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Galdelli A and Tassetti AN (2025)
Environmental and behavioral drivers of
Automatic Identification System gaps of
Turkish trawlers in the Black Sea.
Front. Mar. Sci. 12:1647930.
doi: 10.3389/fmars.2025.1647930

COPYRIGHT

© 2025 Yildiz, Cömert, Ferrà, Şaşmaz, Galdelli
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This study investigates the spatial, temporal, environmental, and behavioral

drivers of Automatic Identification System (AIS) signal gaps in trawl fishing

vessels operating in the Black Sea. AIS deliberate or accidental signal gaps,

which may cause vessels to become temporarily invisible to AIS-based

surveillance systems, hinder maritime monitoring, compliance enforcement,

and fisheries management — even though such vessels may still be detectable

via alternative systems such as VMS. The analysis focused on two primary trawl

types; bottom and pelagic trawl. Using a comprehensive dataset of AIS signals,

environmental variables and vessel activity, the study integrated spatial and

temporal analyses with XGBoost machine learning technique to identify key

predictors of AIS gaps. The results reveal distinct seasonal and spatial patterns in

AIS gap behavior, with significant variation between trawl types. For bottom

trawls, AIS gaps were concentrated near the northern entrance of the Istanbul

Strait, while pelagic trawls exhibited broader distributions along the Black Sea

coast, particularly near Zonguldak and Samsun. Machine learning model

demonstrated strong predictive performance, with an accuracy of 80.26%,

AUC of 0.8855, TSS of 0.6052, MAE of 1336.74 minutes, and RMSE of 3205.54

minutes for bottom trawls. For pelagic trawls, the model achieved 61.68%

accuracy, an AUC of 0.6663, TSS of 0.2336, MAE of 2011.05 minutes, and

RMSE of 4400.40 minutes, indicating moderate predictive capabilities. Key

predictors included environmental factors such as chlorophyll concentration

and sea surface temperature, alongside spatial metrics like depth and proximity

to shore and port. Partial dependence plots highlighted the non-linear effects of

these variables, with chlorophyll concentration showing a critical threshold

around 3.5 mg/m³ and sea surface temperature influencing gaps most

significantly at approximately 15°C. This study provides the first systematic
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analysis of AIS gaps in Black Sea fisheries, contributing valuable insights into their

drivers and implications for fisheries management. By identifying high-risk zones

and temporal patterns, the findings could support improved monitoring

strategies, regulatory enforcement, and sustainable resource use in this

ecologically significant region.
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Introduction

Marine ecosystems play a vital role in global biodiversity and

food security (Jefferson et al., 2022), yet they face increasing

pressures from overfishing and illegal activities (Agnew et al.,

2009; Sumaila and Tai, 2020). Effective monitoring and

management of fishing activities are therefore essential to ensure

the sustainability of these ecosystems. Automatic Identification

Systems (AIS), which are mandated under the International

Convention for the Safety of Life at Sea (SOLAS) for larger

fishing vessels over 300 gross tonnage (IMO, 2002), are essential

for ensuring maritime safety, facilitating vessel tracking, and

enhancing fisheries management worldwide (Kerbiriou et al.,

2017). By transmitting key information such as vessel

identification, position, course, and speed, AIS enables real-time

monitoring of fishing activity, contributing to the prevention of

collisions, illegal fishing practices, and unreported activities (Dunn

et al., 2018; Coro et al., 2023; Cappa et al., 2024).

Given Turkey’s significant role in Mediterranean fisheries

(Ulman et al., 2013), particularly as a major fishing nation in the

region, improved data accessibility could enhance cross-border

fisheries governance, support sustainable management efforts, and

facilitate regional cooperation. In Türkiye, fisheries monitoring and

enforcement are coordinated by the Ministry of Agriculture and

Forestry, with operational support from the Turkish Coast Guard.

National-level measures include seasonal closures, gear-specific

bans, mesh size regulations, and spatial restrictions on trawling in

sensitive areas. A mandatory vessel monitoring system (BAGiS) has

been in place since 2016 for all fishing vessels over 12 meters,

transmitting real-time data every 10 minutes via GSM or satellite.

However, this data is not publicly accessible, limiting its utility for

broader scientific or transboundary management purposes (Official

Gazette, 2016; Ünal et al., 2019). Regionally, Turkey is a member of

the General Fisheries Commission for the Mediterranean (GFCM),

which provides a cooperative platform for spatial planning and

monitoring, though it does not mandate real-time tracking

transparency. Within this context, open-access AIS data emerges

as a valuable tool to complement existing systems by enabling

independent monitoring, enhancing transparency, and supporting

enforcement efforts in both national and regional fisheries

governance. In regulated fisheries, such as those in Turkey’s Black
02
Sea region, systems like AIS can play a critical role in supporting

compliance with maritime laws, enforcing spatial fishing

restrictions, and monitoring vessel behavior.

Despite its utility, AIS usage presents challenges, particularly

concerning deliberate or accidental signal interruptions, often

referred to as AIS signal gaps (Iphar et al., 2019; Emmens et al.,

2021). These gaps occur when vessels stop transmitting AIS signals,

rendering them temporarily untraceable (Litts, 2021). Such

interruptions can result from deliberate actions by operators to

conceal their activities (Mazzarella et al., 2017) or technical factors,

including signal interference in congested waters, spatial variability

in terrestrial reception, fluctuations in satellite coverage, and

transmission dropouts when vessels move between terrestrial and

satellite reception zones (Welch et al., 2022). The implications of

AIS gaps are significant: they can obscure fleet monitoring, hinder

enforcement of fishing regulations, and potentially contribute to

Illegal, Unreported, and Unregulated (IUU) fishing activities

(UNODC, 2011). Globally, AIS gaps have been studied in several

fisheries to understand their drivers, including environmental

factors, vessel activity patterns, and economic incentives (Silva

et al., 2022; Orofino et al., 2023; Welch et al., 2022). However,

these dynamics remain unexplored in the context of the Black Sea,

despite the region’s ecological importance and its reliance on

regulated fisheries such as bottom and pair midwater trawling.

The integration of AIS with advanced machine learning

techniques offers transformative potential for the management

and sustainability of marine resources (Yang et al., 2024; Spadon

et al., 2024). AIS provides a continuous stream of high-resolution

spatiotemporal data, enabling the precise tracking of vessel activities

across global oceans (Taconet et al., 2019; Spadon et al., 2024).

However, the sheer volume and complexity of AIS data necessitate

sophisticated analytical approaches to extract actionable insights

(Durlik et al., 2023; Yang et al., 2024). Machine learning models,

such as gradient boosting, excel in handling large, multidimensional

datasets, uncovering hidden patterns, and making accurate

predictions about vessel behavior, compliance, and environmental

interactions (Petrovic et al., 2023). Deep learning methods,

including neural networks, further enhance these capabilities by

modeling complex, non-linear relationships within the data (Liu

et al., 2020). These models not only enhance our understanding of

maritime dynamics but also empower regulatory bodies to identify
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IUU fishing activities, optimize fleet monitoring, and enforce spatial

fishing restrictions more effectively (Widjaja et al., 2023; Welch

et al., 2024; Shedrawi et al., 2024).

The growing accessibility of machine learning tools and

computational resources has catalyzed their adoption in fisheries

management and maritime research (Wing and Woodward, 2024).

As the importance of data-driven decision-making gains

recognition, the widespread application of AIS and machine

learning has the potential to revolutionize how marine ecosystems

are monitored and managed (Malde et al., 2020). Increased

collaboration between researchers, policymakers, and industry

stakeholders is crucial to further develop and implement these

technologies. Encouragingly, global initiatives and open-access AIS

databases are fostering the democratization of these tools, ensuring

that even regions with limited resources can benefit from cutting-

edge analytics to promote sustainable fishing practices and

maritime safety. The continued expansion of these technologies

holds promise for addressing critical challenges in ocean

governance and ensuring the resilience of marine ecosystems in

the face of growing anthropogenic pressures. While these

advancements have significantly improved fisheries monitoring in

various regions, their application to the Black Sea remains limited,

despite the region’s ongoing challenges with overfishing and

IUU fishing.

The Black Sea is a unique marine ecosystem with relatively low

biodiversity (Zaitsev and Mamaev, 1997), also it is also highly

vulnerable to overfishing and environmental changes (Oğuz et al.,

2012). In the Black Sea, the high reliance on trawling—both bottom

trawling targeting species like whiting (Merlangius merlangus) and red

mullet (Mullus barbatus), and pair midwater trawling targeting pelagic

species such as anchovy (Engraulis encrasicolus), horse mackerel

(Trachurus trachurus), and bluefish (Pomatomus saltatrix)

necessitates detailed monitoring to ensure sustainability. The Black

Sea faces significant challenges in fisheries management, with 15

stocks (93.8%) subject to ongoing overfishing and nine of them

(55%) fished beyond their safe biological limits (Demirel et al.,

2020). This alarming situation underscores the urgent need for

effective monitoring and enforcement mechanisms to prevent

further depletion of marine resources. IUU fishing is one of the

serious threats for sustainable fishing in the Black Sea. Due to IUU

fishing, ghost fishing, by-catch, destruction of the benthic ecosystem

has been reported (Öztürk, 2013). Given the Black Sea’s high fishing

pressure and limited enforcement capacity, analyzing the spatial and

temporal patterns of AIS gaps provides a valuable tool for assessing

vessel behavior, detecting potential compliance issues, and identifying

areas where monitoring efforts should be prioritized. Unlike open

ocean fisheries, where fishing activities typically take place across vast

waters, the concentration of fishing efforts in forbidden zones along

the narrow continental shelf of the Black Sea suggests that vessel

monitoring interruptions may have a more immediate impact on

resource management and regulatory enforcement.

Recent applications of machine learning (ML) and deep

learning have advanced the analysis of AIS data for detecting

signal gaps and vessel anomalies. Prior studies have identified AIS

disabling behavior (Mazzarella et al., 2017; Welch et al., 2022),
Frontiers in Marine Science 03
unreported fishing (Coro et al., 2023), and reviewed anomaly

detection methods (Wolsing et al., 2022). Our study differs by

targeting nearshore trawl fisheries in the understudied Black Sea

and by applying a dual-model XGBoost framework to separately

predict both the occurrence and duration of AIS gaps, highlighting

environmental and spatial drivers of these interruptions. This study

provides a comprehensive investigation into AIS signal gaps in

Black Sea trawl vessels, marking the first systematic analysis in this

region. By integrating spatial coordinates, vessel activity, and

environmental factors such as depth, sea surface temperature, and

chlorophyll concentration, this study applies the XGBoost machine

learning technique to identify factors contributing to AIS

interruptions. Furthermore, the study highlights the importance

of addressing AIS gaps for improving fisheries management,

ensuring regulatory compliance, and safeguarding the ecological

health of the Black Sea ecosystem.
Materials and method

AIS data

Terrestrial AIS data for Turkish fishing vessels operating in the

Black Sea (Geographical Sub-Area 29) during 2022 was collected at

a 5-minute time resolution, sourced from the authoritative Astra

Paging provider. The dataset comprised records from 86 bottom

trawlers and 50 pelagic trawlers, with vessel types classified

according to the Ministry of Agriculture and Forestry. Key

information in the dataset included MMSI (Maritime Mobile

Service Identity), a unique nine-digit number assigned to each

vessel for identification in AIS transmissions, as well as speed,

latitude, longitude, and date-time. Each AIS message—often

referred to as a ping—represents a single position report

transmitted by a vessel.
AIS gap identification

Data cleaning and preprocessing
All statistical analyses and spatial operations were conducted

using R version 4.3.2 (Posit R Core Team, 2024), with relevant

packages including data.table, geosphere, raster, ncdf4, and rerddap.

The AIS dataset was first cleaned, omitting repeated points, points

located on land or distant locations with same time value and

records with implausible speeds exceeding 20 knots.
AIS gap detection and threshold definition

AIS message gaps were identified using the data.table package

(Dowle and Srinivasan, 2021). The time difference between

consecutive AIS signals for each vessel was calculated, and gaps

exceeding 30 minutes were identified. The 30-minute threshold was

selected to identify meaningful gaps in AIS signals while preventing

minor disruptions, such as temporary transmission loss, speed
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changes, or course adjustments, from significantly impacting the

analysis. This threshold helps maintain the accuracy of vessel

activity tracking. Even though very long gaps (>24 h) are likely

due to AIS transponder issues rather than actual vessel behavior, an

upper limit was not imposed to retain multi-day fishing trips.

Indeed, our observations indicate that many vessels turn off AIS

when approaching fishing grounds and reactivate it only upon

returning to port, leading to long gaps that do not reflect actual

vessel movements.
Gap localization and distance calculations

Average positions (between the start and end of each gap) and

timestamps were used to locate these gaps, with each gap

represented as a single point. Port locations (i.e., 406 ports

around the Black Sea) were digitized and stored in a database and

the The Haversine formula from the geosphere package (Hijmans,

2023) was applied to calculate the distance from the average

position of each AIS gap to the nearest port.
Port proximity filtering

Gaps occurring within 1.5 nautical miles (~2.778 km) of a port

were filtered out to minimize potential biases related to port-associated

AIS transmission behaviors. Fishing ports often host coast guard

stations with fishing control authority, which may influence vessel

AIS activation patterns. Additionally, fishing vessels commonly follow

a distinct AIS transmission pattern, wherein devices are deactivated

upon approaching fishing grounds and reactivated when departing

from or returning to port. As a result, retaining these points could lead

to misinterpretations of AIS gap occurrences. Excluding these areas

ensures a more accurate assessment of AIS transmission patterns in

active fishing zones.
Gap classification

The nearest port and distance to shore were calculated dynamically

for each AIS gap, using the average position of the gap (midpoint

between the start and end points). Gaps were classified based on their

duration (t) into four distinct categories: 30 min ≤ t ≤ 1 h, 1 < t ≤ 2 h, 2

< t ≤ 24 h), and >24 h. Additionally, AIS gaps were grouped by their

distance from the nearest harbor into four ranges: 1.5–3 km, 3–5 km,

and beyond 5 km. Since each gap is represented by its average position,

it falls into only one distance range. The relative frequency of each

category was then calculated as a percentage.
Connecting AIS gaps to fishing ports

This analysis aims to quantify the number of AIS gaps linked to

ports by identifying gaps in AIS transmissions and assigning them

to departure (origin) and arrival (destination) ports. The process
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begins by assigning the origin and destination port to each recorded

AIS gap, determining where vessels were last detected before a gap

occurred (origin port) and where they reappeared after the gap

(destination port). This step ensures that each AIS gap is linked to

specific port activity, allowing for a spatial understanding of where

transmission interruptions commonly occur. Once origin and

destination ports are assigned, the number of times each port

appears as an origin and destination is counted. This provides

two key metrics: gaps_as_origin (the number of gaps where a port is

the last recorded position before an AIS signal loss) and

gaps_as_destination (the number of gaps where a port is the first

recorded position after the signal is restored). These values are then

combined to compute the total number of AIS gaps linked to each

port, accounting for both departing and arriving vessels. To ensure

a balanced representation of port-related gaps, the analysis then

calculates the average number of gaps per port by taking the mean

of the total gaps counted as origin and destination. This prevents

the results from being skewed by ports that naturally experience

higher vessel traffic and ensures that comparisons across ports are

meaningful. Finally, a port-level summary is generated, aggregating

total and average AIS gaps for each port. This final step provides a

clear comparison of which ports exhibit the highest AIS

transmission interruptions. This approach ensures that the

analysis avoids double counting gaps.
Feature integration

The following environmental and AIS-based features were

additionally integrated:
1. Depth, from the General Bathymetric Chart of the Oceans

(GEBCO) NetCDF dataset (GEBCO Compilation Group,

2023). The ncdf4 package (Pierce, 2019) was used to extract

depth values by matching AIS gap coordinates with the

closest spatial indices.

2. Chlorophyll-a Concentration, from satellite-based NetCDF

datasets (Grégoire et al., 2020). Using the raster package

(Hijmans, 2018), chlorophyll values were interpolated for

spatial and temporal matches based on AIS gap coordinates

and timestamps. Chlorophyll concentration was selected as

a proxy for biological productivity, under the assumption

that high chlorophyll areas correspond to fertile fishing

grounds where vessels might disable AIS to avoid disclosing

profitable locations (Welch et al., 2022).

3. Sea Surface Temperature (SST) data from the NOAA OISST

dataset (Richard et al., 2008) were accessed via the

ERDDAP API using the rerddap package (Chamberlain

et al., 2019). SST values were matched to each AIS gap

based on the gap’s average position (latitude, longitude) and

timestamp. The rerddap package (Chamberlain et al., 2019)

enabled programmatic access to the data, with spatial and

temporal matches identified for each AIS gap.

4. Nearby vessel activity was computed by aggregating AIS

messages from other fishing vessels within a 2 km radius
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and a ±1-hour time window around the average position of

each AIS gap. This calculation was performed using the

data.table (Dowle and Srinivasan, 2021) and geosphere

packages (Hijmans, 2023). Distances between vessels were

calculated using the Haversine formula, and the total number

of AIS messages within the specified spatiotemporal window

was computed as an indicator of surrounding vessel density.
Modeling approach

Data preprocessing and variable selection
Variance calculations and correlation checks were performed

on the numerical predictors, including and predictors were retained

only if their variances were computationally larger than zero and

bivariate correlations with other predictors were smaller than 0.6.

These criteria ensured that all retained predictors contributed

independent and meaningful information to the modeling process

(Joo et al., 2023). To assess potential multicollinearity among the

selected explanatory variables, Variance Inflation Factor (VIF)

analysis was conducted using the car package (Fox and Weisberg,

2019). A multiple linear regression model was then fitted using one

variable as the dependent variable, with the remaining variables as

predictors. Feature engineering steps included converting

categorical variables into numerical format, removing missing

values, filtering low-variance predictors, and normalizing

continuous variables when appropriate.
Model design and training

A gradient boosting model (XGBoost) was applied to identify

key predictors of AIS gaps based on the selected features, and

implemented using the xgboost package (Chen et al., 2023).

XGBoost was chosen for this analysis due to its efficiency with

large datasets, robustness against overfitting through regularization,

and strong predictive performance in classification and regression.

Additionally, its ability to capture complex feature-target

relationships while maintaining computational efficiency, makes it

well-suited for identifying AIS gaps based on environmental and

vessel-related predictors (Chen and Guestrin, 2016). The dataset

underwent extensive preprocessing and feature engineering to

ensure compatibility with the machine learning model and

optimize performance. Missing values were excluded using the

tidyr package (Wickham and Girlich, 2023) to maintain data

integrity. Categorical and numerical features were converted into

a matrix format compatible with XGBoost. Hyperparameter tuning

was performed to optimize model performance using randomized

grid search. over the following ranges: learning rate (0.01 - 0.3),

maximum tree depth (3 - 10), subsample ratio (0.5 - 1.0), and

boosting iterations (100 - 2000). To address both the occurrence

and duration of AIS gaps, we trained two distinct XGBoost models

tailored to different predictive tasks. The first model was a binary

classification model, developed to predict whether an AIS gap
tiers in Marine Science 05
occurred (gap vs. no gap). The second model was a regression

model, applied only to records where a gap was present, aiming to

estimate the duration of the gap in minutes. These two models were

trained independently using the same feature set and cross-

validation strategy but optimized for their respective output types.

Accordingly, classification metrics (Accuracy, AUC, TSS, Cohen’s

Kappa) were used to evaluate the classification model, while

regression metrics (MAE, RMSE, R², Explained Variance) were

applied to the regression model. This dual-model approach enabled

us to capture both the likelihood of AIS gap occurrence and the

expected duration of such events, offering a more comprehensive

understanding of vessel behavior and monitoring reliability.
Model evaluation

We applied 5-fold cross-validation, balancing bias and variance

in error estimation (James et al., 2013). A lower k (e.g., 2 or 3) may

increase bias due to insufficient training data in each fold, whereas

higher k (e.g., 10) may raise variance as the training subsets become

more similar to the full dataset (Hastie et al., 2009). The optimal

parameters were: learning rate 0.1, maximum tree depth 6,

subsample ratio 0.8, and 1000 boosting iterations. To ensure the

effectiveness of the prediction, the dataset was split into training and

testing sets. The dataset was divided into training, validation, and

testing sets following a commonly used 70-20–10 ratio. Specifically,

70% of the data was allocated to training, 20% to validation for

hyperparameter tuning using 5-fold cross-validation, and 10% to

testing to assess model performance on unseen data. This approach

ensured reliable model evaluation while preventing data leakage.

The dataset split was carefully designed to prevent data leakage and

ensure robust model validation. Additionally, hyperparameter

tuning was conducted to optimize the model’s predictive

performance. These steps ensured the model was both efficient

and robust in capturing the complex relationships between AIS

signal gaps and their influencing factors. The performance of

predictive models for AIS gaps in bottom and pelagic trawl

fishing activities was evaluated using multiple metrics. For

classification, we used Accuracy, Area Under the Curve (AUC),

True Skill Statistic (TSS), and Cohen’s Kappa. For predicting AIS

gap duration, we employed error-based metrics, including Mean

Absolute Error (MAE), Root Mean Squared Error (RMSE),

coefficient of determination (R²), and Explained Variance, to

assess the model’s ability to capture temporal patterns.
Feature interpretation and visualization

Feature importance and interpretability analyses were

performed using partial dependence plots from the pdp package

(Greenwell, 2017) to visualize the marginal effects of individual

features on the target variable. Data visualizations were created

using ggplot2 (Wickham, 2016; Wickham and Girlich, 2023) for

exploratory analysis and result interpretation. Heatmaps depicted

the spatiotemporal distribution of AIS gaps, while bar charts
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summarized seasonal and monthly variations. Calibration plots

assessed prediction reliability. A 3 × 3 km grid covering the Black

Sea was generated in QGIS, where AIS gaps were spatially

intersected, aggregated, and summed per cell to visualize

their distribution.
Results

Gap identification

The AIS dataset contains 103,082 AIS messages from bottom

trawlers and 65,899 from pelagic trawlers. The procedure identified

1,897 gaps connecting 3825 pings in bottom trawl records (3.7% of

bottom trawl AIS data) and 1270 gaps connecting 2140 pings in

pelagic trawl records (0.5% of pelagic trawl AIS data).

For bottom trawlers, AIS signal gaps occurred most frequently

beyond 5 km from the coast, where short gaps (≤1 h) accounted for

44.52%, followed by medium (2–24 h, 30.69%) and long gaps (>24 h,

12.88%). Gaps >24 h lasted ~ 8 days. In contrast, closer to shore (1.5–

3 km), short gaps were more dominant (47.83%), but long-duration

gaps still represented 15.22% of all events. Medium gaps were

particularly prominent at distances between 3–5 km, making up

44.44% of gaps. For pelagic trawlers, the proportion of long-duration

gaps (>24 h) was highest close to shore (27.45%) and decreased with

distance, falling to 16.92% beyond 5 km. Short gaps (≤1 h) were most

common in offshore zones (>5 km, 38.49%), while medium-duration

gaps (2–24 h) were relatively stable across all distance classes, ranging

from 25.49% to 32.51%. Medium gaps (2–24 h) are less frequent at

1.5–3 km but increase beyond 3 km. This gradient suggests a spatial

trend where short gaps dominate offshore and long gaps are more

frequent nearshore, particularly in pelagic operations (Table 1).

To give an indication of the derived further results, we present

data from a bottom trawler, showing repeated patterns of gaps

starting and ending on the western border. Figure 1 compares its

speed variations on two days. Figure 1 (left) shows uninterrupted

AIS reporting on 28-03-2022, with speeds consistently within

trawling thresholds (dashed lines, Ferrà et al., 2020). Figure 1
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(right), highlights two AIS gaps (2h23m and 3h39m), where

speed data was interrupted (day: 19-10-2022). Straight red lines

connect positions before and after signal loss, illustrating temporal

gaps. These AIS interruptions complicate trawling activity analysis,

emphasizing the challenges AIS gaps pose for monitoring

vessel operations.
Duration analysis

The analysis of AIS gap durations reveals distinct patterns

between vessel types and operational zones. For bottom trawl

vessels (Figure 2), the longest average gaps in forbidden zones

occurred in January (290 minutes), while the shortest were observed

in September (74 minutes). Overall operations showed maximum gap

durations in April (214 minutes) and minimum durations in

November (71 minutes). Pelagic trawl vessels (Figure 3) exhibited

their most severe gaps in forbidden zones duringMarch (486minutes)

and the briefest in November (54 minutes). For general operations,

peak gaps appeared in April (312 minutes) with the lowest values

recorded in November (79 minutes). Notably, forbidden zone gaps

consistently exceeded general operation gaps for both vessel types

throughout the monitoring period. The data also shows pelagic

trawlers maintained substantially longer gap durations than bottom

trawlers across all months, with particularly pronounced differences

during the autumn months (September-November).

The spatial distribution of AIS gaps durations is visualized on

two maps along the Turkish Black Sea coastline (Figure 4). Pelagic

trawl gaps are concentrated along the western and central Black Sea

coast, with the highest densities near Samsun extending eastward.

In contrast, bottom trawl gaps cluster near the northern entrance of

the Istanbul Strait. While both trawling types overlap spatially,

bottom trawl closures are more concentrated in the western and

northwestern coastal regions, decreasing eastward. Pelagic trawl

gaps display a more uniform spread, with higher densities in the

central Black Sea compared to bottom trawl closures, which are

more localized near major fishing ports. These findings highlight

geographical variations in AIS gap frequencies, influenced by the

trawling type and regional fishing efforts.
Port-level patterns

Figure 5 presents the spatial distribution of average AIS gaps

associated with ports for bottom trawl and pelagic trawl operations

in the Black Sea. The size and color intensity of the circles represent

the average number of AIS gaps linked to each port, providing

insight into the differences in operational behavior between the two

fishing methods. Overall, the patterns for bottom trawl and pelagic

trawl are similar, with many ports overlapping in both fisheries.

However, some distinctions emerge in terms of gap intensity and

specific port utilization. For bottom trawl operations, the highest

average AIS gaps are observed in ports near the Istanbul Strait and

adjacent western Black Sea, including Rumelifeneri (27.4),

Karaburun (28.9), Yeniköy (19.9), and Şile (22). Additionally,
TABLE 1 AIS data gaps by distance from the coast (t) and duration (d),
for bottom and pelagic trawlers.

Bottom trawl

≤1 h 1 < t ≤ 2 h 2 < t ≤ 24 h >24 h Total

1.5 < d ≤ 3 47.83 2.17 34.78 15.22 1.20

3 < d ≤ 5 28.09 8.64 44.44 18.83 8.42

d > 5 44.52 11.91 30.69 12.88 90.38

Pelagic trawl

≤1 h 1 < t ≤ 2 h 2 < t ≤ 24 h >24 h Total

1.5 < d ≤ 3 35.29 11.76 25.49 27.45 2.37

3 < d ≤ 5 31.38 10.40 32.51 25.71 24.58

d > 5 38.49 13.42 31.17 16.92 73.05
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ports such as Riva (18.2), Kefkenadası (15.7), and Kıyıköy (12.1)

also show relatively high AIS gap densities. For pelagic trawl

operations, while some of the same western ports remain

prominent (e.g., Kıyıköy (12.9), Rumelifeneri (9.5), Karaburun

(9.9), and Şile (5.3)), the distribution extends further into the

central and eastern Black Sea. The ports with the highest AIS

gaps for pelagic trawl include Tekkeköy (10.2), 19 Mayıs (6.9),

and Yeniköy (6.8), which are less prominent in bottom trawl

operations. Although the differences in intensity are not extreme,

pelagic trawl operations appear to be more dispersed along the

coast, whereas bottom trawl gaps are concentrated around key

western ports. Additionally, the difference in the number of active

vessels (86 bottom trawlers vs. 50 pelagic trawlers) likely influences

the relative intensity of AIS gaps between the two fishing methods.

Variance thresholds ensured that no predictor was constant or

near-constant, while the correlation threshold minimized risks of

multicollinearity. The VIF values are well below the commonly

accepted threshold of 5 (Kutner et al., 2004; O’Brien, 2007; James

et al., 2013), indicating the absence of serious multicollinearity.

These results confirm that the selected variables are not highly

correlated (Figure 6) and can be reliably used in further statistical

modeling without concerns regarding redundancy or instability.
Model performance

For bottom trawl fishing gaps, the model demonstrated strong

predictive capabilities across classification-based evaluation metrics.

The model achieved an accuracy of 80.26%, an AUC of 0.8855, and

a True Skill Statistic (TSS) of 0.6052, indicating a good balance
Frontiers in Marine Science 07
between sensitivity and specificity. Additionally, Cohen’s Kappa

value of 0.6053 suggests substantial agreement between predicted

and observed classifications, confirming the model’s effectiveness in

distinguishing AIS gaps. In contrast, when considering AIS gap

duration as a continuous variable, the model’s explained variance

was 92.63%, and the R² was 94.92%, suggesting that the model

successfully captures the variance in gap durations. However, error

metrics indicate a mean absolute error (MAE) of 1336.74 minutes

(~22.3 hours) and a root mean squared error (RMSE) of 3205.54

minutes (~53.4 hours). RMSE suggests that while the model

captures broad patterns, it struggles with precise predictions for

long-duration gaps, potentially due to extreme outliers. Feature

importance analysis identified chlorophyll concentration and

distance to shore as the most influential predictors (Figure 7).

Partial dependence plots indicate that AIS gap probability increases

sharply at chlorophyll concentrations above ~3.5 mg/m³, while

proximity to shore exhibits a decreasing effect beyond 20 km

(Figure 8). Spatially, AIS gaps in bottom trawling were more

prevalent near the Istanbul Strait and the western Black Sea,

reflecting concentrated operational zones.

For pelagic trawl fishing gaps, the classification-based

performance metrics indicated moderate predictive capabilities.

The model achieved an accuracy of 61.68%, an AUC of 0.6663,

and a TSS of 0.2336, reflecting limited success in differentiating true

gaps from non-gaps. Similarly, Cohen’s Kappa value of 0.2336

suggests only slight agreement between predictions and

observations, indicating the model struggles to accurately classify

AIS gaps in pelagic trawl activities. When modeling AIS gap

duration, the explained variance reached 95.73%, with an R² of

97.03%, suggesting the model captures the overall trend well.
FIGURE 1

Vessel movement and speed profile for a trawler on 2 different days. Active AIS signals are in blue while AIS gaps in red.
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FIGURE 3

Distribution of mean AIS gap durations (minutes) in forbidden zones and overall by month for pelagic trawl vessels. Numbers on top of bars indicate
total number of gaps (number of vessels).
FIGURE 2

Distribution of mean AIS gap durations (minutes) in forbidden zones (blue) and overall (orange) by month for bottom trawl vessels. Numbers on top
of bars indicate total number of gaps (number of vessels).
Frontiers in Marine Science frontiersin.org08

https://doi.org/10.3389/fmars.2025.1647930
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Yildiz et al. 10.3389/fmars.2025.1647930
However, the MAE of 2011.05 minutes (~33.5 hours) and RMSE of

4400.40 minutes (~73.3 hours) indicate that the model exhibits high

absolute error, particularly in longer-duration gaps. This suggests

that while the model accounts for broad variance, it struggles with

precise forecasting, especially for extreme values. Feature

importance analysis identified chlorophyll concentration and sea

surface temperature as key predictors. Partial dependence plots

(Figure 8) indicate that AIS gaps increase significantly at SST levels

around 15 °C, while chlorophyll concentration exerts the strongest

influence between 2 mg/m³ and 5 mg/m³. These results underscore

the significance of environmental variables like chlorophyll and

SST, as well as spatial factors such as proximity to ports and the

shoreline, in explaining AIS gaps for both bottom and pelagic trawl

fishing. The feature ‘Nearby Vessel Activity’ showed limited

explanatory power in the model, ranking among the least

influential variables in predicting AIS gaps for both trawl types.
Discussion

This study provides a comprehensive analysis of AIS

transmission gaps in the Turkish Black Sea trawl fleet, identifying

geographic hotspots and patterns of AIS interruptions. Employing a

machine learning approach, it assesses potential correlations

between AIS gaps and spatial (e.g., distance to shore/port),

environmental (e.g., SST, chlorophyll), and vessel activity

variables. The findings align with previous research on vessel

tracking and potential unreported fishing activities in other
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regions, such as the Adriatic Sea (Coro et al., 2023; Ferrà et al.,

2020), while also exploring possible underlying causes of AIS gaps.
AIS gaps and fishing activity

A key feature of our analytical framework was the use of a dual-

model design. Although the distribution patterns appear similar

across the study area, the ranking of factors influencing this

distribution varies between bottom and pelagic trawlers. Bottom

trawlers exhibited significant concentrations of AIS gaps near the

northern entrance of the Istanbul Strait and other nearshore areas.

This behavior aligns with anecdotal and regulatory observations

that bottom trawlers tend to operate in shallower waters. The

tendency to move into shallower regions may be influenced by

the presence of high-value demersal species, including red mullet

(Mullus barbatus), whiting (Merlangius merlangus), and turbot

(Scophthalmus maximus), which are key targets for bottom trawl

fisheries. These shallower zones, although sometimes adjacent to

areas with regulatory restrictions, are often associated with rich

demersal habitats. While fishers may be drawn by the economic

value of species like red mullet, some of these activities may

inadvertently or intentionally encroach upon forbidden zones.

While larger whiting are often found in deeper waters, red mullet,

which is smaller but highly abundant in shallow areas, offers a more

lucrative return due to its market demand and higher catch volumes

(Yildiz, 2016; Yildiz and Karakulak, 2018). This economic incentive

likely explains the increased occurrence of AIS gap in shallower
FIGURE 4

Geographical distribution of AIS gaps durations (minutes) along the Turkish Black Sea coastline for bottom (up) and pelagic trawl (down). Red buffer
zone indicates the forbidden zones for bottom and pelagic bottom trawl fisheries.
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waters, as vessels may switch off AIS to evade detection while

engaging in illegal fishing. Signal gaps near exclusive economic

zones suggest that some vessels deliberately conceal unauthorized

border crossings to fish in forbidden zones. While not all vessels

that deactivate AIS for extended periods are necessarily engaged in

illicit activities, the intentional act of going ‘dark’ raises concerns

(Bunwaree, 2023). The western Black Sea has historically been

Türkiyey’s primary trawling ground along Black Sea coast, with

ports such as Iğ̇neada-Kıyıköy and Rumelifeneri-Poyrazköy hosting

a high concentration of trawlers. This long-standing significance is

reflected in the elevated number of AIS gaps recorded around these

ports, indicating intensified fishing activity in the region.

According to Dağtekin et al., 2021, Turkish pelagic trawl fishing

is mainly located in the Middle Black Sea along a coastline of 116

km from Tas ̧kana Cape (40°01 E, 43°39 N) to Çayağzı Cape (41°55

E, 41°52 N). Unlike bottom trawlers whose AIS gaps are

concentrated near ports, in contrast, pelagic trawlers exhibited a

more widespread distribution of AIS gaps, reflecting their

operational strategy of targeting pelagic species such as anchovy

(Engraulis encrasicolus), horse mackerel (Trachurus mediterraneus),

and bluefish (Pomatomus saltatrix). Pelagic trawling was first

introduced in the Western Black Sea in 2010 with a limited

number of vessels. At the time, the absence of restrictions on gear
Frontiers in Marine Science 10
changes during the fishing season led fishers to use midwater trawls

primarily during the peak season. In recent years, however, the

number of vessels adopting this method has increased due to the

high catch potential and the resulting economic benefits. Unlike

bottom trawling, which is closely tied to benthic habitats, pelagic

trawlers adjust their movements more dynamically in response to

the distribution and migration of their target species. This reliance

on fish movement may explain why environmental factors such as

sea surface temperature ranked more in predicting AIS gaps for

pelagic trawl operations, as pelagic schools respond more directly to

temperature variations, influencing fishing vessel behavior. The

widespread adoption of pelagic trawling in the Black Sea began in

the waters off Samsun (central Black Sea), primarily for sprat

catching (Özdemir et al., 2006). Samsun et al. (2006) reported

that anchovy is intensively caught between November and January

while sprat is abundant in March and April, making pelagic

trawling particularly effective for these species. This may explain

why AIS gaps for pelagic trawlers increase in spring.

Previous studies (Coro et al., 2023; Ferrà et al., 2020), have

demonstrated the utility of AIS and VMS data in analyzing fishing

activities, including potential unreported fishing efforts. While Coro

et al. (2023) developed a workflow for analyzing tracking data, their

analysis primarily focuses on AIS rather than VMS. These studies
FIGURE 5

Port-level AIS gap distribution averaged counts for Turkish bottom (up) and pelagic trawl (down) in the Black Sea.
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indicate that gaps in AIS transmission could result from both

technical issues and intentional disabling, particularly in areas

with restricted access or heightened regulatory control. Coro et al.

(2023) stated that such gaps might also correspond to voluntary

transmission switch-offs, especially in (or around) prohibited or

protected areas. While we considered all AIS gaps exceeding 30

minutes (as in Ferrà et al., 2020), Coro et al. (2023) identified

potential unreported activity based on specific AIS gap duration

ranges, suggesting a nuanced approach in detecting unreported

fishing efforts. Coro et al. (2023) developed a workflow that

prioritizes spatial overlap between fishing activity and protected

zones, a principle which supports our own observation that signal

gaps cluster near high-regulation areas. Welch et al. (2022)

developed a model to identify AIS gaps likely caused by

intentional disabling. Unlike our approach, Welch et al. (2022)

primarily focused on gaps exceeding 12 hours and occurring more

than 50 nautical miles from shore, incorporating additional factors

such as loitering behavior, proximity to restricted areas, and piracy

risks. While our findings indicate that AIS gaps in the Black Sea are

concentrated in specific coastal areas rather than in offshore waters,

Welch et al. (2022) identified hotspots of AIS disabling near

contested Exclusive Economic Zones (EEZs) and regions of high

transshipment activity. Welch et al. (2022)’s identification of gaps

beyond 50 NM offers a useful contrast to our study, which finds

nearshore concentration of AIS gaps—suggesting differences in

enforcement strategies and vessel behavior across regions.

While AIS devices can be disabled to conceal illegal activities

(Bunwaree, 2003; Galdelli et al., 2021), there is also evidence

suggesting that interruptions may occur during legal fishing

operations, such as during open season in designated areas.
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Chlorophyll emerged as a significant driver of AIS deactivation

for both trawl types, indicating that fishers may intentionally switch

off AIS devices to prevent competitors from identifying productive

fishing grounds. However, multiple motivations are possible,

including competition avoidance (as expressed by fisher),

masking IUU activities (during open season in forbidden zones).

Since trawl fishing activity is spatially concentrated on continental

shelves, it is far more localized and dense compared to other fishing

methods, making competition particularly relevant for this gear

type. In the Black Sea, the narrow continental shelf further

intensifies this spatial concentration (Yıldız, 2016), forcing vessels

to operate within forbidden zones, which may contribute to the

strategic deactivation of AIS to avoid detection by other fishers.

Although these patterns do not directly indicate IUU fishing,

intense fishing pressure—exacerbated by limited available fishing

grounds—has contributed to overexploitation and population

declines in many commercially important stocks.

The decision to disable AIS transmissions may be partly rooted

in broader socio-economic challenges faced by Turkish small- and

medium-scale fishers. Several studies have documented how limited

fishing grounds, increasing operational costs, and shrinking profit

margins have contributed to heightened economic pressure across

the sector (Ünal and Ulman, 2020; Sağlam et al., 2016; Şahin, and

Özekinci, 2020). These pressures are particularly acute in coastal

communities where fishers rely heavily on high-value target species

to sustain livelihoods (Doğan, 2010). In this context, the strategic

deactivation of AIS may be perceived not only as a means to avoid

detection during illegal fishing, but also as a competitive tactic to

conceal productive grounds from other vessels (Ünal et al., 2009).

This behavior aligns with observations from recent field interviews
FIGURE 6

Pearson correlation matrix among key environmental and AIS-related predictors, including distance to port, distance to shore, depth, chlorophyll,
sea surface temperature, and nearby AIS messages. Stronger correlations are highlighted in red, while weaker or negative correlations are shown in
shades of blue or purple.
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and surveys indicating that some fishers express mistrust in

monitoring technologies and fear data-sharing may undermine

their economic resilience. Moreover, studies have highlighted that

despite national regulations such as BAGIS enforcement, awareness

and compliance vary significantly depending on vessel size,

education level, and engagement with cooperatives (Birkan and

Öndes, 2020; Doğan, 2018). These findings reinforce the

importance of addressing socio-economic vulnerabilities in

tandem with technological and legal monitoring strategies, as

fishers’ responses to regulation are shaped not only by

enforcement capacity but also by livelihood imperatives and

perceived fairness of governance.
Machine learning insights

To comprehensively capture both the occurrence and duration

of AIS gaps, we adopted a dual-model approach using XGBoost.

Specifically, we trained a classification model to predict whether an
Frontiers in Marine Science 12
AIS gap would occur, and a separate regression model to estimate

the duration of the gap in minutes. This two-model structure

enabled us to disentangle different aspects of vessel behavior,

allowing for more interpretable results. It also helped identify

which variables were more influential in predicting the likelihood

of AIS deactivation versus those affecting the length of

signal silence.

The use of XGBoost regression models allowed for detailed

predictions of AIS gap durations, demonstrating high explained

variance and R² values for both pelagic and bottom trawl datasets.

While our findings highlight the effectiveness of machine learning

in capturing AIS data patterns, they should be interpreted with

caution. Wolsing et al. (2022) reviewed various anomaly detection

approaches in AIS data and noted that while machine learning

methods are frequently used their review does not explicitly

conclude that machine learning is superior for identifying

patterns. Rather, it emphasizes the diversity of approaches and

the need to evaluate model suitability based on specific maritime

contexts. Our results contribute to this discussion by demonstrating
FIGURE 7

Relative importance of environmental and spatial variables in predicting AIS gaps for bottom trawl (upper) and pelagic trawl (Lower) activities.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1647930
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Yildiz et al. 10.3389/fmars.2025.1647930
the predictive utility of machine learning when tailored to fishing-

specific variables. The high accuracy and low error metrics in our

models underscore their reliability, offering actionable insights for

fisheries management and regulatory bodies. Notably, the bottom

trawl model outperformed the pelagic trawl model across all

evaluation metrics, including accuracy, AUC, TSS, and Kappa.
Frontiers in Marine Science 13
This suggests that environmental and operational factors, such as

depth and proximity to shore, are stronger predictors for bottom

trawl activities. In contrast, the weaker performance of the pelagic

trawl model indicates that additional features, such as migratory

patterns of pelagic species or dynamic oceanographic variables, may

be necessary to enhance predictive accuracy.
FIGURE 8

Partial dependence plots depict the influence of environmental variables (e.g., chlorophyll, sea surface temperature) and spatial features (e.g.,
distance to shore, port) on AIS gap durations for bottom trawl (upper) and pelagic trawl (Lower).
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Implications for ecosystem and regulatory
monitoring

The concentration of AIS signal gaps in nearshore areas where

trawlers frequently operate indicates potential challenges for

monitoring and protecting coastal waters. Identifying and

understanding the spatial distribution of these gaps can help

refine compliance strategies and support sustainable fisheries in

ecologically sensitive zones. Clustering of AIS gaps in shallow

waters near the Istanbul Strait suggests priority areas for

compliance monitoring. However, further investigation is needed

to distinguish whether these gaps primarily result from

transmission issues or intentional AIS disabling, as noted in

previous studies. Future research should integrate external sources

(e.g., Fishing Vessels Monitoring System (Balıkçı Gemilerini Iżleme

Sistemi - BAGIS) or independent vessel monitoring reports) to

better understand the causes of these gaps and refine enforcement

strategies accordingly. According to the relevant authority, the

Vessel Monitoring Device installed on Turkish fishing vessels

sends the position, speed and direction information of the vessel

received at 10 minutes intervals to the Vessel Monitoring Centre

primarily via GSM, and if the vessel is outside the GSM coverage

area, via Satellite, and this frequency seems to be sufficient to reveal

the mentioned analysis.

Although AIS data gaps may occur due to technical issues

unrelated to deliberate disabling, ad-hoc interviews were conducted

informally with fishers during field visits between 2022 and 2023.

These insights, while not part of a structured survey, provided

qualitative support for observed AIS deactivation patterns. To

examine this hypothesis, the variable Nearby Vessel Activity was

included in the model, based on the assumption that increased

vessel density might influence AIS behavior. However, analysis

showed this variable had the least explanatory power, indicating

that fishers’ justification may not fully explain the observed AIS

gaps. According to the Regulation on the Equipping and Use of AIS

Devices by Marine Vessels (Official Gazette No. 28510, 2016),

vessels equipped with AIS must ensure continuous operation

except during dry dock, system malfunction, or extreme weather

conditions. Fishing vessels with AIS Class B devices cannot view

other fishing vessels’ signals, but non-fishing vessels and coastal

stations can access all AIS transmissions (Official Gazzette, 2022).

Non-fishing vessels can monitor all AIS messages, including those

from fishing vessels, and AIS Coastal Stations and non-fishing

vessels can view fishing vessel data. One key limitation of this

study is its reliance solely on AIS data from fishing vessels, which

restricts insights into interactions with commercial, recreational, or

other non-fishing vessels. In highly trafficked areas such as the

Istanbul Strait—a major international shipping corridor—these

unaccounted interactions may influence AIS transmission

behavior in complex ways. For a more precise assessment,

additional data on the overall maritime traffic, including

commercial and transport vessels, would be necessary. This is

particularly relevant in high-traffic areas such as the Istanbul

Strait, which serves as a major international shipping route with a

high volume of cargo ships, tankers, and passenger vessels. The
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presence of these large vessels may influence AIS transmission

patterns in ways not fully accounted for in this study. Future

research would include both fishing and non-fishing vessels, and

provide a more comprehensive understanding of the factors

influencing AIS transmission behavior in Turkish waters. Several

studies (e.g., Iphar et al., 2019; Welch et al., 2022) have shown that

AIS transmission can be affected by surrounding traffic density,

especially in regions with large commercial vessel flows, such as

straits or transshipment zones.

Regulatory enforcement in Türkiye has identified significant

trawl violations, with a 2019 study reporting that nearly 60% of

these violations occurred in the Gulf of Samsun–Sinop Iṅceburun

region and 40% in the Black Sea Ereğli-Kefken region (Karabacak

and Deval, 2023). Additionally, 28% of recorded trawl violations

were in Istanbul (Karabacak and Deval, 2023). In 2022, the most

common fisheries violations (25% of all legal actions) were related

to field and seasonal restrictions (Turkish Coast Guard Commande,

2022). These patterns, combined with enforcement reports, suggest

a possible link between AIS gaps and illegal fishing practices.

However, since AIS is used primarily for real-time tracking rather

than retrospective monitoring, such gaps rarely lead to formal

sanctions. Moreover, there is no fishing vessel actually penalized

if the AIS device is closed outside the specified limits. All licensed

fishing vessels over 12 meters must install and maintain BAGIS

devices, which transmit real-time data on location, speed, and

fishing activities to authorities. Operators must ensure continuous

BAGIS operation. If a device stops transmitting for six hours, they

must report the issue within 12 hours. Failure to do so results in the

device being classified as inoperative, risking compliance penalties.

Unlike AIS, which is not regularly audited unless integrated with

national monitoring programs, BAGIS is directly managed by

Turkish authorities. Article 22 of the Fisheries Regulation requires

mandatory BAGIS reporting and outlines penalties for non-

compliance, including suspension of fishing licenses (Resmi

Gazete, 2016) (Denizhaber.net, 2017; 7Deniz.net, 2024;

Denizhaber.com, 2024). Scientific analyses indicate that Vessel

Monitoring Systems (VMS) provide broader fleet coverage and

stronger legal enforcement capacity, while Automatic Identification

Systems (AIS) offer high-resolution monitoring in coastal areas and

greater public transparency. For example, the studies by Hintzen

et al. (2012) and Vespe et al. (2016) demonstrated that AIS enables

intensive tracking near ports, whereas VMS covers wider marine

areas. Additionally, research by Guillot et al. (2017) and Watson

and Haynie (2016) emphasized that combining both systems can

significantly enhance monitoring accuracy. As also noted by the

FAO (2007), AIS was originally developed for maritime safety,

whereas VMS is a system specifically designed for fisheries

monitoring, providing encrypted and regular data transmission to

regulatory authorities. This distinction highlights the regulatory gap

in AIS oversight, despite its broader visibility in vessel tracking

systems. In conclusion, this study contributes to the broader

discourse on sustainable fisheries management, emphasizing the

critical role of AIS data and machine learning techniques. By

addressing gaps in monitoring and providing actionable insights

into fishing behaviors, it supports efforts to combat IUU fishing and
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promote ecosystem resilience, aligning with global conservation

goals. These findings emphasize the urgent need for integrated

monitoring systems and policy reforms that align national

enforcement tools with international best practices in

fisheries governance.
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