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The international shipping market, as a vital pillar of global trade, is closely

intertwined with the crude oil market. Geopolitical conflicts—through

mechanisms such as supply disruptions, rising transportation costs, and

heightened market uncertainty—intensify volatility in both markets and amplify

their mutual spillover effects. Using data from November 1999 to August 2025

across three markets, this study applies the Diebold–Yilmaz (DY) spillover index

and the DCC-GARCH model to analyze the dynamic linkages between the

shipping and crude oil markets, with a particular focus on volatility spillovers

among the three. The results show significant bidirectional volatility spillovers

between international shipping and crude oil markets, with the strongest

spillovers occurring within the shipping market itself, reflecting its high degree

of internal interconnectedness. Geopolitical conflict risk acts mainly as a net

receiver of volatility and, by triggering supply–demand imbalances, prompting

behavioral adjustments, and generating lagged policy effects, further amplifies

spillovers between shipping and oil markets. This study not only provides a new

perspective for understanding the interdependence of global energy and

shipping markets under geopolitical uncertainty, but also offers valuable

decision-making implications for policymakers and market participants in

managing risks.
KEYWORDS

geopolitical conflict risks, shipping market, crude oil prices, volatility spillover effects,
DY spillover index model, DCC-GARCH model
1 Introduction

Approximately 85%–90% of global trade is transported by sea, and key maritime routes

are often focal points of geopolitical conflicts. Shipping also serves as a core instrument for

implementing economic sanctions—during conflicts, the blockade of an adversary’s ports

can paralyze its economy (Rasshyvalov et al., 2024; Theodorou, 2024; Aropelto, 2025). As

one of the world’s most crucial energy sources, oil transportation is highly dependent on
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maritime shipping (Dalsøren et al., 2007; Gilbert and Pearl, 2012).

For example, about 20% of global oil supply passes through the

narrow Strait of Hormuz each day. If this chokepoint were closed

due to conflict, it could trigger soaring global energy prices and

widespread economic turbulence (Shichor, 2008; Ramadhani and

Marzaman, 2024; Brito and Jaffe, 2005).

In this study, geopolitical conflict risk (Geopolitical Risk, GPR)

specifically refers to the uncertainty in the global economy and

financial markets caused by international or regional political

events—such as wars, sanctions, terrorist attacks, and political

unrest (Salisu et al., 2022). In recent years, geopolitical conflicts

have become increasingly frequent, including unrest in the Middle

East, the Russia–Ukraine war, and the U.S.–China trade war. These

events have exerted profound impacts on the global economy,

energy markets, and shipping markets. The outbreak of

geopolitical conflicts often leads to oil supply disruptions,

shipping route blockages, and rising transportation costs. These

problems are intertwined, creating cascading effects on both the

shipping and energy markets. Such conflicts not only directly

threaten energy supply security but also, through market linkages,

affect global trade, supply chain stability, and financial market

volatility (Kolb, 2011; Scholten and Bosman, 2016; Su et al., 2021;

Rasshyvalov et al., 2024).

Exploring the impact of geopolitical conflict risk on the

volatility transmission mechanisms between the international

shipping and crude oil markets is of critical importance for

understanding global economic and financial stability (Jiao et al.,

2023). From a theoretical perspective, studying volatility spillovers

under geopolitical risks helps deepen financial contagion theory,

particularly by enhancing our understanding of cross-market risk

transmission mechanisms (Elsayed and Helmi, 2021; Ahmed and

Sohag, 2025). At present, most studies focus on direct relationships

between one or two markets. Introducing geopolitical conflict risk

as a variable allows for a more comprehensive explanation of the

complex role of external shocks in volatility transmission (Elsayed

and Helmi, 2021; Korsah and Mensah, 2024). From a practical

perspective, given the increasing complexity of global geopolitics

and the frequent occurrence of conflicts, their impacts on

international shipping and crude oil markets have become

increasingly significant. Quantitatively analyzing how geopolitical

conflict risk affects volatility and co-movements between the two

markets can provide decision-making support for policymakers,

investors, and enterprises, helping them effectively manage market

risks (Guo et al., 2025). In addition, this research has important

policy implications: the findings can serve as a reference for

governments and international organizations in formulating more

effective energy security policies and shipping risk management

strategies , thereby mitigating the adverse impacts of

geopolitical conflicts.

The structure of this paper is arranged as follows: Section 2

reviews the related literature and analyzes the shortcomings of

existing studies, thereby clarifying the academic contributions of

this research. Section 3 introduces the dataset, theoretical models,

and econometric methods employed. Section 4 presents the results

of the empirical analysis and provides an in-depth discussion of the
Frontiers in Marine Science 02
findings. Section 5 offers further discussion of the research

implications. Finally, Section 6 concludes the paper.

This study advances the literature by jointly modeling shipping,

crude oil, and geopolitical conflict risk within a unified volatility

spillover framework, uncovering the bidirectional and time-varying

nature of their interdependence and highlighting policy-relevant

implications for global maritime and energy security.
2 Literature review

This study aims to conduct an in-depth analysis of the impact of

geopolitical conflict risk (Geopolitical Risk, GPR) on the volatility

spillover effects between the international shipping market and the

crude oil market. The research focuses on three aspects: the

mechanisms of geopolitical conflict risk, the interactive

relationship between the two markets, and the transmission

pathways of volatility spillovers. Based on existing literature, this

section reviews the current state of research in related fields and

highlights the innovative contributions of this study.
2.1 Studies on the impact of geopolitical
conflicts

As a critical external shock factor, geopolitical risk (GPR) has

exerted widespread and profound influences on the volatility of

financial and commodity markets. Caldara and Iacoviello (2022),

through text analysis and index construction based on newspaper

data, provided an important tool for quantifying GPR and laid a

data foundation for subsequent research. Many studies have

focused on the impact of GPR on different markets, particularly

on volatility in the oil market. Hamilton (2009) pointed out that the

volatility of the oil market is often significantly shaped by

geopolitical factors; especially during conflicts, fluctuations in

geopolitical risk premiums exacerbate instability in oil prices.

Baumeister and Kilian (2016) further revealed that geopolitical

tensions—such as conflicts in major oil-producing countries—

have a substantial impact on oil price volatility. Historical

episodes such as the 1973 oil crisis, the 1979 Iranian Revolution,

the 2003 Iraq War, the 2011 Libyan Civil War, the 2014 Ukraine

crisis, and the 2022 Russia–Ukraine conflict all demonstrate the far-

reaching influence of geopolitical events on oil prices. Monge et al.

(2023), using fractional integration methods, studied the behavior

of West Texas Intermediate (WTI) prices and the Baltic Dry Index

(BDI) under geopolitical risk assumptions. Their results suggest

that while the BDI series tends to revert to its original trend

following external shocks, the WTI series displays markedly

different persistence, highlighting contrasting behaviors. Chen

et al. (2025) investigated the dynamic relationship between the

crude oil market and the tanker shipping market under shocks of

geopolitical risk, with a particular focus on the differential impacts

of threat-based and action-based geopolitical risks as well as

supply–demand disruptions. They employed the VAR-BEKK-

GARCH model to capture changes in spillover dynamics before
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and after geopolitical shocks, and applied the TVP-SV-VAR model

to visualize the time-varying intensity, direction, and duration of

geopolitical risks. Their findings show that threat-based risks

enhanced bidirectional spillovers between crude oil and the Baltic

Clean Tanker Index (BCTI), whereas action-based risks suppressed

these spillover effects. Zeng et al. (2024), using a quantile vector

autoregression (QVAR) approach in the frequency domain, studied

the risk linkages between the global Geopolitical Risk Index (GPR),

the CBOE Oil Volatility Index (OVX), and major agricultural and

livestock indices. Their results indicate that food markets are the

main transmitters of spillover effects, while the OVX is

predominantly a net receiver of risk spillovers in most cases.

Smales (2021) highlighted the role of media coverage of

geopolitical events, showing that extensive reporting significantly

affects investors’ required risk premiums. This provides evidence

that geopolitical risks play a critical role in determining oil price

volatility and, to a lesser extent, stock market volatility. Wang and

Dong (2024), using a rolling-window VAR-DY spillover model

combined with network theory, measured the dynamic net

spillovers in financial markets. Their study found that

international crude oil price volatility not only strongly influences

Chinese crude oil prices but also, to some extent, affects geopolitical

risk itself.

In examining the impacts on other markets, Mishra et al.

(2024), using an event study approach, revealed that geopolitical

conflicts such as the Russia–Ukraine war significantly increased

global stock market volatility, particularly in regions geographically

close to or economically more connected with the conflict countries.

Afonso et al. (2024) also showed that GPR significantly exacerbates

sovereign debt risks in European countries, affecting debt

conditions by raising financing costs and expectations of market

uncertainty. From a global perspective, Zhang et al. (2023)

investigated the relationship between geopolitical risk and stock

market volatility, finding that GPR exerts a significant positive effect

on stock market volatility, with stronger impacts observed in

emerging economies, oil-exporting countries, and peaceful states.

Elsayed and Helmi (2021) applied the ADCC-GARCH model and

spillover analysis to examine the effects of geopolitical risk on return

and volatility dynamics in Middle East and North African (MENA)

markets. Their results emphasize that while GPR did not

significantly affect return spillovers across MENA financial

markets, dynamic analysis shows that the total spillover index

responded strongly to major political events.

However, research on the impact of geopolitical conflict risk on

energy markets—particularly the shipping market—remains

relatively limited. Although Stopford (2009) pointed out that the

volatility of the shipping market is closely linked to oil prices, he did

not systematically investigate the mechanisms of volatility

transmission between the two. Drobetz et al. (2021), using a

Bayesian VAR model, studied the effects of geopolitical risk

(GPR) and economic policy uncertainty (EPU) on shipping

freight rates. Their results confirmed that GPR exerts a positive

impact on dry bulk freight rates through global, rather than

country-specific, geopolitical shocks, though the effect has been

gradually weakening over time. Qian et al. (2022), employing an
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predictability of oil market volatility under GPR, showing that

GPR contains useful predictive information for oil price volatility,

particularly effective in the long-term forecasting horizon.

Building on previous research, the impact of geopolitical risk on

the shipping market remains an area that warrants further in-depth

investigation. At the same time, most existing studies focus on the

analysis of volatility within a single market, with relatively little

exploration of how geopolitical conflicts influence volatility

transmission across multiple markets. Therefore, this study

introduces a volatility spillover framework to systematically

analyze the dynamic relationship between the international

shipping market and the crude oil market, with the aim of filling

this research gap.
2.2 Studies on the relationship between
shipping and oil markets

As central players in the transportation and energy sectors, the

relationship between the shipping market and the crude oil market

has long been a focus of academic research—particularly regarding

the impacts of tanker transportation, fuel price fluctuations, and

external economic events on their interaction mechanisms.

Kavussanos and Alizadeh-M (2002), in their analysis of shipping

cost structures, risk premium formation, and market expectations,

repeatedly suggested that the oil market significantly influences the

shipping market through channels such as fuel costs, financing

conditions, and global trade activity. Broadstock and Filis (2014),

using Structural Vector Autoregression (SVAR) and the Scalar-

BEKK model, examined the time-varying correlations between

different types of oil price shocks and the returns of U.S. and

Chinese stock markets and their industry sectors. In the process,

they pointed out a logical chain in which shipping market activity

affects global economic activity, which in turn shapes oil demand.

Alexandridis et al. (2018) argued that fluctuations in fuel prices alter

the cost structures of shipping companies, thereby amplifying

freight rate volatility and ultimately affecting corporate

profitability and stock market performance. Baumeister and

Hamilton (2019), using Structural Vector Autoregression (SVAR)

methods, re-examined the importance of shocks to oil supply and

demand. In their discussion of SVAR models for the oil market,

they noted that shipping costs had historically been used as a proxy

for global economic activity to reflect oil demand. However, due to

their structural instability and strong susceptibility to non-

economic factors, they ultimately opted for more direct industrial

production indicators. This suggests that there exists an indirect but

important macroeconomic linkage between the shipping and oil

markets. Riaz et al. (2023) further emphasized that volatility in the

tanker market plays a crucial role in the dynamic transmission of

fluctuations from the oil market, while shipping market volatility in

turn exerts a significant influence on the crude oil market.

In addition, the impact of external economic events on the

shipping and oil markets has attracted increasing attention. Lin

(2023) found that external shocks such as the U.S.–China trade war
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and the COVID-19 pandemic intensified the volatility transmission

from the shipping market to the oil market. Lin et al. (2019) also

showed that during financial crises and economic slowdowns, the

Baltic Dry Index (BDI) generated significant short-term volatility

spillovers into other markets, with this effect becoming more

pronounced during the global financial crisis. Khan et al. (2021)

demonstrated that oil prices and the BDI are linked to geopolitical

risk (GPR) in both the time and frequency domains. Their study

indicated that under the presence of GPR, the connection between

oil prices and the BDI becomes more evident: GPR first affects oil

prices in the short term, and this effect later translates into the BDI

in the medium term. While their approach is highly insightful for

this study, it is limited to the dry bulk sector and does not extend to

the entire shipping market; moreover, there is room for

improvement in terms of research methods and the time span of

data used.

In summary, although existing studies have revealed important

interactions between the shipping and crude oil markets, most

research has primarily focused on volatility analysis within a single

market, with little systematic exploration of volatility spillover

effects between the two under the backdrop of geopolitical risk.
2.3 Studies on volatility spillover effects

When two markets are connected through financial or trade

linkages, price fluctuations in one market—driven by policies,

information shocks, or other factors—can be transmitted to the

other, thereby changing the correlation of volatility between them.

This phenomenon is referred to as volatility spillover effects (Wang

and He, 2016). Volatility spillovers are a core manifestation of

cross-market interactions, explaining how volatility changes in one

market influence another.

Engle (1982) proposed the multivariate Generalized

Autoregressive Conditional Heteroskedasticity (GARCH) model,

which provided a powerful analytical tool for studying volatility

spillover effects. Later, Engle (2002) introduced the Dynamic

Conditional Correlation GARCH (DCC-GARCH) model, a

multivariate volatility framework that captures time-varying

correlations flexibly through a two-step procedure—first

estimating univariate GARCH models and then dynamically

modeling the correlations of standardized residuals. Because of its

parsimonious parameterization and ability to ensure the positive

definiteness of the covariance matrix, the DCC-GARCH model is

particularly well-suited for high-dimensional financial systems. In

their review of multivariate GARCH models, Silvennoinen and

Teräsvirta (2009) noted that DCC-GARCH achieves a good balance

between estimation efficiency and practical applicability by

capturing time-varying correlations dynamically within a simple

two-parameter framework while maintaining covariance matrix

positive definiteness. As a result, the DCC-GARCH model has

become one of the most favored tools among scholars for studying

volatility spillover effects. Tissaoui et al. (2024) focused on the

dynamic relationship between the crude oil market and multiple
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with frequency-domain Granger causality tests, they revealed that

the persistent high volatility originating from commodity and

energy markets exerts significant spillover effects on crude oil

returns, and they emphasized the importance of time–frequency

decomposition in distinguishing long- and short-term effects.

Yıldırım et al. (2022), in the context of the COVID-19 pandemic,

applied the DCC-GARCH model to explore the mechanisms of

return and risk transmission between oil and precious metals. Their

study revealed the differing behaviors of safe-haven assets and

cyclical assets during crisis periods. Similarly, Tan et al. (2022),

also set against the pandemic background, introduced the DCC-

GARCH-Connectedness framework, which they used to examine

volatility spillover levels and the multilayer spillover structures

between commodity markets (energy and precious metals) before

and during COVID-19.

Diebold and Yilmaz (2012) proposed the DY spillover index

model, which is constructed based on forecast error variance

decomposition within a generalized VAR framework. The model

can quantify the total, directional, and net volatility spillover effects

across different markets, and its results are not affected by the

ordering of variables. It is particularly suitable for accurately

tracking the transmission paths and intensities of cross-market

volatility risks—such as in equities, bonds, foreign exchange, and

commodity markets—during financial crises. The DY model has

been applied in multiple research contexts. Tsouknidis (2016)

combined the DY spillover index with the DCC-GARCH model

to study dynamic volatility spillovers within and between dry bulk

and tanker freight markets, finding substantial time-varying

spillover effects that were especially strong during and after the

global financial crisis. Jiang et al. (2019) also integrated the two

models to examine volatility spillovers from China’s shipping

market to the steel market, concluding that the two markets

exhibit weak spillovers but with evidence of a breakdown in the

price transmission mechanism. Kang et al. (2017) employed a

multivariate DECO-GARCH model together with the DY

spillover index to investigate return and volatility spillovers

among six commodity futures (gold, silver, WTI crude oil, corn,

wheat, and rice), revealing the strength and direction of

transmission during the recent global financial crisis and the

European sovereign debt crisis.

The DCC-GARCH model, by estimating the volatilities of

individual variables and their dynamic conditional correlations in

stages, effectively captures time-varying correlations between

variables. However, it cannot directly quantify risk transmission at

the mean level. In contrast, the DYmodel performs exceptionally well

in analyzing volatility spillover effects across markets: it can quantify

the intensity and direction of transmission, reveal dynamic

relationships, and capture time-varying characteristics.

Nevertheless, the DY framework mainly focuses on mean spillover

effects (first moments), while its ability to capture volatility (second

moments) and tail risks (higher moments) is relatively limited.

In terms of alternative models, Kirkpinar and Evrim (2023)

employed a Copula model in combination with a VAR-MGARCH
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model to conduct an in-depth investigation of volatility spillover

effects between the BRICS bond markets and commodity markets

(gold and oil). By leveraging the Copula model’s ability to capture

nonlinear dependencies together with the VAR-MGARCH

framework’s capacity to analyze both mean and volatility

spillovers, their study produced results that more closely reflect

actual market behavior—particularly in the analysis of tail risks.

This study provides a systematic review of the theoretical and

empirical research on volatility spillover effects. The DY model

reveals the directional characteristics of global risk transmission,

compensating for the inability of the DCC-GARCH model to

directly quantify risk transmission at the mean level, while the

DCC-GARCH model offers a more detailed description of the

dynamic correlations of risks. The two models are therefore

functionally complementary, and their joint application can

effectively overcome the limitations of a single model, thereby

presenting analytical advantages from multiple dimensions. In

addition, the combined use of these models is technically feasible:

both rely on time-series data, which facilitates data collection and

processing, and joint analysis of the same dataset allows for mutual

validation, enhancing the objectivity and accuracy of the results.

However, existing literature has mainly concentrated on volatility

analysis within single markets, while in-depth exploration of

interactions and transmission mechanisms between markets

remains relatively scarce.
2.4 Contributions of this study

The main contributions of this study lie in two aspects.

First, this paper is the first to systematically construct a

triangular analytical framework of “international shipping market

– crude oil market – geopolitical risk”, breaking through the

limitations of traditional single- or dual-variable studies. By

employing a volatility spillover framework, it systematically

analyzes the impact of geopolitical conflicts on the shipping and

oil markets, providing empirical support for the existence of

bidirectional volatility spillovers and confirming the information

transmission characteristics of the international shipping market.

This study combines the DY spillover index model with the

DCC-GARCH model in a complementary way: while the former

quantifies the intensity and direction of spillovers, the latter

captures dynamic correlations. Together, they enable a

comprehensive exploration of the volatility spillover effects among

geopolitical risk, the international shipping market, and the crude

oil market, offering a new perspective for understanding how

geopolitical risks influence volatility transmission across markets

in different periods.

Second, compared with the existing literature that mostly relies

on relatively short time series, a key innovation of this study is the

use of 25 years of daily data from 1999 to 2025. This ultra-long

sample fully covers multiple major geopolitical and economic crises,

providing a solid data foundation for precisely estimating the long-

term evolution of dynamic correlations and rigorously testing

model robustness under extreme market stress conditions. As a
Frontiers in Marine Science 05
result, the conclusions of this study are more generalizable and

practically relevant.
3 Data and model framework

3.1 DY spillover index model

The DY spillover index model, also known as the generalized

forecast error variance decomposition (FEVD) spillover index

model, was proposed and later refined by Diebold and Yilmaz.

This model enables the quantitative analysis of directional volatility

spillover effects. In 2009, the two scholars first introduced the

model, primarily applying it to stock markets; in 2012, they

further extended it to multiple asset markets and addressed the

issue of model results being sensitive to variable ordering. Since

then, scholars worldwide have widely applied the DY spillover index

to measure volatility spillovers in financial markets such as equities

and commodity derivatives. The method is based on the forecast

error variance decomposition (FEVD) of a VAR model. By

quantifying the spillover effects of return volatility, it effectively

captures the trends, cycles, and burst characteristics of spillover

dynamics. The analysis of the DY model mainly includes two

dimensions: (1) Static Volatility Connectedness – measuring the

strength of bidirectional connectedness across different asset classes.

(2) Dynamic Volatility Connectedness – capturing the time-varying

features of volatility linkages (Diebold and Yilmaz, 2012).

For each group of variables that passes the stationarity tests, the

system can be written as an N-variable, k-lag VAR model (Equation

1):

Yt = o
p

k=1

∅k Yt−k + et (1)

Yt is an endogenous variable vector, which includes

multivariate time series of DBDI, DBDTI, DBCTI, DWTI, and D
GPR; ∅k is an N × N-dimensional parameter matrix; et is the error
term. Its moving average form is (Equation 2):

Yt = o
∞

k=0

Aket−1 + et (2)

The N×N -dimensional covariance matrix Ak is defined as: Ak =

∅1 Ak−1 +∅2 Ak−1 +… +∅K Ak−K, where A0 denotes the N×N

-dimensional identity matrix. The transformation of variance

decomposition associated with moving average coefficients is

reconfigured into a temporally adaptive framework via this

methodology. Crucially, the variance decomposition under this

method remains invariant to variable ordering.

Following this, the generalized variance decomposition

framework is applied to assess the proportional influence of

individual markets on cross-market volatility. Here, Zij(H)

measures the forecast error variance attributed to variable j for

variable i within a prediction span H (Equation 3).

Zij(H) =
sijoH−1

h=0
(e

0
i Ahej)

2

oH−1
h=0

(e
0
i AhA

0
hei)

(3)
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When implementing the generalized VAR framework, it is

observed that the row-wise totals in the variance decomposition

matrix may deviate from unity. This indicates that the combined

variance contributions from a variable itself and its interactions

with others do not sum to 1. To effectively harness the variance

decomposition matrix for spillover index computation, each entry

in the matrix must undergo row-wise normalization (Equation 4).

~Zij(H) =
Zij(H)

oN
j=1

Zij(H) (4)

The total spillover index SI, formulated via KPPS variance

decomposition, characterizes the aggregate magnitude of cross-

market spillover effects and quantifies the influence of individual

volatility shocks on the spillover of total prediction error variance

(Equation 5).

SI = oN
i=1oN

j=1,j≠i
~Zij(H)

oN
i=1oN

j=1
~Zij(H)

� 100 (5)

While analyzing the total volatility spillover index effectively

enhances understanding of volatility impact magnitudes among

core variables, the generalized VAR framework further allows the

investigation of directional spillover patterns across heterogeneous

market segments. Directional spillovers are calculated through

standardized components derived from the generalized variance

decomposition matrix, expressed via directional and net

spillover indices.

Directional Spillover Index: Discriminates between markets

serving as net contributors or net recipients of volatility spillovers.

From i to other variables (Equation 6):

DSIi→·(H) = o
N

j=1,j≠i

~Zij(H) (6)

From other variables to i (Equation 7):

DSI·→i(H) = o
N

j=1,j≠i

~Zji(H) (7)

Net Spillover Index: Assesses the comparative significance of

individual markets within the systemic framework (Equation 8).

NSI = DSIi→·(H) − DSI·→i(H) (8)

3.2 DCC-GARCH model

The Dynamic Conditional Correlation Generalized

Autoregressive Conditional Heteroskedasticity (DCC-GARCH)

model was first proposed by Engle (2002) with the purpose of

capturing and analyzing the time-varying conditional correlations

among multivariate time series. This model overcomes the

limitation of the traditional Constant Conditional Correlation

GARCH (CCC-GARCH) model, which assumes correlation

coefficients to be constant. By incorporating a time-varying

structure, the DCC-GARCH model is able to measure how

correlations between variables evolve over time, making it more

consistent with real-world dynamics. The development of this
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model is rooted in deeper insights into the characteristics of

financial time series volatility, particularly the phenomena of

volatility clustering and conditional heteroskedasticity. For

example, Engle and Sheppard (2001) were the first to apply the

DCC-MGARCH model to analyze linkages among international

stock markets, revealing that correlations between markets

strengthen significantly during crisis periods. Subsequently,

studies by Tse and Tsui (2002) and Silvennoinen and Teräsvirta

(2009) further extended the application of this model to cross-

market and cross-asset research, confirming its effectiveness in risk

management and portfolio optimization.

The DCC-GARCHmodel adopts a two-stage estimation procedure.

In the first stage, a univariate GARCH(1,1) model (Bollerslev, 1986) is

fitted to each return series to estimate its conditional variance, thereby

capturing the time-varying characteristics of individual volatilities. In the

second stage, the Dynamic Conditional Correlation (DCC) model is

employed, which constructs the dynamic conditional correlation matrix

using standardized residuals, i.e., by dividing the raw residuals by their

conditional standard deviations. The DCC model describes the

evolution of correlations over time through a dynamic updating

equation, allowing correlation coefficients to adjust dynamically in

order to more accurately capture the volatility and co-movements

observed in financial time series data. The model is specified as

follows (Equation 9):

rt = mt + et   et Ft−1 eN(0,Ht)j (9)

Within this framework, rt encapsulates the temporal dynamics

offive variables linked to the shipping market, crude oil market, and

geopolitical tensions. mt is defined as the steady-state equilibrium

return. The N×1-dimensional vectors rt, mt, et characterize the

investigated time series, their conditional expectations, error terms,

and standardized disturbances. Ft−1 comprises the entirety of

information available prior to time t (Equations 10-13).

e =
ffiffiffiffiffi
Ht

p
utut eN(0, I) (10)

Ht = DtRtDt (11)

Dt = diag(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h(1, 1)  t

p
,…,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h(N ,N)    t

p
) (12)

Rt = diag( 1ffiffiffiffiffiffiffiffiffi
q(i,i)  t

p ,…, 1ffiffiffiffiffiffiffiffiffiffiffiffi
q(N ,N)  t

p )Qtdiag(
1ffiffiffiffiffiffiffiffi
q(i,i)t

p ,…, 1ffiffiffiffiffiffiffiffiffiffiffiffi
q(N ,N)  t

p )

(13)

In this framework, Rt and Dt are defined as N×N -dimensional

matrices, corresponding to dynamic conditional correlations,

evolving conditional covariance matrices, and temporally adaptive

conditional variances (Equations 14, 15).

h(i, i)  t = wi + aie2i,t−1 + bi(i, i)h  t−1 (14)

Qt = (1 − a − b)�Q + aut−1u0t−1 + bQt−1 (15)

In this framework, �Q represents the unconditional covariance

matrix associated with standardized residuals. Following Hansen

and Lunde (2005) methodology, the model assumes that an impulse
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parameter ai and a persistence coefficient bi govern short-term

shocks and long-lasting memory effects, respectively, subject to ai +

bi < 1 to ensure volatility stationarity. Under these conditions, Qt

and Rt exhibit temporal variation. Under such conditions, the

model asymptotically approaches the CCC-GARCH framework,

resulting in a time-invariant Rt. Here wi signifies the long-term

equilibrium level, reflecting the steady-state market volatility absent

external disturbances. Proximity of ai + bi to unity correlates with

heightened persistence of fluctuation impacts from shocks.
3.3 Dataset specification

To represent the international shipping market, we select the

Baltic Dry Index (BDI), the Baltic Dirty Tanker Index (BDTI), and

the Baltic Clean Tanker Index (BCTI).
Fron
• The Baltic Dry Index (BDI) is the core indicator reflecting

fluctuations in international dry bulk shipping prices. It is

composed of freight rates for Capesize, Panamax, and

Handymax vessels.

• The Baltic Dirty Tanker Index (BDTI) measures global

transportation costs for crude oil and fuel oil. It reflects

both the supply–demand conditions and the transportation

costs in the market for unrefined “dirty” tankers.

• The Baltic Clean Tanker Index (BCTI) tracks the

transportation costs of refined oil products (such as

gasoline and diesel). It reflects changes in freight rates for

tankers used to transport “clean” refined petroleum

products.
For the international crude oil market, we use the futures closing

price of West Texas Intermediate (WTI) traded on the New York

Mercantile Exchange (NYMEX), which serves as one of the world’s

most important pricing benchmarks. Compared with Brent crude,

which is seaborne and therefore more sensitive to shipping rates,

international sanctions, and geopolitical disruptions, WTI is a

landlocked crude oil whose price is more directly driven by

fundamental market factors such as inventories, production, pipeline

transport capacity, and refining demand. Thus, WTI provides a

“cleaner” laboratory environment for this study. In the empirical

analysis, we further conduct a robustness check by substituting WTI

with Brent crude; the results are reported in 4.3.

For geopolitical risk (GPR), we adopt the Geopolitical Risk Index

compiled by Dario Caldara and Matteo Iacoviello. This index is

constructed by searching the archives of ten newspapers and

calculating, for each month, the proportion of articles related to

adverse geopolitical events relative to the total number of news articles.

All indicators use daily data from November 1, 1999 to August

29, 2025. The indices for the shipping market are obtained from

Clarksons Shipping Intelligence Network, WTI data from the

global financial information platform Investing.com, and GPR

data from the official website of its compilers (https://

www.matteoiacoviello.com/gpr.htm). Returns are calculated from

these series for analysis.
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3.4 Model applicability test

To ensure the reliability of the empirical results, this study

conducts a series of rigorous data preprocessing and model

specification tests before estimating the dynamic spillover index

and dynamic conditional correlations. The purpose of this section is

to verify whether the data used satisfy the basic assumptions of the

models and to assess whether the selected models can adequately

capture the dynamic characteristics of the data (Lütkepohl, 2013).

First, the ADF and PP tests were applied to examine the

stationarity of the data. As shown in Table 1, the ADF and PP

statistics of all five variables are smaller than the corresponding

critical values, rejecting the null hypothesis of a unit root and

confirming that the data are stationary (Dickey and Fuller, 1979;

Phillips and Perron, 1988).

Second, diagnostic tests were conducted on the residuals of the

models, including the Ljung–Box test for autocorrelation, the

normality test, and the ARCH-LM test. The results are presented

in Table 2, Figure 1, Table 3, and Table 4. The Ljung–Box test

results show that the residuals of all five variables satisfy the white-

noise assumption, indicating that the VAR model provides a good

fit to the data.

The normality test results are presented in Figure 1 (Q–Q plots

of the VAR model residuals) and Table 5 (statistics of residual

normality tests). The results strongly reject the null hypothesis,

indicating that the standardized residuals exhibit leptokurtosis and

fat tails, which is a typical feature of financial time series. Given the

robustness of the DY spillover index and DCC-GARCH models in

estimation, such non-normality does not fundamentally affect the

core conclusions. Therefore, this paper adopts the t-distribution—

which is better suited for capturing fat-tail characteristics—as the

distributional assumption of the GARCH model innovations, in

order to improve model fit and the accuracy of risk measurement

(Rani Das, 2016).

To verify whether the DCC-GARCHmodel sufficiently captures

the effect of volatility clustering, we conducted the ARCH-LM test

on the standardized residuals. The null hypothesis states that no

remaining ARCH effects exist in the residuals. The test results,

together with the parameter estimates of the univariate GARCH

(1,1) models for all variables, are reported in Table 3. The results

demonstrate that the GARCH(1,1) models successfully absorb the

conditional heteroskedasticity in the original series, and that the

standardized residuals are homoscedastic. Hence, the use of

GARCH-family models is both necessary and sufficient, and the

stationarity condition (a+b<1) is also validated (Engle, 2000).
4 Empirical findings

4.1 Parameter estimation of the DY
spillover index model

To ensure the rigor of model specification and the robustness of

estimation results, this study carefully determined the key

parameters. First, according to the Bayesian Information
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Criterion (BIC), the optimal lag order of the model was set at p = 15,

which allows the dynamic relationships among the variables to be

fully captured while avoiding overfitting. Second, the forecast

horizon for the Forecast Error Variance Decomposition (FEVD)

was set at H = 20 days, so that the spillover index measures become

stable. Finally, a 200-day rolling window was adopted for dynamic

analysis, aiming to guarantee the reliability of estimation results

while being sufficiently sensitive to capture the time-varying

characteristics of spillover effects.

Figure 2 presents the directional spillover indices of each

variable, while Figure 3 illustrates the dynamic evolution of the

total volatility spillover index. Table 4 reports the decomposition

results of cross-market volatility spillovers based on the DY

spillover index model.

The table quantifies the transmission intensity of volatility

among the indices using the forecast error variance

decomposition (FEVD). Specifically, the element in column j

represents the contribution of indicator j to the volatility of

indicator i. The column sums of the off-diagonal elements (i.e.,

“contributions to other indicators”) and the row sums of the off-

diagonal elements (i.e., “contributions received from other

indicators”) correspond to directional spillovers to others and
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directional spillovers from others, respectively. The difference

between the two yields the net volatility spillover.

In addition, the total volatility spillover index is located at the

bottom right corner of the spillover table. It represents the

percentage share of the sum of off-diagonal elements (either row

sums or column sums) relative to the total (including diagonal

elements). This index reveals the overall degree of volatility

connectedness within the system. The spillover table thus

provides an approximate “input–output” decomposition of the

total spillover index.

We first analyze the directional spillovers. From the

Contribution to others row, it can be observed that among the

five indicators, the BDI contributes the largest total directional

volatility spillovers to other markets, followed by the BDTI, BCTI,

and WTI, while the GPR contributes the least. From the From

others column, we see that GPR receives the largest spillovers from

other indicators, followed by WTI, BCTI, and BDTI, with the BDI

receiving the least spillovers. In terms of net directional spillovers,

the BDI exhibits the highest net spillover, confirming its role as the

primary net transmitter of volatility. In contrast, GPR shows the

lowest net spillover, identifying it as the main net receiver of

volatility. Within the shipping market specifically, the BDTI
FIGURE 1

VAR model residual Q-Q plot (quantile-quantile plot).
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exerts the strongest directional spillover on the BCTI, suggesting a

close relationship between crude oil tanker freight rates and clean

product tanker freight rates.

Overall, spillover effects within the shipping market are stronger

than those between the shipping market and external factors (WTI

and GPR). Meanwhile, the spillover effects of crude oil prices and

geopolitical conflict risk on the shipping market are more

pronounced. Looking beyond the shipping market, the spillover

from WTI to GPR is stronger than that from GPR to WTI.

Furthermore, the spillovers between crude oil prices and
Frontiers in Marine Science 09
geopolitical risk are greater than those between either of them

and the shipping market. Geopolitical risk also exhibits

similar characteristics.

From a dynamic perspective, directional spillovers among

variables are significantly amplified during crisis periods. Between

November 1999 and December 2024, the Iraq War of 2003 provides

the first clear evidence of shifts in directional spillover indices across

markets. At the onset of the war, concerns over crude oil supply

shortages drove a sharp surge in Brent oil prices. However,

following the release of U.S. strategic petroleum reserves, prices

fell back. This phenomenon corresponds with the WTI “To” and

“From” directional spillover indices, which rose initially and then

declined during this period. By contrast, the impact of the war on

dry bulk shipping was more indirect compared with that on the

crude oil and product tanker markets. Consequently, the BDI’s

directional spillover index exhibited patterns different from those of

the other markets. However, due to the decline in global trade

confidence, the BDI’s directional spillover index remained at a

relatively low level, indicating that its influence on other markets—

and the extent to which it was influenced by others—was both

limited during this time. In 2008, the Russia–Georgia conflict

disrupted Black Sea shipping routes, and combined with the

global financial crisis, led to a contraction in world trade. The

BDI index plunged sharply with heightened volatility, and both its

To and From directional spillover indices rose to temporary peaks,

establishing a higher baseline for subsequent periods. During the

2012 EU oil embargo on Iran, the BDI once again dropped to a low

point, while the BDI_To directional spillover index remained

elevated, reflecting the significant influence of the dry bulk
TABLE 2 Residual autocorrelation tests.

Variable BDI BDTI BCTI WTI GPR

Lag LB-Stat P value LB-Stat P value LB-Stat P value LB-Stat P value LB-Stat P value

1 0.0008 0.9779 0.0007 0.9789 0.0013 0.9708 0.0013 0.9709 0.0038 0.9510

2 0.0043 0.9979 0.0335 0.9834 0.0047 0.9977 0.0148 0.9926 0.0814 0.9601

3 0.0064 0.9999 0.0397 0.9979 0.0070 0.9998 0.0161 0.9995 0.2978 0.9604

4 0.0072 1.0000 0.0431 0.9998 0.0162 1.0000 0.0340 0.9999 0.5544 0.9680

5 0.0078 1.0000 0.0455 1.0000 0.0471 1.0000 0.0645 0.9999 0.8166 0.9760

6 0.0091 1.0000 0.0632 1.0000 0.0541 1.0000 0.0788 1.0000 1.0177 0.9849

7 0.0113 1.0000 0.0633 1.0000 0.0741 1.0000 0.1570 1.0000 1.3346 0.9875

8 0.0162 1.0000 0.0651 1.0000 0.0865 1.0000 0.1602 1.0000 1.8384 0.9856

9 0.0238 1.0000 0.0757 1.0000 0.0891 1.0000 0.1627 1.0000 2.3681 0.9842

10 0.0239 1.0000 0.0942 1.0000 0.2268 1.0000 0.2011 1.0000 3.4054 0.9702

11 0.0309 1.0000 0.1303 1.0000 0.2492 1.0000 0.2321 1.0000 4.2798 0.9610

12 0.0312 1.0000 0.1588 1.0000 0.2492 1.0000 0.2322 1.0000 5.5740 0.9360

13 0.1269 1.0000 0.1789 1.0000 0.3378 1.0000 0.3225 1.0000 8.7874 0.7888

14 0.1949 1.0000 0.1816 1.0000 0.4019 1.0000 0.3769 1.0000 13.5675 0.4824

15 1.8909 1.0000 0.4058 1.0000 0.4085 1.0000 0.3889 1.0000 20.6559 0.1482
fro
TABLE 1 Descriptive statistics.

Statistic DBDI DBDTI DBCTI DWTI DGPR

Mean 0.0065 0.0051 0.0005 0.0162 0.0033

Std 2.4956 2.2198 2.2022 2.7038 37.9871

Max 20.3367 23.8076 29.2244 58.1235 234.4884

Min -19.2272 -38.1224 -57.1987 -56.8589 -299.5883

Median 0.0000 -0.0947 -0.1442 0.0620 -0.5168

Skewness 0.3699 -0.0943 -1.4415 -0.1581 0.0703

Kurtosis 5.6734 34.7749 98.8042 71.2408 1.9819

ADF -16.9013 -26.9856 -15.9041 -13.8017 -20.6617

PP -33.2428 -44.9216 -46.4020 -86.7946 -306.1327

Critical Value (1%) -3.4314 -3.4314 -3.4314 -3.4314 -3.4314

Observations 6451 6451 6451 6451 6451
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market on other markets during this period. In February 2022, with

the escalation of the Russia–Ukraine conflict, freight rates along the

Black Sea–Mediterranean routes surged, pushing the BDTI index to

its highest level since May 2020. At the same time, market concerns

over restrictions on Russian crude oil exports drove Brent crude

prices above USD 119 per barrel. Correspondingly, the

BDTI_From, WTI_To, WTI_From, and GPR_To directional
Frontiers in Marine Science 10
spillover indices all reached their highest levels of the 2020–2024

period. By 2024, amid the Red Sea crisis and the shutdown of the

Suez Canal, the GPR_To directional spillover index remained at

consistently high levels, exceeding its average during the 2016–

2020 period.

In summary, the GPR_To directional spillover index tends to

spike during major geopolitical conflict events. When wars disrupt
FIGURE 2

Directional spillover indices. The figure shows the results of lag order p = 15, rolling window length w = 200 days, and prediction step H = 20 days.
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the oil market, the WTI_To and WTI_From indices display

pronounced upward fluctuations, while the BDTI and BCTI

spillover indices follow similar patterns to those of WTI. The BDI

spillover index, however, typically exhibits substantial fluctuations

when geopolitical conflict risks severely impact global trade.

Note: Panel (A) shows the original total volatility spillover

index. Panel (B) is based on Panel (A) but marks several major

international events along the timeline. Shaded areas indicate

periods during which multiple significant events occurred, while

text labels mark the start dates of selected events to facilitate

interpretation in conjunction with the index dynamics.
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The total volatility spillover index reaches 35.02% (see the

lower-right corner of Table 4), indicating that approximately

35.02% of the forecast error variance in the five markets can be

attributed to cross-market spillover effects. This relatively high level

reflects strong cross-market volatility interconnectedness.

From the dynamic evolution of the total volatility spillover

index in Figure 3, we observe considerable variation over the sample

period (November 1999 to August 2025), some of which can be

described as more or less continuous developments. Overall, the

total spillover index remains within a range of 25%–60%, exhibiting

certain cyclical fluctuations.
TABLE 3 Results of normality tests.

Variable Shapiro_statistic Shapiro_pvalue Skewness Kurtosis Sample_size

DBDI 0.9317 0.0 0.3699 5.6734 6451

DBDTI 0.7976 0.0 -0.0943 34.7749 6451

DBCTI 0.7032 0.0 -1.4415 98.8042 6451

DWTI 0.8312 0.0 -0.1581 71.2408 6451

DGPR 0.9869 0.0 0.0703 1.9819 6451
TABLE 4 Parameter estimates of univariate GARCH(1,1) models and ARCH-LM test results.

Coefficient BDI BDTI BCTI WTI GPR

w 0.0064 0.1754 0.07672 0.0144 0.6479

a 0.3660 0.8958 0.7169 0.0936 0.2235

b 0.62400 0.09422 0.2731 0.8904 0.1284

a+b 0.9900 0.9900 0.9900 0.9840 0.3519

Persistence High Persistence High Persistence High Persistence High Persistence Low Persistence

n 9.1734 4.4417 4.1970 7.8186 7.6580

LM_Lag 5 5 5 5 5

LM_Statistic 0.5979 0.0240 0.0252 0.2884 0.7049

LM_Pvalue 0.9881 0.9999 0.9999 0.9979 0.9827

ARCH_Effect_Removed True True True True True
TABLE 5 Volatility spillover table.

Variable DBDI DBDTI DBCTI DWTI DGPR From others

DBDI 0.6826 0.0877 0.0801 0.0775 0.0722 0.3175

DBDTI 0.0883 0.6626 0.0958 0.0837 0.0696 0.3374

DBCTI 0.0901 0.1883 0.5623 0.0967 0.0626 0.4377

DWTI 0.0842 0.0892 0.0866 0.6704 0.0697 0.3297

DGPR 0.0824 0.0888 0.0777 0.0801 0.6711 0.329

Contribution
to others

0.345 0.454 0.3402 0.338 0.2741 SI

NSI 1.0276 1.1166 -0.0975 0.0083 -0.0549 0.3502
Note: SI denotes the total spillover index, calculated using Equation 5 in Section 3.1; NSI denotes the net spillover index, calculated using Equation 8 in Section 3.1; From others and
Contribution to others refer to directional spillover indices, calculated using Equation 6 and Equation 7 in Section 3.1.
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Given the evolving and turbulent background of the shipping

markets, it appears unlikely that any single fixed-parameter model

would be well-suited to the entire sample period. Therefore, while

traditional full-sample spillover tables and spillover indices

summarize average spillover behavior, they may fail to capture

crucial long-term and cyclical variations in spillovers.

To address this issue, we employ a 200-day rolling sample combined

with major geopolitical conflict events to analyze volatility spillovers.

During 2003–2011, wars in the Middle East had a profound

impact on both the shipping and oil markets. The Iraq War
Frontiers in Marine Science 12
disrupted oil supplies, causing crude oil prices to surge. The

shipping market, meanwhile, faced heightened risks from military

operations in the Persian Gulf and piracy threats (e.g., in the Gulf of

Aden). Coupled with the Libyan War in 2011, the volatility index

remained at elevated levels.

Between 2014 and 2017, conflicts in the Middle East raised

shipping risks in the Strait of Hormuz. However, the simultaneous

boom in U.S. shale oil production triggered a collapse in oil prices.

With global trade slowing, the shipping market weakened, and the

volatility index fell below 0.4.
FIGURE 3

Total volatility spillovers. (A) Total volatility spillover index. (B) Total volatility spillover index with major events marked. The figure shows the results of
lag order p = 15, rolling window length w = 200 days, and prediction step H = 20 days.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1647599
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Chi et al. 10.3389/fmars.2025.1647599
From 2022 to 2024, the escalation of the Russia–Ukraine war and

the Israel–Palestine conflict, together with sanctions on Russian crude

oil, led to severe fluctuations in international oil prices. Multiple global

shipping routes were affected to varying degrees: Black Sea shipping

was disrupted (e.g., Ukrainian grain exports were blocked), the Arctic

route faced militarization risks, Red Sea shipping was targeted by

Houthi attacks, and transit costs through the Suez Canal surged.

Container freight indices also rose in 2024. These combined factors

corresponded closely with the sharp increase in the volatility index.
4.2 Parameter estimation of DCC-GARCH
model

Using the DCC-GARCH model under the t-distribution

assumption, we first analyze the static correlations among the markets.

Table 6 reports the static correlation coefficient matrix across variables.

The results show that: (1) Within the shipping market, the

indices are positively correlated with each other. (2) The oil market
Frontiers in Marine Science 13
and the shipping market exhibit negative correlations. (3)

Geopolitical conflict risk is negatively correlated with crude oil

freight rates and product tanker freight rates, but positively

correlated with dry bulk freight rates and crude oil prices.

The shipping market displays strong internal linkages. For

example, the correlation coefficient between the crude oil tanker

index and the product tanker index is 0.7748, indicating a

significant positive co-movement within the tanker segment. This

finding is consistent with Kavussanos et al. (2014), who highlighted

volatility spillovers across different segments of the shipping

market. Such linkages may originate from shared market demand

(e.g., global energy trade) and capacity allocation mechanisms. By

contrast, cross-market correlations are relatively weak: the

correlation coefficient between the dry bulk shipping index and

crude oil prices is 0.1427, while that between geopolitical risk and

crude oil prices is only –0.0106. These results align with Jiang et al.

(2019) on the shipping and steel markets, further confirming the

significance of the market segmentation effect. Shipping, crude oil,

and geopolitical risk factors are each driven by different underlying
FIGURE 4

Dynamic conditional correlations.
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fundamentals. Specifically, the BDI (Baltic Dry Index) primarily

depends on fluctuations in global commodity trade, while WTI

(West Texas Intermediate crude oil) is influenced by supply–

demand conditions and inventory levels. In addition, geopolitical

risk (GPR) exhibits a certain degree of independence, as its static

correlations with other economic variables are generally low and

close to zero. This indicates that the direct economic impact of

geopolitical shocks is relatively limited. However, such shocks may

transmit volatility through complex indirect channels, highlighting

the necessity of dynamic analysis to further explore their

potential impacts.

Next, we analyze the time-varying characteristics of dynamic

correlations across markets. Figure 4 presents the dynamic

conditional correlations, while Table 7 reports their descriptive

statistics, from which several features can be identified. Within the

shipping market, the correlations are significantly higher than those

across other markets, indicating a closer internal linkage. For example,

the dynamic correlation between BDTI and BCTI (Corr23) has a mean

of 0.7748, a fluctuation range of [–0.7927, 0.9783], a standard deviation

of 0.4469, and a kurtosis as high as 7.5981. This suggests substantial

volatility in the correlation, far exceeding the kurtosis standard of a

normal distribution. It indicates significant time variation, and the

correlation may strengthen rapidly under extreme market conditions

(e.g., geopolitical conflicts or capacity shortages). This finding is

consistent with Tsouknidis (2016), who documented asymmetric
Frontiers in Marine Science 14
volatility spillovers in the dry bulk market. Across markets, the

shipping market and geopolitical risk show mostly positive

relationships, while the oil market and geopolitical risk exhibit

negative relationships. Similarly, correlations between the shipping

and oil markets are generally negative. In terms of magnitude, the

linkages between the shipping and oil markets are stronger than those

between either of them and geopolitical risk.

Furthermore, most dynamic correlations display right-skewed

distributions, suggesting that the probability of positive co-

movements is slightly higher than that of negative ones. This

phenomenon may be related to risk-averse behavior among

market participants. During crises, institutional investors tend to

adjust cross-market positions simultaneously, which may lead to

stronger stock price synchronicity (Baur and McDermott, 2010).

The relationship between geopolitical conflict risk and the shipping

and oil markets exhibits a complex structure. For instance, the

dynamic correlation between GPR and WTI (Corr45) has a mean of

–0.0106, with a maximum of 0.8763 and a minimum of –0.8274.

This indicates that the impact of geopolitical shocks on the oil

market is event-driven. When transmission channels differ, the

effects also vary: local conflicts may temporarily drive up oil prices,

resulting in positive correlations, whereas long-term sanctions or

demand contractions may lead to negative correlations.

Finally, to further determine whether there exists lagged effects

across markets, we tested data with lags of 1, 2, 3, 4, 5 (one week), 10

(two weeks), and 20 (one month). Table 8 reports the dynamic

correlation coefficients and DCC model parameters under different

lag structures. By analyzing the stability of the coefficients within

the shipping market (Corr12, Corr13, Corr23), it can be observed that

the information transmission efficiency within the market is

relatively high. This finding is consistent with Li et al. (2014) and

recent studies on the linkage between spot and forward freight

markets. The estimated values of the news shock parameter and the

persistence parameter in the DCC-GARCH model suggest that

dynamic correlations across markets are highly persistent, while the

effect of new information shocks is relatively weak. This result
TABLE 7 Descriptive statistics of dynamic correlations.

Coefficient Mean SD Min Max Skewness Kurtosis

Corr12 0.3557 0.7331 -0.8689 0.9310 -0.7668 1.7207

Corr13 0.4104 0.7070 -0.8767 0.9425 -0.9277 2.0133

Corr14 0.1427 0.6511 -0.9098 0.9267 -0.3115 1.4534

Corr15 0.0580 0.5359 -0.8569 0.8999 -0.0981 1.5788

Corr23 0.7748 0.4469 -0.7927 0.9783 -2.4540 7.5981

Corr24 -0.0527 0.6655 -0.9220 0.9043 0.1190 1.3522

Corr25 0.1172 0.5392 -0.8713 0.9009 -0.3406 1.7104

Corr34 -0.0943 0.6585 -0.9356 0.9268 0.2011 1.3901

Corr35 0.0919 0.5404 -0.8756 0.9083 -0.2835 1.6656

Corr45 -0.0106 0.4755 -0.8274 0.8763 0.1447 1.7952
Labels 1–5 correspond to DBDI, DBDTI, DBCTI, DWTI, and DGPR. Corrij defines the adaptive correlation coefficient for variables i and j, where Corr12 specifically measures the correlation

dynamics between DBDI and DBDTI.
TABLE 6 Static correlation matrix.

Variable DBDI DBDTI DBCTI DWTI DGPR

DBDI 1.0000 0.3557 0.4104 0.1427 0.0580

DBDTI 0.3557 1.0000 0.7748 -0.0527 0.1172

DBCTI 0.4104 0.7748 1.0000 -0.0943 0.0919

DWTI 0.1427 -0.0527 -0.0943 1.0000 -0.0106

DGPR 0.0580 0.1172 0.0919 -0.0106 1.0000
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is consistent with Celik (2012) on dynamic correlations in

emerging markets, implying that the main driver of cross-market

volatility spillovers lies in historical correlations rather than

contemporaneous shocks.
4.3 Model robustness test

To verify the reliability of the empirical results, this study

conducts robustness checks from three perspectives, all of which

confirm the stability of the core findings.

First, we perform a variable substitution test by replacing WTI

crude oil prices with Brent crude oil prices and re-estimating the

models. The results of the DY spillover index model and the DCC-

GARCH model are presented in Figure 5 and Table 9, respectively.

The findings show that the time-varying trends of spillover indices,

the directions of net spillovers across markets, and the overall

patterns of dynamic correlations are highly consistent with the

baseline results. This demonstrates that the conclusions are not

sensitive to the choice of benchmark crude oil price.

Second, we tested the robustness of the results by altering key

parameters of the DY model, including a shorter lag order (p = 9), a

shorter rolling window (w = 100 days), and a shorter forecast
Frontiers in Marine Science 15
horizon (H = 10). The combined results, shown in Figure 6, indicate

that the empirical findings are not sensitive to parameter choices.

In addition, the full sample was divided into four key

sub-periods:
• 1999–2008 (pre-global financial crisis),

• 2009–2019.11 (post-crisis period),

• 2019.12–2023.5 (COVID-19 pandemic period), and

• 2023.6–2025.8 (post-pandemic period).
The results, presented in Figure 7, show that although the

absolute levels of spillovers differ across sub-periods, the

underlying patterns remain unchanged: spillover effects intensify

during crises and weaken during stable periods, while the relative

spillover relationships among major markets remain consistent.

In summary, the series of robustness checks fully support the

reliability of the core conclusions of this study.
5 Discussion

5.1 Mechanisms through which geopolitical
conflict events affect volatility spillovers

Geopolitical conflicts influence the volatility spillover effects

between the international shipping and crude oil markets through

multiple transmission channels. The mechanisms can be analyzed

from the following three perspectives:

First, direct shocks and indirect transmissions arising from

supply–demand imbalances. The DY spillover index model shows

that geopolitical risk (GPR), as the main net receiver of volatility, is

significantly more sensitive to external shocks than other indicators.

This feature is consistent with the results of the DCC-GARCH

dynamic correlation analysis, which indicates that GPR has
TABLE 8 Results of lagged correlation tests.

Coefficient T-1 T-2 T-3 T-4 T-5 T-10 T-20

Corr12 0.356*** 0.355*** 0.357*** 0.356*** 0.349*** 0.348*** 0.352***

Corr13 0.410*** 0.412*** 0.413*** 0.412*** 0.405*** 0.405*** 0.408***

Corr14 0.143*** 0.146*** 0.148*** 0.147*** 0.145*** 0.143*** 0.146***

Corr15 0.058*** 0.059*** 0.061*** 0.062*** 0.058*** 0.066*** 0.070***

Corr23 0.775*** 0.774*** 0.774*** 0.773*** 0.773*** 0.775*** 0.773***

Corr24 -0.053*** -0.055*** -0.058*** -0.057*** -0.058*** -0.057*** -0.059***

Corr25 0.117*** 0.116*** 0.117*** 0.113*** 0.113*** 0.107*** 0.092***

Corr34 -0.094*** -0.095*** -0.096*** -0.095*** -0.096*** -0.097*** -0.097***

Corr35 0.092*** 0.091*** 0.091*** 0.087*** 0.086*** 0.080*** 0.083***

Corr45 -0.011* -0.014** -0.018*** -0.008 -0.010 -0.014** -0.011*

a 0.187*** 0.228*** 0.270*** 0.256*** 0.282*** 0.241*** 0.256***

b 0.784*** 0.740*** 0.690*** 0.707*** 0.679*** 0.726*** 0.707***
*p< 0.1, **p< 0.05, ***p< 0.01. In the table, 1–5 correspond to DBDI, DBDTI, DBCTI, DWTI, and DGPR, respectively. Corr12denotes the dynamic correlation coefficient between variables i and j;
for example, Corr12represents the dynamic correlation between DBDI and DBDTI.
TABLE 9 Dynamic correlations (DCC) with brent crude oil replacing WTI.

Variable d BDI d BDTI d BCTI d BRENT d GPR

DBDI 1.0000 0.3547 0.4110 0.1234 0.0577

DBDTI 0.3547 1.0000 0.7681 -0.1191 0.1177

DBCTI 0.4110 0.7681 1.0000 -0.1562 0.0934

DBRENT 0.1234 -0.1191 -0.1562 1.0000 -0.0410

DGPR 0.0577 0.1177 0.0934 -0.0410 1.0000
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relatively low static correlations with WTI crude oil prices under

normal conditions, suggesting weak linkage in routine

circumstances. However, under extreme events—such as local

conflicts or prolonged sanctions—the dynamic impact of GPR on

oil prices becomes significant, either driving prices sharply upward

or suppressing demand. This reflects the event-driven nature of

geopolitical conflict impacts: in the short term, oil supply

disruptions may push prices higher, while long-term sanctions or

trade restrictions may transmit negative effects via demand

contraction. For example, in the early stage of the Russia–Ukraine

conflict in 2022, Brent crude oil prices surged by more than 10% in a

single day. Subsequently, the EU’s embargo on Russian oil caused a

mismatch in shipping capacity, leading to a sharp increase in the

dynamic correlations between BDTI and BCTI. This demonstrates

how geopolitical shocks can reinforce market interconnectedness

through supply chain restructuring, highlighting the multi-phase

nature of geopolitical conflict risk: short-term panic-driven supply–

demand shocks, medium-term supply chain restructuring, and

long-term policy feedback.

Second, asymmetric adjustments in market participants’

behavior. The results from the DCC-GARCH model show that

most dynamic correlations exhibit a right-skewed distribution,

which suggests that the probability of positive co-movements is

relatively higher. This finding is consistent with the theory of

“flight-to-safety convergence during crises” proposed by Baur and

McDermott (2010). Specifically, when geopolitical risks intensify,

investors tend to simultaneously reduce their exposure to high-risk

assets, thereby amplifying cross-market volatility spillovers. Further
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analysis reveals that this asymmetric adjustment behavior varies

under different market conditions. According to the DY model,

during crises, the proportion of volatility spillovers received by

GPR surged sharply from below 5% in tranquil periods to about

15%. This effect is particularly evident when tensions in the Strait of

Hormuz raised crude oil transportation costs and increased insurance

premiums. These findings demonstrate that geopolitical risk can

magnify contagion effects across markets by triggering panic

sentiment among market participants. For example, during the

2019 Strait of Hormuz crisis, crude oil transportation insurance

costs surged by 300%, leading to a 40% increase in the spillover

intensity between BDTI and WTI in the short term (Tsouknidis,

2016). This case clearly demonstrates how geopolitical events can

rapidly and sharply alter market participants’ behavior patterns as

well as overall market interconnectedness. Further observation shows

that the asymmetric adjustment mechanism of markets is not only

shaped by sudden events but is also closely related to the intrinsic

structure of the markets and investors’ risk preferences. Under

relatively stable market environments, investors tend to exhibit

higher risk tolerance and prefer high-yield assets, resulting in

weaker market interconnectedness. However, once confronted with

external shocks such as geopolitical risks, investors’ risk preferences

shift abruptly toward safe-haven assets, causing capital flows to

change direction and triggering heightened volatility and cross-

market risk transmission. This behavioral shift not only reflects the

sensitivity of market participants to risk, but also reveals the fragility

and complexity offinancial markets when exposed to external shocks.

Future research could further explore the interactions among these
FIGURE 5

Total volatility spillover index (DY) with Brent crude oil replacing WTI. The figure presents the results with a lag order of P = 15, a rolling window
length of W = 200 days, and a forecast horizon of H = 20 days.
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factors and examine how they influence market stability

and efficiency.

Third, the lagged effects of policy responses and supply chain

adjustments. The lagged correlation test results show that the

correlation coefficient between BDI and GPR declines significantly

at a lag of 20 periods (approximately one month) (see Table 8),

revealing the lagged nature of the negative impacts of geopolitical

risks. This phenomenon may stem from delays in policy

interventions (e.g., approvals for route changes) or in supply chain

restructuring (e.g., energy-importing countries shifting to alternative

suppliers). For example, following the Suez Canal blockage in 2021,

although the BDI’s daily volatility surged in the short term, the

negative spillover effect of GPR on BDI became significant only about

three weeks after the event. This further confirms the role of supply

chain resilience in buffering volatility transmission (Celik, 2012).

Further analysis shows that the lagged effects of policy responses and

supply chain adjustments exert multifaceted impacts on markets. On

one hand, policy formulation and implementation typically require

time to assess and address complex situations. For instance, approvals

for rerouting permits involve coordination across multiple agencies

and must balance safety, economic, and other considerations, leading

to delayed policy responses. On the other hand, supply chain
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restructuring requires firms to reassess suppliers, adjust transport

routes, and revise production plans—a process that is both complex

and time-consuming. In critical sectors such as energy, importing

countries face challenges such as infrastructure compatibility and cost

considerations when shifting to alternative suppliers (Xiao

et al., 2025).
5.2 Discussion of the impact of other major
events

During the sample period, aside from geopolitical conflicts,

systemic events such as financial crises and pandemics also

influenced volatility spillovers through differentiated transmission

channels (Hynes et al., 2020; Laborda and Olmo, 2021; Balli et al.,

2022). This study does not explicitly control for these events, but

their impacts are discussed based on their timing. During the 2008

global financial crisis, the DY model shows that the total volatility

spillover index surged from a low of 0.25 to 0.6, far exceeding the

sample mean of 35.02%. The DCC-GARCH dynamic analysis

further reveals that the dynamic correlations between BDTI and

BCTI spiked during this period, while the spillover intensity
FIGURE 6

Total volatility spillover index under different parameter settings. (A). W = 75, H = 10, P = 9 (B) W = 75, H = 20, P = 9 (C) W = 100, H = 10, P = 15
(D) d. W = 100, H = 20, P = 15 Note: W denotes the rolling window length, P the lag order, and H the forecast horizon.
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received by GPR increased by about 200%. This phenomenon can

likely be attributed to cross-market fire sales triggered by liquidity

squeezes: financial institutions, in order to meet margin calls,

simultaneously reduced positions in both shipping derivatives and

crude oil futures, thereby driving up co-movements in volatility.

Unlike geopolitical conflicts, the volatility transmission of a

financial crisis is global and instantaneous. The DY model shows

that during the crisis, the “To others” spillover values of all markets

increased by more than 50%, whereas the impact of geopolitical

conflicts tends to be more regional in nature (e.g., stronger co-

movements primarily between GPR and WTI).

During the initial stage of the COVID-19 pandemic (late 2019

to 2020), the DYmodel shows that the net spillover value of the BDI

dropped below its average of 0.35. The DCC-GARCH model,

however, indicates that the dynamic correlation between BDI and

WTI surged above 0.5, significantly higher than its mean, and was

statistically significant at the 1% level. This phenomenon may

reflect the resonance effect between shrinking demand

(particularly for crude oil) and excess shipping capacity. Unlike

the financial crisis, the pandemic shock directly suppressed

commodity trade volumes by halting real economic activity,

thereby weakening the shipping market’s ability to export

volatility (Barua, 2020; Notteboom et al., 2021). However, as

central banks across countries implemented quantitative easing,
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economic indicators began to recover in the second half of 2020.

This demonstrates that policy interventions via liquidity injections

helped, to some extent, restore the market co-movement

mechanisms (Li et al., 2014; Wang et al., 2025).
6 Conclusion

Using the DY spillover index model and the DCC-GARCHmodel,

this paper systematically analyzes the volatility spillover effects among

geopolitical conflict risk, the shipping market, and the crude oil market,

yielding the following main conclusions: First, there exist significant

bidirectional spillover effects among the three. Within the shipping

market, volatility spillovers among dry bulk freight rates, crude oil

tanker freight rates, and product tanker freight rates are the strongest,

reflecting the close internal relationships of the sector. In addition, the

volatility spillover effects between the crude oil market and geopolitical

conflict risk are also notable. However, compared with geopolitical risk,

the spillover effects between the shipping and crude oil markets are

more pronounced. Second, the relationships between geopolitical

conflict risk and the shipping and crude oil markets are complex,

showing different positive or negative linkages under different

transmission mechanisms. These relationships are characterized by

asymmetry and time variation. The transmission mechanisms operate
FIGURE 7

Total volatility spillover index across sub-periods. (A) 1999-2008 (B) 2009-2019.11 (C) 2019.12-2023.5 (D) 2023.6-2025.8.
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through multiple channels, including direct shocks from supply–

demand imbalances, adjustments in investor sentiment and

expectations, and the lagged effects of policy responses and supply

chain restructuring.

The research findings provide valuable references for policymakers

in formulating energy security policies and shipping risk management

strategies, while also helping market participants better cope with risks

arising from geopolitical uncertainty. For policymakers, it is imperative

to enhance real-time monitoring of the dynamic interactions between

the shipping and crude oil markets, and to integrate geopolitical risks

into early warning mechanisms for energy security, shipping security

and supply chain resilience. To address risks associated with

geopolitical conflicts, policymakers should establish cross-national

information-sharing and early warning systems, promote the

development of regional risk monitoring platforms, and consolidate

military, intelligence, and commercial shipping data to periodically

publish maritime route risk assessments. In the event of major risk

incidents, the calibrated release of strategic petroleum reserves may be

considered to alleviate market panic induced by supply disruptions.

Furthermore, international marine insurance organizations should be

encouraged to collaborate in implementing differentiated war risk

insurance premium rates and subsidy mechanisms, thereby guiding

enterprises through market-based approaches to prioritize safer

shipping routes and mitigate systemic risks. For shipping and energy

companies, it is advisable to establish dynamic hedging strategies

against geopolitical risks. Examples include implementing cross-

market hedging through Forward Freight Agreements (FFAs) and

crude oil futures, and optimizing hedging timing by incorporating

sentiment indicators such as the GPR index. In addition, companies

should strengthen the management of Contracts of Affreightment

(COAs) and introduce flexible clauses to address potential co-

movement volatility in freight rates and oil prices. For investors,

asset allocation should take into account the amplifying effect of

geopolitical risk on volatility spillovers across markets. It is important

to avoid excessive exposure to highly correlated asset portfolios during

crises, while actively exploring volatility derivatives and other risk

management instruments.

This study is not without limitations. Methodologically,

although the DY and DCC-GARCH models effectively capture

mean spillovers and time-varying correlations, they are less

capable of characterizing tail dependencies under extreme risk

events, and they do not fully account for potential estimation

biases arising from structural breaks. Future research could adopt

approaches such as Quantile Spillover models or mixed-frequency

Copula models to further investigate asymmetric spillover

mechanisms. In terms of mechanism identification, while this

paper analyzes spillover channels from multiple perspectives, it

does not quantify the relative contributions of each transmission

pathway. Subsequent studies may consider combining structural

VAR models or mediation effect models to decompose and test the

influence of different channels. From a data perspective, future work

could incorporate finer-grained regional geopolitical risk indices,

capacity data by vessel type, and crude oil trade flow data, thereby

enabling better identification of regional heterogeneity and micro-

level transmission mechanisms.
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