent years, geopolitical conflicts
have become increasingly frequent, including unrest in the Middle
East, the Russia-Ukraine war, and the U.S.—-China trade war. These
events have exerted profound impacts on the global economy,
energy markets, and shipping markets. The outbreak of
geopolitical conflicts often leads to oil supply disruptions,
shipping route blockages, and rising transportation costs. These
problems are intertwined, creating cascading effects on both the
shipping and energy markets. Such conflicts not only directly
threaten energy supply security but also, through market linkages,
affect global trade, supply chain stability, and financial market
volatility (Kolb, 2011; Scholten and Bosman, 2016; Su et al., 2021;
Rasshyvalov et al., 2024).

Exploring the impact of geopolitical conflict risk on the
volatility transmission mechanisms between the international
shipping and crude oil markets is of critical importance for
understanding global economic and financial stability (Jiao et al.,
2023). From a theoretical perspective, studying volatility spillovers
under geopolitical risks helps deepen financial contagion theory,
particularly by enhancing our understanding of cross-market risk
transmission mechanisms (Elsayed and Helmi, 2021; Ahmed and
Sohag, 2025). At present, most studies focus on direct relationships
between one or two markets. Introducing geopolitical conflict risk
as a variable allows for a more comprehensive explanation of the
complex role of external shocks in volatility transmission (Elsayed
and Helmi, 2021; Korsah and Mensah, 2024). From a practical
perspective, given the increasing complexity of global geopolitics
and the frequent occurrence of conflicts, their impacts on
international shipping and crude oil markets have become
increasingly significant. Quantitatively analyzing how geopolitical
conflict risk affects volatility and co-movements between the two
markets can provide decision-making support for policymakers,
investors, and enterprises, helping them eftectively manage market
risks (Guo et al,, 2025). In addition, this research has important
policy implications: the findings can serve as a reference for
governments and international organizations in formulating more
effective energy security policies and shipping risk management
strategies, thereby mitigating the adverse impacts of
geopolitical conflicts.

The structure of this paper is arranged as follows: Section 2
reviews the related literature and analyzes the shortcomings of
existing studies, thereby clarifying the academic contributions of
this research. Section 3 introduces the dataset, theoretical models,
and econometric methods employed. Section 4 presents the results
of the empirical analysis and provides an in-depth discussion of the
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findings. Section 5 offers further discussion of the research
implications. Finally, Section 6 concludes the paper.

This study advances the literature by jointly modeling shipping,
crude oil, and geopolitical conflict risk within a unified volatility
spillover framework, uncovering the bidirectional and time-varying
nature of their interdependence and highlighting policy-relevant
implications for global maritime and energy security.

2 Literature review

This study aims to conduct an in-depth analysis of the impact of
geopolitical conflict risk (Geopolitical Risk, GPR) on the volatility
spillover effects between the international shipping market and the
crude oil market. The research focuses on three aspects: the
mechanisms of geopolitical conflict risk, the interactive
relationship between the two markets, and the transmission
pathways of volatility spillovers. Based on existing literature, this
section reviews the current state of research in related fields and
highlights the innovative contributions of this study.

2.1 Studies on the impact of geopolitical
conflicts

As a critical external shock factor, geopolitical risk (GPR) has
exerted widespread and profound influences on the volatility of
financial and commodity markets. Caldara and Iacoviello (2022),
through text analysis and index construction based on newspaper
data, provided an important tool for quantifying GPR and laid a
data foundation for subsequent research. Many studies have
focused on the impact of GPR on different markets, particularly
on volatility in the oil market. Hamilton (2009) pointed out that the
volatility of the oil market is often significantly shaped by
geopolitical factors; especially during conflicts, fluctuations in
geopolitical risk premiums exacerbate instability in oil prices.
Baumeister and Kilian (2016) further revealed that geopolitical
tensions—such as conflicts in major oil-producing countries—
have a substantial impact on oil price volatility. Historical
episodes such as the 1973 oil crisis, the 1979 Iranian Revolution,
the 2003 Iraq War, the 2011 Libyan Civil War, the 2014 Ukraine
crisis, and the 2022 Russia-Ukraine conflict all demonstrate the far-
reaching influence of geopolitical events on oil prices. Monge et al.
(2023), using fractional integration methods, studied the behavior
of West Texas Intermediate (WTI) prices and the Baltic Dry Index
(BDI) under geopolitical risk assumptions. Their results suggest
that while the BDI series tends to revert to its original trend
following external shocks, the WTI series displays markedly
different persistence, highlighting contrasting behaviors. Chen
et al. (2025) investigated the dynamic relationship between the
crude oil market and the tanker shipping market under shocks of
geopolitical risk, with a particular focus on the differential impacts
of threat-based and action-based geopolitical risks as well as
supply-demand disruptions. They employed the VAR-BEKK-
GARCH model to capture changes in spillover dynamics before
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and after geopolitical shocks, and applied the TVP-SV-VAR model
to visualize the time-varying intensity, direction, and duration of
geopolitical risks. Their findings show that threat-based risks
enhanced bidirectional spillovers between crude oil and the Baltic
Clean Tanker Index (BCTI), whereas action-based risks suppressed
these spillover effects. Zeng et al. (2024), using a quantile vector
autoregression (QVAR) approach in the frequency domain, studied
the risk linkages between the global Geopolitical Risk Index (GPR),
the CBOE Oil Volatility Index (OVX), and major agricultural and
livestock indices. Their results indicate that food markets are the
main transmitters of spillover effects, while the OVX is
predominantly a net receiver of risk spillovers in most cases.
Smales (2021) highlighted the role of media coverage of
geopolitical events, showing that extensive reporting significantly
affects investors’ required risk premiums. This provides evidence
that geopolitical risks play a critical role in determining oil price
volatility and, to a lesser extent, stock market volatility. Wang and
Dong (2024), using a rolling-window VAR-DY spillover model
combined with network theory, measured the dynamic net
spillovers in financial markets. Their study found that
international crude oil price volatility not only strongly influences
Chinese crude oil prices but also, to some extent, affects geopolitical
risk itself.

In examining the impacts on other markets, Mishra et al.
(2024), using an event study approach, revealed that geopolitical
conflicts such as the Russia-Ukraine war significantly increased
global stock market volatility, particularly in regions geographically
close to or economically more connected with the conflict countries.
Afonso et al. (2024) also showed that GPR significantly exacerbates
sovereign debt risks in European countries, affecting debt
conditions by raising financing costs and expectations of market
uncertainty. From a global perspective, Zhang et al. (2023)
investigated the relationship between geopolitical risk and stock
market volatility, finding that GPR exerts a significant positive effect
on stock market volatility, with stronger impacts observed in
emerging economies, oil-exporting countries, and peaceful states.
Elsayed and Helmi (2021) applied the ADCC-GARCH model and
spillover analysis to examine the effects of geopolitical risk on return
and volatility dynamics in Middle East and North African (MENA)
markets. Their results emphasize that while GPR did not
significantly affect return spillovers across MENA financial
markets, dynamic analysis shows that the total spillover index
responded strongly to major political events.

However, research on the impact of geopolitical conflict risk on
energy markets—particularly the shipping market—remains
relatively limited. Although Stopford (2009) pointed out that the
volatility of the shipping market is closely linked to oil prices, he did
not systematically investigate the mechanisms of volatility
transmission between the two. Drobetz et al. (2021), using a
Bayesian VAR model, studied the effects of geopolitical risk
(GPR) and economic policy uncertainty (EPU) on shipping
freight rates. Their results confirmed that GPR exerts a positive
impact on dry bulk freight rates through global, rather than
country-specific, geopolitical shocks, though the effect has been
gradually weakening over time. Qian et al. (2022), employing an
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autoregressive Markov-regime switching model, explored the
predictability of oil market volatility under GPR, showing that
GPR contains useful predictive information for oil price volatility,
particularly effective in the long-term forecasting horizon.

Building on previous research, the impact of geopolitical risk on
the shipping market remains an area that warrants further in-depth
investigation. At the same time, most existing studies focus on the
analysis of volatility within a single market, with relatively little
exploration of how geopolitical conflicts influence volatility
transmission across multiple markets. Therefore, this study
introduces a volatility spillover framework to systematically
analyze the dynamic relationship between the international
shipping market and the crude oil market, with the aim of filling
this research gap.

2.2 Studies on the relationship between
shipping and oil markets

As central players in the transportation and energy sectors, the
relationship between the shipping market and the crude oil market
has long been a focus of academic research—particularly regarding
the impacts of tanker transportation, fuel price fluctuations, and
external economic events on their interaction mechanisms.
Kavussanos and Alizadeh-M (2002), in their analysis of shipping
cost structures, risk premium formation, and market expectations,
repeatedly suggested that the oil market significantly influences the
shipping market through channels such as fuel costs, financing
conditions, and global trade activity. Broadstock and Filis (2014),
using Structural Vector Autoregression (SVAR) and the Scalar-
BEKK model, examined the time-varying correlations between
different types of oil price shocks and the returns of U.S. and
Chinese stock markets and their industry sectors. In the process,
they pointed out a logical chain in which shipping market activity
affects global economic activity, which in turn shapes oil demand.
Alexandridis et al. (2018) argued that fluctuations in fuel prices alter
the cost structures of shipping companies, thereby amplifying
freight rate volatility and ultimately affecting corporate
profitability and stock market performance. Baumeister and
Hamilton (2019), using Structural Vector Autoregression (SVAR)
methods, re-examined the importance of shocks to oil supply and
demand. In their discussion of SVAR models for the oil market,
they noted that shipping costs had historically been used as a proxy
for global economic activity to reflect oil demand. However, due to
their structural instability and strong susceptibility to non-
economic factors, they ultimately opted for more direct industrial
production indicators. This suggests that there exists an indirect but
important macroeconomic linkage between the shipping and oil
markets. Riaz et al. (2023) further emphasized that volatility in the
tanker market plays a crucial role in the dynamic transmission of
fluctuations from the oil market, while shipping market volatility in
turn exerts a significant influence on the crude oil market.

In addition, the impact of external economic events on the
shipping and oil markets has attracted increasing attention. Lin
(2023) found that external shocks such as the U.S.—China trade war
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and the COVID-19 pandemic intensified the volatility transmission
from the shipping market to the oil market. Lin et al. (2019) also
showed that during financial crises and economic slowdowns, the
Baltic Dry Index (BDI) generated significant short-term volatility
spillovers into other markets, with this effect becoming more
pronounced during the global financial crisis. Khan et al. (2021)
demonstrated that oil prices and the BDI are linked to geopolitical
risk (GPR) in both the time and frequency domains. Their study
indicated that under the presence of GPR, the connection between
oil prices and the BDI becomes more evident: GPR first affects oil
prices in the short term, and this effect later translates into the BDI
in the medium term. While their approach is highly insightful for
this study, it is limited to the dry bulk sector and does not extend to
the entire shipping market; moreover, there is room for
improvement in terms of research methods and the time span of
data used.

In summary, although existing studies have revealed important
interactions between the shipping and crude oil markets, most
research has primarily focused on volatility analysis within a single
market, with little systematic exploration of volatility spillover
effects between the two under the backdrop of geopolitical risk.

2.3 Studies on volatility spillover effects

When two markets are connected through financial or trade
linkages, price fluctuations in one market—driven by policies,
information shocks, or other factors—can be transmitted to the
other, thereby changing the correlation of volatility between them.
This phenomenon is referred to as volatility spillover effects (Wang
and He, 2016). Volatility spillovers are a core manifestation of
cross-market interactions, explaining how volatility changes in one
market influence another.

Engle (1982) proposed the multivariate Generalized
Autoregressive Conditional Heteroskedasticity (GARCH) model,
which provided a powerful analytical tool for studying volatility
spillover effects. Later, Engle (2002) introduced the Dynamic
Conditional Correlation GARCH (DCC-GARCH) model, a
multivariate volatility framework that captures time-varying
correlations flexibly through a two-step procedure—first
estimating univariate GARCH models and then dynamically
modeling the correlations of standardized residuals. Because of its
parsimonious parameterization and ability to ensure the positive
definiteness of the covariance matrix, the DCC-GARCH model is
particularly well-suited for high-dimensional financial systems. In
their review of multivariate GARCH models, Silvennoinen and
Terdsvirta (2009) noted that DCC-GARCH achieves a good balance
between estimation efficiency and practical applicability by
capturing time-varying correlations dynamically within a simple
two-parameter framework while maintaining covariance matrix
positive definiteness. As a result, the DCC-GARCH model has
become one of the most favored tools among scholars for studying
volatility spillover effects. Tissaoui et al. (2024) focused on the
dynamic relationship between the crude oil market and multiple
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sources of uncertainty. By combining the DCC-GARCH model
with frequency-domain Granger causality tests, they revealed that
the persistent high volatility originating from commodity and
energy markets exerts significant spillover effects on crude oil
returns, and they emphasized the importance of time-frequency
decomposition in distinguishing long- and short-term effects.
Yildirim et al. (2022), in the context of the COVID-19 pandemic,
applied the DCC-GARCH model to explore the mechanisms of
return and risk transmission between oil and precious metals. Their
study revealed the differing behaviors of safe-haven assets and
cyclical assets during crisis periods. Similarly, Tan et al. (2022),
also set against the pandemic background, introduced the DCC-
GARCH-Connectedness framework, which they used to examine
volatility spillover levels and the multilayer spillover structures
between commodity markets (energy and precious metals) before
and during COVID-19.

Diebold and Yilmaz (2012) proposed the DY spillover index
model, which is constructed based on forecast error variance
decomposition within a generalized VAR framework. The model
can quantify the total, directional, and net volatility spillover effects
across different markets, and its results are not affected by the
ordering of variables. It is particularly suitable for accurately
tracking the transmission paths and intensities of cross-market
volatility risks—such as in equities, bonds, foreign exchange, and
commodity markets—during financial crises. The DY model has
been applied in multiple research contexts. Tsouknidis (2016)
combined the DY spillover index with the DCC-GARCH model
to study dynamic volatility spillovers within and between dry bulk
and tanker freight markets, finding substantial time-varying
spillover effects that were especially strong during and after the
global financial crisis. Jiang et al. (2019) also integrated the two
models to examine volatility spillovers from China’s shipping
market to the steel market, concluding that the two markets
exhibit weak spillovers but with evidence of a breakdown in the
price transmission mechanism. Kang et al. (2017) employed a
multivariate DECO-GARCH model together with the DY
spillover index to investigate return and volatility spillovers
among six commodity futures (gold, silver, WTI crude oil, corn,
wheat, and rice), revealing the strength and direction of
transmission during the recent global financial crisis and the
European sovereign debt crisis.

The DCC-GARCH model, by estimating the volatilities of
individual variables and their dynamic conditional correlations in
stages, effectively captures time-varying correlations between
variables. However, it cannot directly quantify risk transmission at
the mean level. In contrast, the DY model performs exceptionally well
in analyzing volatility spillover effects across markets: it can quantify
the intensity and direction of transmission, reveal dynamic
relationships, and capture time-varying characteristics.
Nevertheless, the DY framework mainly focuses on mean spillover
effects (first moments), while its ability to capture volatility (second
moments) and tail risks (higher moments) is relatively limited.

In terms of alternative models, Kirkpinar and Evrim (2023)
employed a Copula model in combination with a VAR-MGARCH
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model to conduct an in-depth investigation of volatility spillover
effects between the BRICS bond markets and commodity markets
(gold and oil). By leveraging the Copula model’s ability to capture
nonlinear dependencies together with the VAR-MGARCH
framework’s capacity to analyze both mean and volatility
spillovers, their study produced results that more closely reflect
actual market behavior—particularly in the analysis of tail risks.

This study provides a systematic review of the theoretical and
empirical research on volatility spillover effects. The DY model
reveals the directional characteristics of global risk transmission,
compensating for the inability of the DCC-GARCH model to
directly quantify risk transmission at the mean level, while the
DCC-GARCH model offers a more detailed description of the
dynamic correlations of risks. The two models are therefore
functionally complementary, and their joint application can
effectively overcome the limitations of a single model, thereby
presenting analytical advantages from multiple dimensions. In
addition, the combined use of these models is technically feasible:
both rely on time-series data, which facilitates data collection and
processing, and joint analysis of the same dataset allows for mutual
validation, enhancing the objectivity and accuracy of the results.
However, existing literature has mainly concentrated on volatility
analysis within single markets, while in-depth exploration of
interactions and transmission mechanisms between markets
remains relatively scarce.

2.4 Contributions of this study

The main contributions of this study lie in two aspects.

First, this paper is the first to systematically construct a
triangular analytical framework of “international shipping market
- crude oil market — geopolitical risk”, breaking through the
limitations of traditional single- or dual-variable studies. By
employing a volatility spillover framework, it systematically
analyzes the impact of geopolitical conflicts on the shipping and
oil markets, providing empirical support for the existence of
bidirectional volatility spillovers and confirming the information
transmission characteristics of the international shipping market.

This study combines the DY spillover index model with the
DCC-GARCH model in a complementary way: while the former
quantifies the intensity and direction of spillovers, the latter
captures dynamic correlations. Together, they enable a
comprehensive exploration of the volatility spillover effects among
geopolitical risk, the international shipping market, and the crude
oil market, offering a new perspective for understanding how
geopolitical risks influence volatility transmission across markets
in different periods.

Second, compared with the existing literature that mostly relies
on relatively short time series, a key innovation of this study is the
use of 25 years of daily data from 1999 to 2025. This ultra-long
sample fully covers multiple major geopolitical and economic crises,
providing a solid data foundation for precisely estimating the long-
term evolution of dynamic correlations and rigorously testing
model robustness under extreme market stress conditions. As a
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result, the conclusions of this study are more generalizable and
practically relevant.

3 Data and model framework
3.1 DY spillover index model

The DY spillover index model, also known as the generalized
forecast error variance decomposition (FEVD) spillover index
model, was proposed and later refined by Diebold and Yilmaz.
This model enables the quantitative analysis of directional volatility
spillover effects. In 2009, the two scholars first introduced the
model, primarily applying it to stock markets; in 2012, they
further extended it to multiple asset markets and addressed the
issue of model results being sensitive to variable ordering. Since
then, scholars worldwide have widely applied the DY spillover index
to measure volatility spillovers in financial markets such as equities
and commodity derivatives. The method is based on the forecast
error variance decomposition (FEVD) of a VAR model. By
quantifying the spillover effects of return volatility, it effectively
captures the trends, cycles, and burst characteristics of spillover
dynamics. The analysis of the DY model mainly includes two
dimensions: (1) Static Volatility Connectedness — measuring the
strength of bidirectional connectedness across different asset classes.
(2) Dynamic Volatility Connectedness - capturing the time-varying
features of volatility linkages (Diebold and Yilmaz, 2012).

For each group of variables that passes the stationarity tests, the
system can be written as an N-variable, k-lag VAR model (Equation

1):

Y; :égk Yirté& (1)
k=1
Yt is an endogenous variable vector, which includes
multivariate time series of ABDI, ABDTI, ABCTI, AWTI, and A
GPR; @y is an N x N-dimensional parameter matrix; €; is the error
term. Its moving average form is (Equation 2):

Y= D Ag + & (2)
k=0

The NxN -dimensional covariance matrix A is defined as: Ay =
D1 A1 + Dy A + ... + Dk Ak, where A, denotes the NxN
-dimensional identity matrix. The transformation of variance
decomposition associated with moving average coefficients is
reconfigured into a temporally adaptive framework via this
methodology. Crucially, the variance decomposition under this
method remains invariant to variable ordering.

Following this, the generalized variance decomposition
framework is applied to assess the proportional influence of
individual markets on cross-market volatility. Here, Zij(H)
measures the forecast error variance attributed to variable j for
variable i within a prediction span H (Equation 3).

0> (e Aey)?
Z;(H) = 2 G057 3)
Do (€ AnA, )
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When implementing the generalized VAR framework, it is
observed that the row-wise totals in the variance decomposition
matrix may deviate from unity. This indicates that the combined
variance contributions from a variable itself and its interactions
with others do not sum to 1. To effectively harness the variance
decomposition matrix for spillover index computation, each entry
in the matrix must undergo row-wise normalization (Equation 4).

Zy(H) = 57w @)

The total spillover index SI, formulated via KPPS variance
decomposition, characterizes the aggregate magnitude of cross-
market spillover effects and quantifies the influence of individual
volatility shocks on the spillover of total prediction error variance
(Equation 5).

N SN Z.(H)
SI = 7%?2;]21 L= % 100 (5)
While analyzing the total volatility spillover index effectively
enhances understanding of volatility impact magnitudes among
core variables, the generalized VAR framework further allows the
investigation of directional spillover patterns across heterogeneous
market segments. Directional spillovers are calculated through
standardized components derived from the generalized variance
decomposition matrix, expressed via directional and net
spillover indices.
Directional Spillover Index: Discriminates between markets
serving as net contributors or net recipients of volatility spillovers.
From i to other variables (Equation 6):

N
DSIi,.(H) = >, Z;(H) (6)
j=lj#i
From other variables to i (Equation 7):

N
DSI_,;(H) = E Z]-l-(H) (7)
jeLj#i
Net Spillover Index: Assesses the comparative significance of
individual markets within the systemic framework (Equation 8).

NSI = DSI,_, (H) - DSI_,;(H) (8)

3.2 DCC-GARCH model

The Dynamic Conditional Correlation Generalized
Autoregressive Conditional Heteroskedasticity (DCC-GARCH)
model was first proposed by Engle (2002) with the purpose of
capturing and analyzing the time-varying conditional correlations
among multivariate time series. This model overcomes the
limitation of the traditional Constant Conditional Correlation
GARCH (CCC-GARCH) model, which assumes correlation
coefficients to be constant. By incorporating a time-varying
structure, the DCC-GARCH model is able to measure how
correlations between variables evolve over time, making it more
consistent with real-world dynamics. The development of this
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model is rooted in deeper insights into the characteristics of
financial time series volatility, particularly the phenomena of
volatility clustering and conditional heteroskedasticity. For
example, Engle and Sheppard (2001) were the first to apply the
DCC-MGARCH model to analyze linkages among international
stock markets, revealing that correlations between markets
strengthen significantly during crisis periods. Subsequently,
studies by Tse and Tsui (2002) and Silvennoinen and Terdsvirta
(2009) further extended the application of this model to cross-
market and cross-asset research, confirming its effectiveness in risk
management and portfolio optimization.

The DCC-GARCH model adopts a two-stage estimation procedure.
In the first stage, a univariate GARCH(1,1) model (Bollerslev, 1986) is
fitted to each return series to estimate its conditional variance, thereby
capturing the time-varying characteristics of individual volatilities. In the
second stage, the Dynamic Conditional Correlation (DCC) model is
employed, which constructs the dynamic conditional correlation matrix
using standardized residuals, i.e., by dividing the raw residuals by their
conditional standard deviations. The DCC model describes the
evolution of correlations over time through a dynamic updating
equation, allowing correlation coefficients to adjust dynamically in
order to more accurately capture the volatility and co-movements
observed in financial time series data. The model is specified as
follows (Equation 9):

1=+ & &|F_, T N(O,H,) )

Within this framework, r; encapsulates the temporal dynamics
of five variables linked to the shipping market, crude oil market, and
geopolitical tensions. |, is defined as the steady-state equilibrium
return. The Nx1-dimensional vectors r;, |, € characterize the
investigated time series, their conditional expectations, error terms,
and standardized disturbances. F,_; comprises the entirety of
information available prior to time t (Equations 10-13).

&= /Huu,~ N(,I) (10)
H, = D,R,D, (11)
D, = diag(\/h(1,1) ;,..., /h(N,N) ) (12)
R, = diag(ﬁ,4..,W)Q,diag(ﬁ,...,ﬁ)
(13)

In this framework, R; and D, are defined as NxN -dimensional
matrices, corresponding to dynamic conditional correlations,
evolving conditional covariance matrices, and temporally adaptive
conditional variances (Equations 14, 15).

h(iyi) = @; + o4€7y + B, Dh (14)

Q =1-a-PB)Q+au_ju, +pQ:, (15)

In this framework, Q represents the unconditional covariance
matrix associated with standardized residuals. Following Hansen
and Lunde (2005) methodology, the model assumes that an impulse
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parameter o; and a persistence coefficient 3; govern short-term
shocks and long-lasting memory effects, respectively, subject to oy +
Bi < 1 to ensure volatility stationarity. Under these conditions, Q;
and R, exhibit temporal variation. Under such conditions, the
model asymptotically approaches the CCC-GARCH framework,
resulting in a time-invariant R;. Here o; signifies the long-term
equilibrium level, reflecting the steady-state market volatility absent
external disturbances. Proximity of oy + ; to unity correlates with
heightened persistence of fluctuation impacts from shocks.

3.3 Dataset specification

To represent the international shipping market, we select the
Baltic Dry Index (BDI), the Baltic Dirty Tanker Index (BDTI), and
the Baltic Clean Tanker Index (BCTI).

* The Baltic Dry Index (BDI) is the core indicator reflecting
fluctuations in international dry bulk shipping prices. It is
composed of freight rates for Capesize, Panamax, and
Handymax vessels.

* The Baltic Dirty Tanker Index (BDTI) measures global
transportation costs for crude oil and fuel oil. Tt reflects
both the supply-demand conditions and the transportation
costs in the market for unrefined “dirty” tankers.

¢ The Baltic Clean Tanker Index (BCTI) tracks the
transportation costs of refined oil products (such as
gasoline and diesel). It reflects changes in freight rates for
tankers used to transport “clean” refined petroleum
products.

For the international crude oil market, we use the futures closing
price of West Texas Intermediate (WTI) traded on the New York
Mercantile Exchange (NYMEX), which serves as one of the world’s
most important pricing benchmarks. Compared with Brent crude,
which is seaborne and therefore more sensitive to shipping rates,
international sanctions, and geopolitical disruptions, WTI is a
landlocked crude oil whose price is more directly driven by
fundamental market factors such as inventories, production, pipeline
transport capacity, and refining demand. Thus, WTI provides a
“cleaner” laboratory environment for this study. In the empirical
analysis, we further conduct a robustness check by substituting WTI
with Brent crude; the results are reported in 4.3.

For geopolitical risk (GPR), we adopt the Geopolitical Risk Index
compiled by Dario Caldara and Matteo Iacoviello. This index is
constructed by searching the archives of ten newspapers and
calculating, for each month, the proportion of articles related to
adverse geopolitical events relative to the total number of news articles.

All indicators use daily data from November 1, 1999 to August
29, 2025. The indices for the shipping market are obtained from
Clarksons Shipping Intelligence Network, WTI data from the
global financial information platform Investing.com, and GPR
data from the official website of its compilers (https://
www.matteoiacoviello.com/gpr.htm). Returns are calculated from
these series for analysis.
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3.4 Model applicability test

To ensure the reliability of the empirical results, this study
conducts a series of rigorous data preprocessing and model
specification tests before estimating the dynamic spillover index
and dynamic conditional correlations. The purpose of this section is
to verify whether the data used satisfy the basic assumptions of the
models and to assess whether the selected models can adequately
capture the dynamic characteristics of the data (Liitkepohl, 2013).

First, the ADF and PP tests were applied to examine the
stationarity of the data. As shown in Table 1, the ADF and PP
statistics of all five variables are smaller than the corresponding
critical values, rejecting the null hypothesis of a unit root and
confirming that the data are stationary (Dickey and Fuller, 1979;
Phillips and Perron, 1988).

Second, diagnostic tests were conducted on the residuals of the
models, including the Ljung-Box test for autocorrelation, the
normality test, and the ARCH-LM test. The results are presented
in Table 2, Figure 1, Table 3, and Table 4. The Ljung-Box test
results show that the residuals of all five variables satisfy the white-
noise assumption, indicating that the VAR model provides a good
fit to the data.

The normality test results are presented in Figure 1 (Q-Q plots
of the VAR model residuals) and Table 5 (statistics of residual
normality tests). The results strongly reject the null hypothesis,
indicating that the standardized residuals exhibit leptokurtosis and
fat tails, which is a typical feature of financial time series. Given the
robustness of the DY spillover index and DCC-GARCH models in
estimation, such non-normality does not fundamentally affect the
core conclusions. Therefore, this paper adopts the t-distribution—
which is better suited for capturing fat-tail characteristics—as the
distributional assumption of the GARCH model innovations, in
order to improve model fit and the accuracy of risk measurement
(Rani Das, 2016).

To verify whether the DCC-GARCH model sufficiently captures
the effect of volatility clustering, we conducted the ARCH-LM test
on the standardized residuals. The null hypothesis states that no
remaining ARCH effects exist in the residuals. The test results,
together with the parameter estimates of the univariate GARCH
(1,1) models for all variables, are reported in Table 3. The results
demonstrate that the GARCH(1,1) models successfully absorb the
conditional heteroskedasticity in the original series, and that the
standardized residuals are homoscedastic. Hence, the use of
GARCH-family models is both necessary and sufficient, and the
stationarity condition (0i+P<1) is also validated (Engle, 2000).

4 Empirical findings

4.1 Parameter estimation of the DY
spillover index model

To ensure the rigor of model specification and the robustness of

estimation results, this study carefully determined the key
parameters. First, according to the Bayesian Information
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FIGURE 1

VAR model residual Q-Q plot (quantile-quantile plot).

Criterion (BIC), the optimal lag order of the model was set at p = 15,
which allows the dynamic relationships among the variables to be
fully captured while avoiding overfitting. Second, the forecast
horizon for the Forecast Error Variance Decomposition (FEVD)
was set at H = 20 days, so that the spillover index measures become
stable. Finally, a 200-day rolling window was adopted for dynamic
analysis, aiming to guarantee the reliability of estimation results
while being sufficiently sensitive to capture the time-varying
characteristics of spillover effects.

Figure 2 presents the directional spillover indices of each
variable, while Figure 3 illustrates the dynamic evolution of the
total volatility spillover index. Table 4 reports the decomposition
results of cross-market volatility spillovers based on the DY
spillover index model.

The table quantifies the transmission intensity of volatility
among the indices using the forecast error variance
decomposition (FEVD). Specifically, the element in column j
represents the contribution of indicator j to the volatility of
indicator i. The column sums of the off-diagonal elements (i.e.,
“contributions to other indicators”) and the row sums of the off-
diagonal elements (i.e., “contributions received from other
indicators”) correspond to directional spillovers to others and
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directional spillovers from others, respectively. The difference
between the two yields the net volatility spillover.

In addition, the total volatility spillover index is located at the
bottom right corner of the spillover table. It represents the
percentage share of the sum of off-diagonal elements (either row
sums or column sums) relative to the total (including diagonal
elements). This index reveals the overall degree of volatility
connectedness within the system. The spillover table thus
provides an approximate “input-output” decomposition of the
total spillover index.

We first analyze the directional spillovers. From the
Contribution to others row, it can be observed that among the
five indicators, the BDI contributes the largest total directional
volatility spillovers to other markets, followed by the BDTI, BCT],
and WTI, while the GPR contributes the least. From the From
others column, we see that GPR receives the largest spillovers from
other indicators, followed by WTI, BCTI, and BDTI, with the BDI
receiving the least spillovers. In terms of net directional spillovers,
the BDI exhibits the highest net spillover, confirming its role as the
primary net transmitter of volatility. In contrast, GPR shows the
lowest net spillover, identifying it as the main net receiver of
volatility. Within the shipping market specifically, the BDTI
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TABLE 1 Descriptive statistics.

Statistic ABDI  ABDTI ABCTI AWTI AGPR
Mean 0.0065 0.0051 0.0005 0.0162 0.0033
Std 2.4956 22198 2.2022 2.7038 37.9871
Max 20.3367 23.8076 29.2244 58.1235 234.4884
Min -19.2272 -38.1224 | -57.1987  -56.8589 @ -299.5883
Median 0.0000 -0.0947 -0.1442 0.0620 -0.5168
Skewness 0.3699 -0.0943 -1.4415 -0.1581 0.0703
Kurtosis 5.6734 34.7749 98.8042 71.2408 1.9819
ADF -16.9013 | -26.9856  -15.9041 @ -13.8017 -20.6617
PP -33.2428 = -44.9216  -46.4020 @ -86.7946 @ -306.1327
Critical Value (1%) -3.4314 -3.4314 -3.4314 -3.4314 -3.4314
Observations 6451 6451 6451 6451 6451

exerts the strongest directional spillover on the BCTI, suggesting a
close relationship between crude oil tanker freight rates and clean
product tanker freight rates.

Overall, spillover effects within the shipping market are stronger
than those between the shipping market and external factors (WTI
and GPR). Meanwhile, the spillover effects of crude oil prices and
geopolitical conflict risk on the shipping market are more
pronounced. Looking beyond the shipping market, the spillover
from WTI to GPR is stronger than that from GPR to WTL
Furthermore, the spillovers between crude oil prices and

TABLE 2 Residual autocorrelation tests.

10.3389/fmars.2025.1647599

geopolitical risk are greater than those between either of them
and the shipping market. Geopolitical risk also exhibits
similar characteristics.

From a dynamic perspective, directional spillovers among
variables are significantly amplified during crisis periods. Between
November 1999 and December 2024, the Iraq War of 2003 provides
the first clear evidence of shifts in directional spillover indices across
markets. At the onset of the war, concerns over crude oil supply
shortages drove a sharp surge in Brent oil prices. However,
following the release of U.S. strategic petroleum reserves, prices
fell back. This phenomenon corresponds with the WTT “To” and
“From” directional spillover indices, which rose initially and then
declined during this period. By contrast, the impact of the war on
dry bulk shipping was more indirect compared with that on the
crude oil and product tanker markets. Consequently, the BDI’s
directional spillover index exhibited patterns different from those of
the other markets. However, due to the decline in global trade
confidence, the BDI’s directional spillover index remained at a
relatively low level, indicating that its influence on other markets—
and the extent to which it was influenced by others—was both
limited during this time. In 2008, the Russia-Georgia conflict
disrupted Black Sea shipping routes, and combined with the
global financial crisis, led to a contraction in world trade. The
BDI index plunged sharply with heightened volatility, and both its
To and From directional spillover indices rose to temporary peaks,
establishing a higher baseline for subsequent periods. During the
2012 EU oil embargo on Iran, the BDI once again dropped to a low
point, while the BDI_To directional spillover index remained
elevated, reflecting the significant influence of the dry bulk

Variable BDI BDTI BCTI WTI GPR
Lag LB-Stat P value LB-Stat P value LB-Stat P value LB-Stat P value LB-Stat P value
1 0.0008 0.9779 0.0007 0.9789 0.0013 0.9708 0.0013 0.9709 0.0038 0.9510
2 0.0043 0.9979 0.0335 0.9834 0.0047 0.9977 0.0148 0.9926 0.0814 0.9601
3 0.0064 0.9999 0.0397 0.9979 0.0070 0.9998 0.0161 0.9995 0.2978 0.9604
4 0.0072 1.0000 0.0431 0.9998 0.0162 1.0000 0.0340 0.9999 0.5544 0.9680
5 0.0078 1.0000 0.0455 1.0000 0.0471 1.0000 0.0645 0.9999 0.8166 0.9760
6 0.0091 1.0000 0.0632 1.0000 0.0541 1.0000 0.0788 1.0000 1.0177 0.9849
7 0.0113 1.0000 0.0633 1.0000 0.0741 1.0000 0.1570 1.0000 1.3346 0.9875
8 0.0162 1.0000 0.0651 1.0000 0.0865 1.0000 0.1602 1.0000 1.8384 0.9856
9 0.0238 1.0000 0.0757 1.0000 0.0891 1.0000 0.1627 1.0000 2.3681 0.9842
10 0.0239 1.0000 0.0942 1.0000 0.2268 1.0000 0.2011 1.0000 3.4054 0.9702
11 0.0309 1.0000 0.1303 1.0000 0.2492 1.0000 0.2321 1.0000 4.2798 0.9610
12 0.0312 1.0000 0.1588 1.0000 0.2492 1.0000 0.2322 1.0000 5.5740 0.9360
13 0.1269 1.0000 0.1789 1.0000 0.3378 1.0000 0.3225 1.0000 8.7874 0.7888
14 0.1949 1.0000 0.1816 1.0000 0.4019 1.0000 0.3769 1.0000 13.5675 0.4824
15 1.8909 1.0000 0.4058 1.0000 0.4085 1.0000 0.3889 1.0000 20.6559 0.1482
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FIGURE 2

Directional spillover indices. The figure shows the results of lag order p = 15, rolling window length w = 200 days, and prediction step H = 20 days.

market on other markets during this period. In February 2022, with
the escalation of the Russia—Ukraine conflict, freight rates along the
Black Sea-Mediterranean routes surged, pushing the BDTI index to
its highest level since May 2020. At the same time, market concerns
over restrictions on Russian crude oil exports drove Brent crude
prices above USD 119 per barrel. Correspondingly, the
BDTI_From, WTI_To, WTI_From, and GPR_To directional
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spillover indices all reached their highest levels of the 2020-2024
period. By 2024, amid the Red Sea crisis and the shutdown of the
Suez Canal, the GPR_To directional spillover index remained at
consistently high levels, exceeding its average during the 2016-
2020 period.

In summary, the GPR_To directional spillover index tends to
spike during major geopolitical conflict events. When wars disrupt
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TABLE 3 Results of normality tests.

10.3389/fmars.2025.1647599

Variable Shapiro_statistic  Shapiro_pvalue N GWHESS Kurtosis Sample_size
ABDI 0.9317 0.0 0.3699 5.6734 6451
ABDTI 0.7976 0.0 -0.0943 34.7749 6451
ABCTI 0.7032 0.0 -1.4415 98.8042 6451
AWTI 0.8312 0.0 -0.1581 71.2408 6451
AGPR 0.9869 0.0 0.0703 1.9819 6451
TABLE 4 Parameter estimates of univariate GARCH(1,1) models and ARCH-LM test results.
Coefficient BDI BDTI BCTI WTI GPR
Q] 0.0064 0.1754 0.07672 0.0144 0.6479
o 0.3660 0.8958 0.7169 0.0936 0.2235
B 0.62400 0.09422 0.2731 0.8904 0.1284
o+ 0.9900 0.9900 0.9900 0.9840 0.3519
Persistence High Persistence High Persistence High Persistence High Persistence Low Persistence
v 9.1734 4.4417 4.1970 7.8186 7.6580
LM_Lag 5 5 5 5 5
LM_Statistic 0.5979 0.0240 0.0252 0.2884 0.7049
LM_Pvalue 0.9881 0.9999 0.9999 0.9979 0.9827
ARCH_Effect_Removed True True True True True
TABLE 5 Volatility spillover table.
Variable ABDI ABDTI ABCTI AWTI AGPR From others
ABDI 0.6826 0.0877 0.0801 0.0775 0.0722 0.3175
ABDTI 0.0883 0.6626 0.0958 0.0837 0.0696 0.3374
ABCTI 0.0901 0.1883 0.5623 0.0967 0.0626 0.4377
AWTI 0.0842 0.0892 0.0866 0.6704 0.0697 0.3297
AGPR 0.0824 0.0888 0.0777 0.0801 0.6711 0.329
C‘zzt:i:;;f:n 0.345 0.454 0.3402 0.338 0.2741 st
NSI 1.0276 1.1166 -0.0975 0.0083 -0.0549 0.3502

Note: SI denotes the total spillover index, calculated using Equation 5 in Section 3.1; NSI denotes the net spillover index, calculated using Equation 8 in Section 3.1; From others and
Contribution to others refer to directional spillover indices, calculated using Equation 6 and Equation 7 in Section 3.1.

the oil market, the WTI_To and WTI_From indices display
pronounced upward fluctuations, while the BDTI and BCTI
spillover indices follow similar patterns to those of WTIL. The BDI
spillover index, however, typically exhibits substantial fluctuations
when geopolitical conflict risks severely impact global trade.

Note: Panel (A) shows the original total volatility spillover
index. Panel (B) is based on Panel (A) but marks several major
international events along the timeline. Shaded areas indicate
periods during which multiple significant events occurred, while
text labels mark the start dates of selected events to facilitate
interpretation in conjunction with the index dynamics.

Frontiers in Marine Science

The total volatility spillover index reaches 35.02% (see the
lower-right corner of Table 4), indicating that approximately
35.02% of the forecast error variance in the five markets can be
attributed to cross-market spillover effects. This relatively high level
reflects strong cross-market volatility interconnectedness.

From the dynamic evolution of the total volatility spillover
index in Figure 3, we observe considerable variation over the sample
period (November 1999 to August 2025), some of which can be
described as more or less continuous developments. Overall, the
total spillover index remains within a range of 25%-60%, exhibiting
certain cyclical fluctuations.
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FIGURE 3

Total volatility spillovers. (A) Total volatility spillover index. (B) Total volatility spillover index with major events marked. The figure shows the results of
lag order p = 15, rolling window length w = 200 days, and prediction step H = 20 days.

Given the evolving and turbulent background of the shipping
markets, it appears unlikely that any single fixed-parameter model
would be well-suited to the entire sample period. Therefore, while
traditional full-sample spillover tables and spillover indices
summarize average spillover behavior, they may fail to capture
crucial long-term and cyclical variations in spillovers.

To address this issue, we employ a 200-day rolling sample combined
with major geopolitical conflict events to analyze volatility spillovers.

During 2003-2011, wars in the Middle East had a profound
impact on both the shipping and oil markets. The Iraq War
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disrupted oil supplies, causing crude oil prices to surge. The
shipping market, meanwhile, faced heightened risks from military
operations in the Persian Gulf and piracy threats (e.g., in the Gulf of
Aden). Coupled with the Libyan War in 2011, the volatility index
remained at elevated levels.

Between 2014 and 2017, conflicts in the Middle East raised
shipping risks in the Strait of Hormuz. However, the simultaneous
boom in U.S. shale oil production triggered a collapse in oil prices.
With global trade slowing, the shipping market weakened, and the
volatility index fell below 0.4.
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Dynamic conditional correlations.

From 2022 to 2024, the escalation of the Russia—-Ukraine war and
the Israel-Palestine conflict, together with sanctions on Russian crude
oil, led to severe fluctuations in international oil prices. Multiple global
shipping routes were affected to varying degrees: Black Sea shipping
was disrupted (e.g., Ukrainian grain exports were blocked), the Arctic
route faced militarization risks, Red Sea shipping was targeted by
Houthi attacks, and transit costs through the Suez Canal surged.
Container freight indices also rose in 2024. These combined factors
corresponded closely with the sharp increase in the volatility index.

4.2 Parameter estimation of DCC-GARCH
model

Using the DCC-GARCH model under the t-distribution
assumption, we first analyze the static correlations among the markets.
Table 6 reports the static correlation coefficient matrix across variables.

The results show that: (1) Within the shipping market, the
indices are positively correlated with each other. (2) The oil market
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and the shipping market exhibit negative correlations. (3)
Geopolitical conflict risk is negatively correlated with crude oil
freight rates and product tanker freight rates, but positively
correlated with dry bulk freight rates and crude oil prices.

The shipping market displays strong internal linkages. For
example, the correlation coefficient between the crude oil tanker
index and the product tanker index is 0.7748, indicating a
significant positive co-movement within the tanker segment. This
finding is consistent with Kavussanos et al. (2014), who highlighted
volatility spillovers across different segments of the shipping
market. Such linkages may originate from shared market demand
(e.g., global energy trade) and capacity allocation mechanisms. By
contrast, cross-market correlations are relatively weak: the
correlation coefficient between the dry bulk shipping index and
crude oil prices is 0.1427, while that between geopolitical risk and
crude oil prices is only —0.0106. These results align with Jiang et al.
(2019) on the shipping and steel markets, further confirming the
significance of the market segmentation effect. Shipping, crude oil,
and geopolitical risk factors are each driven by different underlying
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TABLE 6 Static correlation matrix.

Variable = ABDI ~ ABDTI  ABCTI  AWTI AGPR
ABDI 1.0000 03557 0.4104 0.1427 0.0580
ABDTI 03557 1.0000 0.7748 -0.0527 0.1172
ABCTI 0.4104 0.7748 1.0000 -0.0943 0.0919
AWTI 0.1427 -0.0527 -0.0943 1.0000 -0.0106
AGPR 0.0580 0.1172 0.0919 -0.0106 1.0000

fundamentals. Specifically, the BDI (Baltic Dry Index) primarily
depends on fluctuations in global commodity trade, while WTI
(West Texas Intermediate crude oil) is influenced by supply-
demand conditions and inventory levels. In addition, geopolitical
risk (GPR) exhibits a certain degree of independence, as its static
correlations with other economic variables are generally low and
close to zero. This indicates that the direct economic impact of
geopolitical shocks is relatively limited. However, such shocks may
transmit volatility through complex indirect channels, highlighting
the necessity of dynamic analysis to further explore their
potential impacts.

Next, we analyze the time-varying characteristics of dynamic
correlations across markets. Figure 4 presents the dynamic
conditional correlations, while Table 7 reports their descriptive
statistics, from which several features can be identified. Within the
shipping market, the correlations are significantly higher than those
across other markets, indicating a closer internal linkage. For example,
the dynamic correlation between BDTI and BCTI (Corr,;) has a mean
of 0.7748, a fluctuation range of [-0.7927, 0.9783], a standard deviation
of 0.4469, and a kurtosis as high as 7.5981. This suggests substantial
volatility in the correlation, far exceeding the kurtosis standard of a
normal distribution. It indicates significant time variation, and the
correlation may strengthen rapidly under extreme market conditions
(e.g., geopolitical conflicts or capacity shortages). This finding is
consistent with Tsouknidis (2016), who documented asymmetric

TABLE 7 Descriptive statistics of dynamic correlations.

10.3389/fmars.2025.1647599

volatility spillovers in the dry bulk market. Across markets, the
shipping market and geopolitical risk show mostly positive
relationships, while the oil market and geopolitical risk exhibit
negative relationships. Similarly, correlations between the shipping
and oil markets are generally negative. In terms of magnitude, the
linkages between the shipping and oil markets are stronger than those
between either of them and geopolitical risk.

Furthermore, most dynamic correlations display right-skewed
distributions, suggesting that the probability of positive co-
movements is slightly higher than that of negative ones. This
phenomenon may be related to risk-averse behavior among
market participants. During crises, institutional investors tend to
adjust cross-market positions simultaneously, which may lead to
stronger stock price synchronicity (Baur and McDermott, 2010).
The relationship between geopolitical conflict risk and the shipping
and oil markets exhibits a complex structure. For instance, the
dynamic correlation between GPR and WTI (Corrys) has a mean of
-0.0106, with a maximum of 0.8763 and a minimum of -0.8274.
This indicates that the impact of geopolitical shocks on the oil
market is event-driven. When transmission channels differ, the
effects also vary: local conflicts may temporarily drive up oil prices,
resulting in positive correlations, whereas long-term sanctions or
demand contractions may lead to negative correlations.

Finally, to further determine whether there exists lagged effects
across markets, we tested data with lags of 1, 2, 3, 4, 5 (one week), 10
(two weeks), and 20 (one month). Table 8 reports the dynamic
correlation coefficients and DCC model parameters under different
lag structures. By analyzing the stability of the coefficients within
the shipping market (Corry,, Corr,;, Corr,3), it can be observed that
the information transmission efficiency within the market is
relatively high. This finding is consistent with Li et al. (2014) and
recent studies on the linkage between spot and forward freight
markets. The estimated values of the news shock parameter and the
persistence parameter in the DCC-GARCH model suggest that
dynamic correlations across markets are highly persistent, while the
effect of new information shocks is relatively weak. This result

Coefficient Mean SD Min Max Skewness Kurtosis
Corry, 0.3557 0.7331 -0.8689 0.9310 -0.7668 1.7207
Corrys 0.4104 0.7070 -0.8767 0.9425 -0.9277 2.0133
Corryy 0.1427 0.6511 -0.9098 0.9267 -0.3115 1.4534
Corrys 0.0580 0.5359 -0.8569 0.8999 -0.0981 1.5788
Corrs 0.7748 0.4469 -0.7927 0.9783 -2.4540 7.5981
Corryy -0.0527 0.6655 -0.9220 0.9043 0.1190 13522
Corrys 0.1172 0.5392 -0.8713 0.9009 -0.3406 1.7104
Corrs, -0.0943 0.6585 -0.9356 0.9268 0.2011 1.3901
Corrss 0.0919 0.5404 -0.8756 0.9083 -0.2835 1.6656
Corrys -0.0106 0.4755 -0.8274 0.8763 0.1447 1.7952

Labels 1-5 correspond to ABDI, ABDTI, ABCTI, AWTL and AGPR. Corr; defines the adaptive correlation coefficient for variables i and j, where Corry, specifically measures the correlation

dynamics between ABDI and ABDTI.
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TABLE 8 Results of lagged correlation tests.

10.3389/fmars.2025.1647599

Coefficient
Corry, 0.356*** 0.355%% 0.357+%¢ 0.356*** 0349 034844 0.352%%
Corrys 0.410%% 0.412%%¢ 0.413%%¢ 0.412%%¢ 0405+ 0.4054%* 0.408***
Corry 0.143+% 0.146%%¢ 0.148*%¢ 0.147+% 0.145+ 0.143+% 0.146*%*
Corrys 0.058+%* 0.059%%* 0.061+%* 0.062+ 0.058%* 0.066"* 0.070+
Corry, 0.775%% 0.774%%% 0.774%%% 0.773*%¢ 07734 0.775°++ 0.773+
Corry, -0.053* -0.055*+ -0.058*+ -0.057* -0.058*+ -0.0574 -0.059*
Corr,s 0.117+% 0.116%** 0.117+% 0.113+% 0.113%% 0.107+%* 0,092+
Corrs, -0.094* -0.095%+ -0.096*+ -0.095% -0.096*+ -0.097* -0.097*
Corrss 0.092+%* 0.091+ 0.091%% 0.087+% 0.086*+ 0.080%%* 0.083+%*
Corrys -0.011* -0.014%* -0.018%* -0.008 -0.010 -0.014%* -0.011*
a 0.187+%* 0.228%%* 0.270%%* 0.256*** 0.282%%* 0.241%%¢ 0.256***
B 0.784%4%% 0.740+ 0.690*%* 0.707+%* 0.679%** 0.726%** 0.707+%*

*p< 0.1, **p< 0.05, **p< 0.01. In the table, 1-5 correspond to ABDI, ABDTI, ABCTI, AWTI, and AGPR, respectively. Corr,,denotes the dynamic correlation coefficient between variables i and j;

for example, Corrj,represents the dynamic correlation between ABDI and ABDTI.

is consistent with Celik (2012) on dynamic correlations in
emerging markets, implying that the main driver of cross-market
volatility spillovers lies in historical correlations rather than
contemporaneous shocks.

4.3 Model robustness test

To verify the reliability of the empirical results, this study
conducts robustness checks from three perspectives, all of which
confirm the stability of the core findings.

First, we perform a variable substitution test by replacing WTI
crude oil prices with Brent crude oil prices and re-estimating the
models. The results of the DY spillover index model and the DCC-
GARCH model are presented in Figure 5 and Table 9, respectively.
The findings show that the time-varying trends of spillover indices,
the directions of net spillovers across markets, and the overall
patterns of dynamic correlations are highly consistent with the
baseline results. This demonstrates that the conclusions are not
sensitive to the choice of benchmark crude oil price.

Second, we tested the robustness of the results by altering key
parameters of the DY model, including a shorter lag order (p =9), a

shorter rolling window (w = 100 days), and a shorter forecast

TABLE 9 Dynamic correlations (DCC) with brent crude oil replacing WTI.

Variable 6 BDlI 6 BDTI 6 BCTI 6 BRENT & GPR
ABDI 1.0000 | 0.3547 0.4110 0.1234 0.0577
ABDTI 03547 1.0000 0.7681 -0.1191 0.1177
ABCTI 04110 07681 1.0000 -0.1562 0.0934

ABRENT 01234 | -0.1191 -0.1562 1.0000 -0.0410
AGPR 00577 | 0.1177 0.0934 -0.0410 1.0000
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horizon (H = 10). The combined results, shown in Figure 6, indicate
that the empirical findings are not sensitive to parameter choices.

In addition, the full sample was divided into four key
sub-periods:

e 1999-2008 (pre-global financial crisis),

* 2009-2019.11 (post-crisis period),

e 2019.12-2023.5 (COVID-19 pandemic period), and
e 2023.6-2025.8 (post-pandemic period).

The results, presented in Figure 7, show that although the
absolute levels of spillovers differ across sub-periods, the
underlying patterns remain unchanged: spillover effects intensify
during crises and weaken during stable periods, while the relative
spillover relationships among major markets remain consistent.

In summary, the series of robustness checks fully support the
reliability of the core conclusions of this study.

5 Discussion

5.1 Mechanisms through which geopolitical
conflict events affect volatility spillovers

Geopolitical conflicts influence the volatility spillover effects
between the international shipping and crude oil markets through
multiple transmission channels. The mechanisms can be analyzed
from the following three perspectives:

First, direct shocks and indirect transmissions arising from
supply-demand imbalances. The DY spillover index model shows
that geopolitical risk (GPR), as the main net receiver of volatility, is
significantly more sensitive to external shocks than other indicators.
This feature is consistent with the results of the DCC-GARCH
dynamic correlation analysis, which indicates that GPR has
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relatively low static correlations with WTT crude oil prices under
normal conditions, suggesting weak linkage in routine
circumstances. However, under extreme events—such as local
conflicts or prolonged sanctions—the dynamic impact of GPR on
oil prices becomes significant, either driving prices sharply upward
or suppressing demand. This reflects the event-driven nature of
geopolitical conflict impacts: in the short term, oil supply
disruptions may push prices higher, while long-term sanctions or
trade restrictions may transmit negative effects via demand
contraction. For example, in the early stage of the Russia—-Ukraine
conflict in 2022, Brent crude oil prices surged by more than 10% in a
single day. Subsequently, the EU’s embargo on Russian oil caused a
mismatch in shipping capacity, leading to a sharp increase in the
dynamic correlations between BDTI and BCTI. This demonstrates
how geopolitical shocks can reinforce market interconnectedness
through supply chain restructuring, highlighting the multi-phase
nature of geopolitical conflict risk: short-term panic-driven supply-
demand shocks, medium-term supply chain restructuring, and
long-term policy feedback.

Second, asymmetric adjustments in market participants’
behavior. The results from the DCC-GARCH model show that
most dynamic correlations exhibit a right-skewed distribution,
which suggests that the probability of positive co-movements is
relatively higher. This finding is consistent with the theory of
“flight-to-safety convergence during crises” proposed by Baur and
McDermott (2010). Specifically, when geopolitical risks intensify,
investors tend to simultaneously reduce their exposure to high-risk
assets, thereby amplifying cross-market volatility spillovers. Further
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analysis reveals that this asymmetric adjustment behavior varies
under different market conditions. According to the DY model,
during crises, the proportion of volatility spillovers received by
GPR surged sharply from below 5% in tranquil periods to about
15%. This effect is particularly evident when tensions in the Strait of
Hormuz raised crude oil transportation costs and increased insurance
premiums. These findings demonstrate that geopolitical risk can
magnify contagion effects across markets by triggering panic
sentiment among market participants. For example, during the
2019 Strait of Hormuz crisis, crude oil transportation insurance
costs surged by 300%, leading to a 40% increase in the spillover
intensity between BDTI and WTI in the short term (Tsouknidis,
2016). This case clearly demonstrates how geopolitical events can
rapidly and sharply alter market participants’ behavior patterns as
well as overall market interconnectedness. Further observation shows
that the asymmetric adjustment mechanism of markets is not only
shaped by sudden events but is also closely related to the intrinsic
structure of the markets and investors’ risk preferences. Under
relatively stable market environments, investors tend to exhibit
higher risk tolerance and prefer high-yield assets, resulting in
weaker market interconnectedness. However, once confronted with
external shocks such as geopolitical risks, investors’ risk preferences
shift abruptly toward safe-haven assets, causing capital flows to
change direction and triggering heightened volatility and cross-
market risk transmission. This behavioral shift not only reflects the
sensitivity of market participants to risk, but also reveals the fragility
and complexity of financial markets when exposed to external shocks.
Future research could further explore the interactions among these
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factors and examine how they influence market stability
and efficiency.

Third, the lagged effects of policy responses and supply chain
adjustments. The lagged correlation test results show that the
correlation coefficient between BDI and GPR declines significantly
at a lag of 20 periods (approximately one month) (see Table 8),
revealing the lagged nature of the negative impacts of geopolitical
risks. This phenomenon may stem from delays in policy
interventions (e.g., approvals for route changes) or in supply chain
restructuring (e.g., energy-importing countries shifting to alternative
suppliers). For example, following the Suez Canal blockage in 2021,
although the BDI's daily volatility surged in the short term, the
negative spillover effect of GPR on BDI became significant only about
three weeks after the event. This further confirms the role of supply
chain resilience in buffering volatility transmission (Celik, 2012).
Further analysis shows that the lagged effects of policy responses and
supply chain adjustments exert multifaceted impacts on markets. On
one hand, policy formulation and implementation typically require
time to assess and address complex situations. For instance, approvals
for rerouting permits involve coordination across multiple agencies
and must balance safety, economic, and other considerations, leading
to delayed policy responses. On the other hand, supply chain
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restructuring requires firms to reassess suppliers, adjust transport
routes, and revise production plans—a process that is both complex
and time-consuming. In critical sectors such as energy, importing
countries face challenges such as infrastructure compatibility and cost
considerations when shifting to alternative suppliers (Xiao
et al., 2025).

5.2 Discussion of the impact of other major
events

During the sample period, aside from geopolitical conflicts,
systemic events such as financial crises and pandemics also
influenced volatility spillovers through differentiated transmission
channels (Hynes et al., 2020; Laborda and Olmo, 2021; Balli et al.,
2022). This study does not explicitly control for these events, but
their impacts are discussed based on their timing. During the 2008
global financial crisis, the DY model shows that the total volatility
spillover index surged from a low of 0.25 to 0.6, far exceeding the
sample mean of 35.02%. The DCC-GARCH dynamic analysis
further reveals that the dynamic correlations between BDTI and
BCTT spiked during this period, while the spillover intensity
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received by GPR increased by about 200%. This phenomenon can
likely be attributed to cross-market fire sales triggered by liquidity
squeezes: financial institutions, in order to meet margin calls,
simultaneously reduced positions in both shipping derivatives and
crude oil futures, thereby driving up co-movements in volatility.
Unlike geopolitical conflicts, the volatility transmission of a
financial crisis is global and instantaneous. The DY model shows
that during the crisis, the “T'o others” spillover values of all markets
increased by more than 50%, whereas the impact of geopolitical
conflicts tends to be more regional in nature (e.g., stronger co-
movements primarily between GPR and WTI).

During the initial stage of the COVID-19 pandemic (late 2019
t0 2020), the DY model shows that the net spillover value of the BDI
dropped below its average of 0.35. The DCC-GARCH model,
however, indicates that the dynamic correlation between BDI and
WTI surged above 0.5, significantly higher than its mean, and was
statistically significant at the 1% level. This phenomenon may
reflect the resonance effect between shrinking demand
(particularly for crude oil) and excess shipping capacity. Unlike
the financial crisis, the pandemic shock directly suppressed
commodity trade volumes by halting real economic activity,
thereby weakening the shipping market’s ability to export
volatility (Barua, 2020; Notteboom et al., 2021). However, as
central banks across countries implemented quantitative easing,
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economic indicators began to recover in the second half of 2020.
This demonstrates that policy interventions via liquidity injections
helped, to some extent, restore the market co-movement
mechanisms (Li et al., 2014; Wang et al., 2025).

6 Conclusion

Using the DY spillover index model and the DCC-GARCH model,
this paper systematically analyzes the volatility spillover effects among
geopolitical conflict risk, the shipping market, and the crude oil market,
yielding the following main conclusions: First, there exist significant
bidirectional spillover effects among the three. Within the shipping
market, volatility spillovers among dry bulk freight rates, crude oil
tanker freight rates, and product tanker freight rates are the strongest,
reflecting the close internal relationships of the sector. In addition, the
volatility spillover effects between the crude oil market and geopolitical
conflict risk are also notable. However, compared with geopolitical risk,
the spillover effects between the shipping and crude oil markets are
more pronounced. Second, the relationships between geopolitical
conflict risk and the shipping and crude oil markets are complex,
showing different positive or negative linkages under different
transmission mechanisms. These relationships are characterized by
asymmetry and time variation. The transmission mechanisms operate
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through multiple channels, including direct shocks from supply-
demand imbalances, adjustments in investor sentiment and
expectations, and the lagged effects of policy responses and supply
chain restructuring.

The research findings provide valuable references for policymakers
in formulating energy security policies and shipping risk management
strategies, while also helping market participants better cope with risks
arising from geopolitical uncertainty. For policymakers, it is imperative
to enhance real-time monitoring of the dynamic interactions between
the shipping and crude oil markets, and to integrate geopolitical risks
into early warning mechanisms for energy security, shipping security
and supply chain resilience. To address risks associated with
geopolitical conflicts, policymakers should establish cross-national
information-sharing and early warning systems, promote the
development of regional risk monitoring platforms, and consolidate
military, intelligence, and commercial shipping data to periodically
publish maritime route risk assessments. In the event of major risk
incidents, the calibrated release of strategic petroleum reserves may be
considered to alleviate market panic induced by supply disruptions.
Furthermore, international marine insurance organizations should be
encouraged to collaborate in implementing differentiated war risk
insurance premium rates and subsidy mechanisms, thereby guiding
enterprises through market-based approaches to prioritize safer
shipping routes and mitigate systemic risks. For shipping and energy
companies, it is advisable to establish dynamic hedging strategies
against geopolitical risks. Examples include implementing cross-
market hedging through Forward Freight Agreements (FFAs) and
crude oil futures, and optimizing hedging timing by incorporating
sentiment indicators such as the GPR index. In addition, companies
should strengthen the management of Contracts of Affreightment
(COAs) and introduce flexible clauses to address potential co-
movement volatility in freight rates and oil prices. For investors,
asset allocation should take into account the amplifying effect of
geopolitical risk on volatility spillovers across markets. It is important
to avoid excessive exposure to highly correlated asset portfolios during
crises, while actively exploring volatility derivatives and other risk
management instruments.

This study is not without limitations. Methodologically,
although the DY and DCC-GARCH models effectively capture
mean spillovers and time-varying correlations, they are less
capable of characterizing tail dependencies under extreme risk
events, and they do not fully account for potential estimation
biases arising from structural breaks. Future research could adopt
approaches such as Quantile Spillover models or mixed-frequency
Copula models to further investigate asymmetric spillover
mechanisms. In terms of mechanism identification, while this
paper analyzes spillover channels from multiple perspectives, it
does not quantify the relative contributions of each transmission
pathway. Subsequent studies may consider combining structural
VAR models or mediation effect models to decompose and test the
influence of different channels. From a data perspective, future work
could incorporate finer-grained regional geopolitical risk indices,
capacity data by vessel type, and crude oil trade flow data, thereby
enabling better identification of regional heterogeneity and micro-
level transmission mechanisms.
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