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This study investigates the spatial, temporal, environmental, and behavioral
drivers of Automatic Identification System (AIS) signal gaps in trawl fishing
vessels operating in the Black Sea. AIS deliberate or accidental signal gaps,
which may cause vessels to become temporarily invisible to AlS-based
surveillance systems, hinder maritime monitoring, compliance enforcement,
and fisheries management — even though such vessels may still be detectable
via alternative systems such as VMS. The analysis focused on two primary trawl
types; bottom and pelagic trawl. Using a comprehensive dataset of AlS signals,
environmental variables and vessel activity, the study integrated spatial and
temporal analyses with XGBoost machine learning technique to identify key
predictors of AlS gaps. The results reveal distinct seasonal and spatial patterns in
AIS gap behavior, with significant variation between trawl types. For bottom
trawls, AIS gaps were concentrated near the northern entrance of the Istanbul
Strait, while pelagic trawls exhibited broader distributions along the Black Sea
coast, particularly near Zonguldak and Samsun. Machine learning model
demonstrated strong predictive performance, with an accuracy of 80.26%,
AUC of 0.8855, TSS of 0.6052, MAE of 1336.74 minutes, and RMSE of 3205.54
minutes for bottom trawls. For pelagic trawls, the model achieved 61.68%
accuracy, an AUC of 0.6663, TSS of 0.2336, MAE of 2011.05 minutes, and
RMSE of 4400.40 minutes, indicating moderate predictive capabilities. Key
predictors included environmental factors such as chlorophyll concentration
and sea surface temperature, alongside spatial metrics like depth and proximity
to shore and port. Partial dependence plots highlighted the non-linear effects of
these variables, with chlorophyll concentration showing a critical threshold
around 3.5 mg/m?® and sea surface temperature influencing gaps most
significantly at approximately 15°C. This study provides the first systematic
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analysis of AIS gaps in Black Sea fisheries, contributing valuable insights into their
drivers and implications for fisheries management. By identifying high-risk zones
and temporal patterns, the findings could support improved monitoring
strategies, regulatory enforcement, and sustainable resource use in this
ecologically significant region.
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Introduction

Marine ecosystems play a vital role in global biodiversity and
food security (Jefferson et al., 2022), yet they face increasing
pressures from overfishing and illegal activities (Agnew et al,
2009; Sumaila and Tai, 2020). Effective monitoring and
management of fishing activities are therefore essential to ensure
the sustainability of these ecosystems. Automatic Identification
Systems (AIS), which are mandated under the International
Convention for the Safety of Life at Sea (SOLAS) for larger
fishing vessels over 300 gross tonnage (IMO, 2002), are essential
for ensuring maritime safety, facilitating vessel tracking, and
enhancing fisheries management worldwide (Kerbiriou et al,
2017). By transmitting key information such as vessel
identification, position, course, and speed, AIS enables real-time
monitoring of fishing activity, contributing to the prevention of
collisions, illegal fishing practices, and unreported activities (Dunn
et al.,, 2018; Coro et al., 2023; Cappa et al., 2024).

Given Turkey’s significant role in Mediterranean fisheries
(Ulman et al,, 2013), particularly as a major fishing nation in the
region, improved data accessibility could enhance cross-border
fisheries governance, support sustainable management efforts, and
facilitate regional cooperation. In Ttirkiye, fisheries monitoring and
enforcement are coordinated by the Ministry of Agriculture and
Forestry, with operational support from the Turkish Coast Guard.
National-level measures include seasonal closures, gear-specific
bans, mesh size regulations, and spatial restrictions on trawling in
sensitive areas. A mandatory vessel monitoring system (BAGiS) has
been in place since 2016 for all fishing vessels over 12 meters,
transmitting real-time data every 10 minutes via GSM or satellite.
However, this data is not publicly accessible, limiting its utility for
broader scientific or transboundary management purposes (Official
Gazette, 2016; Unal et al., 2019). Regionally, Turkey is a member of
the General Fisheries Commission for the Mediterranean (GFCM),
which provides a cooperative platform for spatial planning and
monitoring, though it does not mandate real-time tracking
transparency. Within this context, open-access AIS data emerges
as a valuable tool to complement existing systems by enabling
independent monitoring, enhancing transparency, and supporting
enforcement efforts in both national and regional fisheries
governance. In regulated fisheries, such as those in Turkey’s Black
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Sea region, systems like AIS can play a critical role in supporting
compliance with maritime laws, enforcing spatial fishing
restrictions, and monitoring vessel behavior.

Despite its utility, AIS usage presents challenges, particularly
concerning deliberate or accidental signal interruptions, often
referred to as AIS signal gaps (Iphar et al, 2019; Emmens et al.,
2021). These gaps occur when vessels stop transmitting AIS signals,
rendering them temporarily untraceable (Litts, 2021). Such
interruptions can result from deliberate actions by operators to
conceal their activities (Mazzarella et al., 2017) or technical factors,
including signal interference in congested waters, spatial variability
in terrestrial reception, fluctuations in satellite coverage, and
transmission dropouts when vessels move between terrestrial and
satellite reception zones (Welch et al., 2022). The implications of
AIS gaps are significant: they can obscure fleet monitoring, hinder
enforcement of fishing regulations, and potentially contribute to
Ilegal, Unreported, and Unregulated (IUU) fishing activities
(UNODC, 2011). Globally, AIS gaps have been studied in several
fisheries to understand their drivers, including environmental
factors, vessel activity patterns, and economic incentives (Silva
et al.,, 2022; Orofino et al., 2023; Welch et al., 2022). However,
these dynamics remain unexplored in the context of the Black Sea,
despite the region’s ecological importance and its reliance on
regulated fisheries such as bottom and pair midwater trawling.

The integration of AIS with advanced machine learning
techniques offers transformative potential for the management
and sustainability of marine resources (Yang et al., 2024; Spadon
et al., 2024). AIS provides a continuous stream of high-resolution
spatiotemporal data, enabling the precise tracking of vessel activities
across global oceans (Taconet et al., 2019; Spadon et al., 2024).
However, the sheer volume and complexity of AIS data necessitate
sophisticated analytical approaches to extract actionable insights
(Durlik et al., 2023; Yang et al., 2024). Machine learning models,
such as gradient boosting, excel in handling large, multidimensional
datasets, uncovering hidden patterns, and making accurate
predictions about vessel behavior, compliance, and environmental
interactions (Petrovic et al., 2023). Deep learning methods,
including neural networks, further enhance these capabilities by
modeling complex, non-linear relationships within the data (Liu
et al,, 2020). These models not only enhance our understanding of
maritime dynamics but also empower regulatory bodies to identify
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IUU fishing activities, optimize fleet monitoring, and enforce spatial
fishing restrictions more effectively (Widjaja et al., 2023; Welch
et al., 2024; Shedrawi et al., 2024).

The growing accessibility of machine learning tools and
computational resources has catalyzed their adoption in fisheries
management and maritime research (Wing and Woodward, 2024).
As the importance of data-driven decision-making gains
recognition, the widespread application of AIS and machine
learning has the potential to revolutionize how marine ecosystems
are monitored and managed (Malde et al,, 2020). Increased
collaboration between researchers, policymakers, and industry
stakeholders is crucial to further develop and implement these
technologies. Encouragingly, global initiatives and open-access AIS
databases are fostering the democratization of these tools, ensuring
that even regions with limited resources can benefit from cutting-
edge analytics to promote sustainable fishing practices and
maritime safety. The continued expansion of these technologies
holds promise for addressing critical challenges in ocean
governance and ensuring the resilience of marine ecosystems in
the face of growing anthropogenic pressures. While these
advancements have significantly improved fisheries monitoring in
various regions, their application to the Black Sea remains limited,
despite the region’s ongoing challenges with overfishing and
IUU fishing.

The Black Sea is a unique marine ecosystem with relatively low
biodiversity (Zaitsev and Mamaev, 1997), also it is also highly
vulnerable to overfishing and environmental changes (Oguz et al,
2012). In the Black Sea, the high reliance on trawling—both bottom
trawling targeting species like whiting (Merlangius merlangus) and red
mullet (Mullus barbatus), and pair midwater trawling targeting pelagic
species such as anchovy (Engraulis encrasicolus), horse mackerel
(Trachurus trachurus), and bluefish (Pomatomus saltatrix)
necessitates detailed monitoring to ensure sustainability. The Black
Sea faces significant challenges in fisheries management, with 15
stocks (93.8%) subject to ongoing overfishing and nine of them
(55%) fished beyond their safe biological limits (Demirel et al,
2020). This alarming situation underscores the urgent need for
effective monitoring and enforcement mechanisms to prevent
further depletion of marine resources. IUU fishing is one of the
serious threats for sustainable fishing in the Black Sea. Due to IUU
fishing, ghost fishing, by-catch, destruction of the benthic ecosystem
has been reported (Oztiirk, 2013). Given the Black Sea’s high fishing
pressure and limited enforcement capacity, analyzing the spatial and
temporal patterns of AIS gaps provides a valuable tool for assessing
vessel behavior, detecting potential compliance issues, and identifying
areas where monitoring efforts should be prioritized. Unlike open
ocean fisheries, where fishing activities typically take place across vast
waters, the concentration of fishing efforts in forbidden zones along
the narrow continental shelf of the Black Sea suggests that vessel
monitoring interruptions may have a more immediate impact on
resource management and regulatory enforcement.

Recent applications of machine learning (ML) and deep
learning have advanced the analysis of AIS data for detecting
signal gaps and vessel anomalies. Prior studies have identified AIS
disabling behavior (Mazzarella et al., 2017; Welch et al., 2022),
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unreported fishing (Coro et al, 2023), and reviewed anomaly
detection methods (Wolsing et al., 2022). Our study differs by
targeting nearshore trawl fisheries in the understudied Black Sea
and by applying a dual-model XGBoost framework to separately
predict both the occurrence and duration of AIS gaps, highlighting
environmental and spatial drivers of these interruptions. This study
provides a comprehensive investigation into AIS signal gaps in
Black Sea trawl vessels, marking the first systematic analysis in this
region. By integrating spatial coordinates, vessel activity, and
environmental factors such as depth, sea surface temperature, and
chlorophyll concentration, this study applies the XGBoost machine
learning technique to identify factors contributing to AIS
interruptions. Furthermore, the study highlights the importance
of addressing AIS gaps for improving fisheries management,
ensuring regulatory compliance, and safeguarding the ecological
health of the Black Sea ecosystem.

Materials and method

AlS data

Terrestrial AIS data for Turkish fishing vessels operating in the
Black Sea (Geographical Sub-Area 29) during 2022 was collected at
a 5-minute time resolution, sourced from the authoritative Astra
Paging provider. The dataset comprised records from 86 bottom
trawlers and 50 pelagic trawlers, with vessel types classified
according to the Ministry of Agriculture and Forestry. Key
information in the dataset included MMSI (Maritime Mobile
Service Identity), a unique nine-digit number assigned to each
vessel for identification in AIS transmissions, as well as speed,
latitude, longitude, and date-time. Each AIS message—often
referred to as a ping—represents a single position report
transmitted by a vessel.

AIS gap identification

Data cleaning and preprocessing

All statistical analyses and spatial operations were conducted
using R version 4.3.2 (Posit R Core Team, 2024), with relevant
packages including data.table, geosphere, raster, ncdf4, and rerddap.
The AIS dataset was first cleaned, omitting repeated points, points
located on land or distant locations with same time value and
records with implausible speeds exceeding 20 knots.

AlS gap detection and threshold definition

AIS message gaps were identified using the data.table package
(Dowle and Srinivasan, 2021). The time difference between
consecutive AIS signals for each vessel was calculated, and gaps
exceeding 30 minutes were identified. The 30-minute threshold was
selected to identify meaningful gaps in AIS signals while preventing
minor disruptions, such as temporary transmission loss, speed
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changes, or course adjustments, from significantly impacting the
analysis. This threshold helps maintain the accuracy of vessel
activity tracking. Even though very long gaps (>24 h) are likely
due to AIS transponder issues rather than actual vessel behavior, an
upper limit was not imposed to retain multi-day fishing trips.
Indeed, our observations indicate that many vessels turn off AIS
when approaching fishing grounds and reactivate it only upon
returning to port, leading to long gaps that do not reflect actual
vessel movements.

Gap localization and distance calculations

Average positions (between the start and end of each gap) and
timestamps were used to locate these gaps, with each gap
represented as a single point. Port locations (i.e., 406 ports
around the Black Sea) were digitized and stored in a database and
the The Haversine formula from the geosphere package (Hijmans,
2023) was applied to calculate the distance from the average
position of each AIS gap to the nearest port.

Port proximity filtering

Gaps occurring within 1.5 nautical miles (~2.778 km) of a port
were filtered out to minimize potential biases related to port-associated
AIS transmission behaviors. Fishing ports often host coast guard
stations with fishing control authority, which may influence vessel
AIS activation patterns. Additionally, fishing vessels commonly follow
a distinct AIS transmission pattern, wherein devices are deactivated
upon approaching fishing grounds and reactivated when departing
from or returning to port. As a result, retaining these points could lead
to misinterpretations of AIS gap occurrences. Excluding these areas
ensures a more accurate assessment of AIS transmission patterns in

active fishing zones.

Gap classification

The nearest port and distance to shore were calculated dynamically
for each AIS gap, using the average position of the gap (midpoint
between the start and end points). Gaps were classified based on their
duration (t) into four distinct categories: 30 min<t<1h,1<t<2h,2
< t<24h), and >24 h. Additionally, AIS gaps were grouped by their
distance from the nearest harbor into four ranges: 1.5-3 km, 3-5 km,
and beyond 5 km. Since each gap is represented by its average position,
it falls into only one distance range. The relative frequency of each
category was then calculated as a percentage.

Connecting AIS gaps to fishing ports
This analysis aims to quantify the number of AIS gaps linked to

ports by identifying gaps in AIS transmissions and assigning them
to departure (origin) and arrival (destination) ports. The process
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begins by assigning the origin and destination port to each recorded
AIS gap, determining where vessels were last detected before a gap
occurred (origin port) and where they reappeared after the gap
(destination port). This step ensures that each AIS gap is linked to
specific port activity, allowing for a spatial understanding of where
transmission interruptions commonly occur. Once origin and
destination ports are assigned, the number of times each port
appears as an origin and destination is counted. This provides
two key metrics: gaps_as_origin (the number of gaps where a port is
the last recorded position before an AIS signal loss) and
gaps_as_destination (the number of gaps where a port is the first
recorded position after the signal is restored). These values are then
combined to compute the total number of AIS gaps linked to each
port, accounting for both departing and arriving vessels. To ensure
a balanced representation of port-related gaps, the analysis then
calculates the average number of gaps per port by taking the mean
of the total gaps counted as origin and destination. This prevents
the results from being skewed by ports that naturally experience
higher vessel traffic and ensures that comparisons across ports are
meaningful. Finally, a port-level summary is generated, aggregating
total and average AIS gaps for each port. This final step provides a
clear comparison of which ports exhibit the highest AIS
transmission interruptions. This approach ensures that the
analysis avoids double counting gaps.

Feature integration

The following environmental and AIS-based features were
additionally integrated:

1. Depth, from the General Bathymetric Chart of the Oceans
(GEBCO) NetCDF dataset (GEBCO Compilation Group,
2023). The ncdf4 package (Pierce, 2019) was used to extract
depth values by matching AIS gap coordinates with the
closest spatial indices.

2. Chlorophyll-a Concentration, from satellite-based NetCDF
datasets (Gregoire et al,, 2020). Using the raster package
(Hijmans, 2018), chlorophyll values were interpolated for
spatial and temporal matches based on AIS gap coordinates
and timestamps. Chlorophyll concentration was selected as
a proxy for biological productivity, under the assumption
that high chlorophyll areas correspond to fertile fishing
grounds where vessels might disable AIS to avoid disclosing
profitable locations (Welch et al., 2022).

3. Sea Surface Temperature (SST) data from the NOAA OISST
dataset (Richard et al.,, 2008) were accessed via the
ERDDAP API using the rerddap package (Chamberlain
et al,, 2019). SST values were matched to each AIS gap
based on the gap’s average position (latitude, longitude) and
timestamp. The rerddap package (Chamberlain et al., 2019)
enabled programmatic access to the data, with spatial and
temporal matches identified for each AIS gap.

4. Nearby vessel activity was computed by aggregating AIS
messages from other fishing vessels within a 2 km radius
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and a +1-hour time window around the average position of
each AIS gap. This calculation was performed using the
data.table (Dowle and Srinivasan, 2021) and geosphere
packages (Hijmans, 2023). Distances between vessels were
calculated using the Haversine formula, and the total number
of AIS messages within the specified spatiotemporal window
was computed as an indicator of surrounding vessel density.

Modeling approach

Data preprocessing and variable selection

Variance calculations and correlation checks were performed
on the numerical predictors, including and predictors were retained
only if their variances were computationally larger than zero and
bivariate correlations with other predictors were smaller than 0.6.
These criteria ensured that all retained predictors contributed
independent and meaningful information to the modeling process
(Joo et al., 2023). To assess potential multicollinearity among the
selected explanatory variables, Variance Inflation Factor (VIF)
analysis was conducted using the car package (Fox and Weisberg,
2019). A multiple linear regression model was then fitted using one
variable as the dependent variable, with the remaining variables as
predictors. Feature engineering steps included converting
categorical variables into numerical format, removing missing
values, filtering low-variance predictors, and normalizing
continuous variables when appropriate.

Model design and training

A gradient boosting model (XGBoost) was applied to identify
key predictors of AIS gaps based on the selected features, and
implemented using the xgboost package (Chen et al., 2023).
XGBoost was chosen for this analysis due to its efficiency with
large datasets, robustness against overfitting through regularization,
and strong predictive performance in classification and regression.
Additionally, its ability to capture complex feature-target
relationships while maintaining computational efficiency, makes it
well-suited for identifying AIS gaps based on environmental and
vessel-related predictors (Chen and Guestrin, 2016). The dataset
underwent extensive preprocessing and feature engineering to
ensure compatibility with the machine learning model and
optimize performance. Missing values were excluded using the
tidyr package (Wickham and Girlich, 2023) to maintain data
integrity. Categorical and numerical features were converted into
a matrix format compatible with XGBoost. Hyperparameter tuning
was performed to optimize model performance using randomized
grid search. over the following ranges: learning rate (0.01 - 0.3),
maximum tree depth (3 - 10), subsample ratio (0.5 - 1.0), and
boosting iterations (100 - 2000). To address both the occurrence
and duration of AIS gaps, we trained two distinct XGBoost models
tailored to different predictive tasks. The first model was a binary
classification model, developed to predict whether an AIS gap
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occurred (gap vs. no gap). The second model was a regression
model, applied only to records where a gap was present, aiming to
estimate the duration of the gap in minutes. These two models were
trained independently using the same feature set and cross-
validation strategy but optimized for their respective output types.
Accordingly, classification metrics (Accuracy, AUC, TSS, Cohen’s
Kappa) were used to evaluate the classification model, while
regression metrics (MAE, RMSE, R? Explained Variance) were
applied to the regression model. This dual-model approach enabled
us to capture both the likelihood of AIS gap occurrence and the
expected duration of such events, offering a more comprehensive
understanding of vessel behavior and monitoring reliability.

Model evaluation

We applied 5-fold cross-validation, balancing bias and variance
in error estimation (James et al., 2013). A lower k (e.g., 2 or 3) may
increase bias due to insufficient training data in each fold, whereas
higher k (e.g., 10) may raise variance as the training subsets become
more similar to the full dataset (Hastie et al., 2009). The optimal
parameters were: learning rate 0.1, maximum tree depth 6,
subsample ratio 0.8, and 1000 boosting iterations. To ensure the
effectiveness of the prediction, the dataset was split into training and
testing sets. The dataset was divided into training, validation, and
testing sets following a commonly used 70-20-10 ratio. Specifically,
70% of the data was allocated to training, 20% to validation for
hyperparameter tuning using 5-fold cross-validation, and 10% to
testing to assess model performance on unseen data. This approach
ensured reliable model evaluation while preventing data leakage.
The dataset split was carefully designed to prevent data leakage and
ensure robust model validation. Additionally, hyperparameter
tuning was conducted to optimize the model’s predictive
performance. These steps ensured the model was both efficient
and robust in capturing the complex relationships between AIS
signal gaps and their influencing factors. The performance of
predictive models for AIS gaps in bottom and pelagic trawl
fishing activities was evaluated using multiple metrics. For
classification, we used Accuracy, Area Under the Curve (AUC),
True Skill Statistic (TSS), and Cohen’s Kappa. For predicting AIS
gap duration, we employed error-based metrics, including Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE),
coefficient of determination (R?), and Explained Variance, to
assess the model’s ability to capture temporal patterns.

Feature interpretation and visualization

Feature importance and interpretability analyses were
performed using partial dependence plots from the pdp package
(Greenwell, 2017) to visualize the marginal effects of individual
features on the target variable. Data visualizations were created
using ggplot2 (Wickham, 2016; Wickham and Girlich, 2023) for
exploratory analysis and result interpretation. Heatmaps depicted
the spatiotemporal distribution of AIS gaps, while bar charts
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summarized seasonal and monthly variations. Calibration plots
assessed prediction reliability. A 3 x 3 km grid covering the Black
Sea was generated in QGIS, where AIS gaps were spatially
intersected, aggregated, and summed per cell to visualize
their distribution.

Results
Gap identification

The AIS dataset contains 103,082 AIS messages from bottom
trawlers and 65,899 from pelagic trawlers. The procedure identified
1,897 gaps connecting 3825 pings in bottom trawl records (3.7% of
bottom trawl AIS data) and 1270 gaps connecting 2140 pings in
pelagic trawl records (0.5% of pelagic trawl AIS data).

For bottom trawlers, AIS signal gaps occurred most frequently
beyond 5 km from the coast, where short gaps (<1 h) accounted for
44.52%, followed by medium (2-24 h, 30.69%) and long gaps (>24 h,
12.88%). Gaps >24 h lasted ~ 8 days. In contrast, closer to shore (1.5-
3 km), short gaps were more dominant (47.83%), but long-duration
gaps still represented 15.22% of all events. Medium gaps were
particularly prominent at distances between 3-5 km, making up
44.44% of gaps. For pelagic trawlers, the proportion of long-duration
gaps (>24 h) was highest close to shore (27.45%) and decreased with
distance, falling to 16.92% beyond 5 km. Short gaps (<1 h) were most
common in offshore zones (>5 km, 38.49%), while medium-duration
gaps (2-24 h) were relatively stable across all distance classes, ranging
from 25.49% to 32.51%. Medium gaps (2-24 h) are less frequent at
1.5-3 km but increase beyond 3 km. This gradient suggests a spatial
trend where short gaps dominate offshore and long gaps are more
frequent nearshore, particularly in pelagic operations (Table 1).

To give an indication of the derived further results, we present
data from a bottom trawler, showing repeated patterns of gaps
starting and ending on the western border. Figure 1 compares its
speed variations on two days. Figure 1 (left) shows uninterrupted
AIS reporting on 28-03-2022, with speeds consistently within
trawling thresholds (dashed lines, Ferra et al,, 2020). Figure 1

TABLE 1 AIS data gaps by distance from the coast (t) and duration (d),
for bottom and pelagic trawlers.

Bottom trawl

<1lh 1<t<2h 2<t<24h >24 h Total
15<d<3 47.83 2.17 34.78 15.22 1.20
3<d<s 28.09 8.64 44.44 18.83 8.42
d>5 44.52 11.91 30.69 12.88 90.38

<lh 1<t<2h 2<t<24h >24 h Total
15<d<3 35.29 11.76 25.49 27.45 2.37
3<d<s 31.38 10.40 32.51 25.71 24.58
d>5 38.49 13.42 31.17 16.92 73.05
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(right), highlights two AIS gaps (2h23m and 3h39m), where
speed data was interrupted (day: 19-10-2022). Straight red lines
connect positions before and after signal loss, illustrating temporal
gaps. These AIS interruptions complicate trawling activity analysis,
emphasizing the challenges AIS gaps pose for monitoring
vessel operations.

Duration analysis

The analysis of AIS gap durations reveals distinct patterns
between vessel types and operational zones. For bottom trawl
vessels (Figure 2), the longest average gaps in forbidden zones
occurred in January (290 minutes), while the shortest were observed
in September (74 minutes). Overall operations showed maximum gap
durations in April (214 minutes) and minimum durations in
November (71 minutes). Pelagic trawl vessels (Figure 3) exhibited
their most severe gaps in forbidden zones during March (486 minutes)
and the briefest in November (54 minutes). For general operations,
peak gaps appeared in April (312 minutes) with the lowest values
recorded in November (79 minutes). Notably, forbidden zone gaps
consistently exceeded general operation gaps for both vessel types
throughout the monitoring period. The data also shows pelagic
trawlers maintained substantially longer gap durations than bottom
trawlers across all months, with particularly pronounced differences
during the autumn months (September-November).

The spatial distribution of AIS gaps durations is visualized on
two maps along the Turkish Black Sea coastline (Figure 4). Pelagic
trawl gaps are concentrated along the western and central Black Sea
coast, with the highest densities near Samsun extending eastward.
In contrast, bottom trawl gaps cluster near the northern entrance of
the Istanbul Strait. While both trawling types overlap spatially,
bottom trawl closures are more concentrated in the western and
northwestern coastal regions, decreasing eastward. Pelagic trawl
gaps display a more uniform spread, with higher densities in the
central Black Sea compared to bottom trawl closures, which are
more localized near major fishing ports. These findings highlight
geographical variations in AIS gap frequencies, influenced by the
trawling type and regional fishing efforts.

Port-level patterns

Figure 5 presents the spatial distribution of average AIS gaps
associated with ports for bottom trawl and pelagic trawl operations
in the Black Sea. The size and color intensity of the circles represent
the average number of AIS gaps linked to each port, providing
insight into the differences in operational behavior between the two
fishing methods. Overall, the patterns for bottom trawl and pelagic
trawl are similar, with many ports overlapping in both fisheries.
However, some distinctions emerge in terms of gap intensity and
specific port utilization. For bottom trawl operations, the highest
average AIS gaps are observed in ports near the Istanbul Strait and
adjacent western Black Sea, including Rumelifeneri (27.4),
Karaburun (28.9), Yenikdy (19.9), and Sile (22). Additionally,
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FIGURE 1

Vessel movement and speed profile for a trawler on 2 different days. Active AlS signals are in blue while AIS gaps in red.

ports such as Riva (18.2), Kefkenadas: (15.7), and Kiyikoy (12.1)
also show relatively high AIS gap densities. For pelagic trawl
operations, while some of the same western ports remain
prominent (e.g., Kiyikdy (12.9), Rumelifeneri (9.5), Karaburun
(9.9), and Sile (5.3)), the distribution extends further into the
central and eastern Black Sea. The ports with the highest AIS
gaps for pelagic trawl include Tekkekoy (10.2), 19 Mayis (6.9),
and Yenikoy (6.8), which are less prominent in bottom trawl
operations. Although the differences in intensity are not extreme,
pelagic trawl operations appear to be more dispersed along the
coast, whereas bottom trawl gaps are concentrated around key
western ports. Additionally, the difference in the number of active
vessels (86 bottom trawlers vs. 50 pelagic trawlers) likely influences
the relative intensity of AIS gaps between the two fishing methods.
Variance thresholds ensured that no predictor was constant or
near-constant, while the correlation threshold minimized risks of
multicollinearity. The VIF values are well below the commonly
accepted threshold of 5 (Kutner et al., 2004; O’Brien, 2007; James
et al., 2013), indicating the absence of serious multicollinearity.
These results confirm that the selected variables are not highly
correlated (Figure 6) and can be reliably used in further statistical
modeling without concerns regarding redundancy or instability.

Model performance

For bottom trawl fishing gaps, the model demonstrated strong
predictive capabilities across classification-based evaluation metrics.
The model achieved an accuracy of 80.26%, an AUC of 0.8855, and
a True Skill Statistic (TSS) of 0.6052, indicating a good balance
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between sensitivity and specificity. Additionally, Cohen’s Kappa
value of 0.6053 suggests substantial agreement between predicted
and observed classifications, confirming the model’s effectiveness in
distinguishing AIS gaps. In contrast, when considering AIS gap
duration as a continuous variable, the model’s explained variance
was 92.63%, and the R* was 94.92%, suggesting that the model
successfully captures the variance in gap durations. However, error
metrics indicate a mean absolute error (MAE) of 1336.74 minutes
(~22.3 hours) and a root mean squared error (RMSE) of 3205.54
minutes (~53.4 hours). RMSE suggests that while the model
captures broad patterns, it struggles with precise predictions for
long-duration gaps, potentially due to extreme outliers. Feature
importance analysis identified chlorophyll concentration and
distance to shore as the most influential predictors (Figure 7).
Partial dependence plots indicate that AIS gap probability increases
sharply at chlorophyll concentrations above ~3.5 mg/m?, while
proximity to shore exhibits a decreasing effect beyond 20 km
(Figure 8). Spatially, AIS gaps in bottom trawling were more
prevalent near the Istanbul Strait and the western Black Sea,
reflecting concentrated operational zones.

For pelagic trawl fishing gaps, the classification-based
performance metrics indicated moderate predictive capabilities.
The model achieved an accuracy of 61.68%, an AUC of 0.6663,
and a TSS of 0.2336, reflecting limited success in differentiating true
gaps from non-gaps. Similarly, Cohen’s Kappa value of 0.2336
suggests only slight agreement between predictions and
observations, indicating the model struggles to accurately classify
AIS gaps in pelagic trawl activities. When modeling AIS gap
duration, the explained variance reached 95.73%, with an R* of
97.03%, suggesting the model captures the overall trend well.
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However, the MAE of 2011.05 minutes (~33.5 hours) and RMSE of
4400.40 minutes (~73.3 hours) indicate that the model exhibits high
absolute error, particularly in longer-duration gaps. This suggests
that while the model accounts for broad variance, it struggles with
precise forecasting, especially for extreme values. Feature
importance analysis identified chlorophyll concentration and sea
surface temperature as key predictors. Partial dependence plots
(Figure 8) indicate that AIS gaps increase significantly at SST levels
around 15 °C, while chlorophyll concentration exerts the strongest
influence between 2 mg/m® and 5 mg/m®. These results underscore
the significance of environmental variables like chlorophyll and
SST, as well as spatial factors such as proximity to ports and the
shoreline, in explaining AIS gaps for both bottom and pelagic trawl
fishing. The feature ‘Nearby Vessel Activity’ showed limited
explanatory power in the model, ranking among the least
influential variables in predicting AIS gaps for both trawl types.

Discussion

This study provides a comprehensive analysis of AIS
transmission gaps in the Turkish Black Sea trawl fleet, identifying
geographic hotspots and patterns of AIS interruptions. Employing a
machine learning approach, it assesses potential correlations
between AIS gaps and spatial (e.g., distance to shore/port),
environmental (e.g., SST, chlorophyll), and vessel activity
variables. The findings align with previous research on vessel
tracking and potential unreported fishing activities in other
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regions, such as the Adriatic Sea (Coro et al, 2023; Ferra et al,
2020), while also exploring possible underlying causes of AIS gaps.

AlS gaps and fishing activity

A key feature of our analytical framework was the use of a dual-
model design. Although the distribution patterns appear similar
across the study area, the ranking of factors influencing this
distribution varies between bottom and pelagic trawlers. Bottom
trawlers exhibited significant concentrations of AIS gaps near the
northern entrance of the Istanbul Strait and other nearshore areas.
This behavior aligns with anecdotal and regulatory observations
that bottom trawlers tend to operate in shallower waters. The
tendency to move into shallower regions may be influenced by
the presence of high-value demersal species, including red mullet
(Mullus barbatus), whiting (Merlangius merlangus), and turbot
(Scophthalmus maximus), which are key targets for bottom trawl
fisheries. These shallower zones, although sometimes adjacent to
areas with regulatory restrictions, are often associated with rich
demersal habitats. While fishers may be drawn by the economic
value of species like red mullet, some of these activities may
inadvertently or intentionally encroach upon forbidden zones.
While larger whiting are often found in deeper waters, red mullet,
which is smaller but highly abundant in shallow areas, offers a more
lucrative return due to its market demand and higher catch volumes
(Yildiz, 20165 Yildiz and Karakulak, 2018). This economic incentive
likely explains the increased occurrence of AIS gap in shallower
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Port-level AIS gap distribution averaged counts for Turkish bottom (up) and pelagic trawl (down) in the Black Sea.

waters, as vessels may switch off AIS to evade detection while
engaging in illegal fishing. Signal gaps near exclusive economic
zones suggest that some vessels deliberately conceal unauthorized
border crossings to fish in forbidden zones. While not all vessels
that deactivate AIS for extended periods are necessarily engaged in
illicit activities, the intentional act of going ‘dark’ raises concerns
(Bunwaree, 2023). The western Black Sea has historically been
Ttrkiyey’s primary trawling ground along Black Sea coast, with
ports such as Igneada-Kiyikéy and Rumelifeneri-Poyrazkéy hosting
a high concentration of trawlers. This long-standing significance is
reflected in the elevated number of AIS gaps recorded around these
ports, indicating intensified fishing activity in the region.
According to Dagtekin et al., 2021, Turkish pelagic trawl fishing
is mainly located in the Middle Black Sea along a coastline of 116
km from Tagkana Cape (40°01 E, 43°39 N) to Cayagz1 Cape (41°55
E, 41°52 N). Unlike bottom trawlers whose AIS gaps are
concentrated near ports, in contrast, pelagic trawlers exhibited a
more widespread distribution of AIS gaps, reflecting their
operational strategy of targeting pelagic species such as anchovy
(Engraulis encrasicolus), horse mackerel (Trachurus mediterraneus),
and bluefish (Pomatomus saltatrix). Pelagic trawling was first
introduced in the Western Black Sea in 2010 with a limited
number of vessels. At the time, the absence of restrictions on gear
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changes during the fishing season led fishers to use midwater trawls
primarily during the peak season. In recent years, however, the
number of vessels adopting this method has increased due to the
high catch potential and the resulting economic benefits. Unlike
bottom trawling, which is closely tied to benthic habitats, pelagic
trawlers adjust their movements more dynamically in response to
the distribution and migration of their target species. This reliance
on fish movement may explain why environmental factors such as
sea surface temperature ranked more in predicting AIS gaps for
pelagic trawl operations, as pelagic schools respond more directly to
temperature variations, influencing fishing vessel behavior. The
widespread adoption of pelagic trawling in the Black Sea began in
the waters off Samsun (central Black Sea), primarily for sprat
2006). Samsun et al. (2006) reported
that anchovy is intensively caught between November and January

catching (Ozdemir et al.,

while sprat is abundant in March and April, making pelagic
trawling particularly effective for these species. This may explain
why AIS gaps for pelagic trawlers increase in spring.

2020), have
demonstrated the utility of AIS and VMS data in analyzing fishing

Previous studies (Coro et al., 2023; Ferra et al,

activities, including potential unreported fishing efforts. While Coro
etal. (2023) developed a workflow for analyzing tracking data, their
analysis primarily focuses on AIS rather than VMS. These studies
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Pearson correlation matrix among key environmental and AlS-related predictors, including distance to port, distance to shore, depth, chlorophyll,
sea surface temperature, and nearby AIS messages. Stronger correlations are highlighted in red, while weaker or negative correlations are shown in

shades of blue or purple.

indicate that gaps in AIS transmission could result from both
technical issues and intentional disabling, particularly in areas
with restricted access or heightened regulatory control. Coro et al.
(2023) stated that such gaps might also correspond to voluntary
transmission switch-offs, especially in (or around) prohibited or
protected areas. While we considered all AIS gaps exceeding 30
minutes (as in Ferra et al, 2020), Coro et al. (2023) identified
potential unreported activity based on specific AIS gap duration
ranges, suggesting a nuanced approach in detecting unreported
fishing efforts. Coro et al. (2023) developed a workflow that
prioritizes spatial overlap between fishing activity and protected
zones, a principle which supports our own observation that signal
gaps cluster near high-regulation areas. Welch et al. (2022)
developed a model to identify AIS gaps likely caused by
intentional disabling. Unlike our approach, Welch et al. (2022)
primarily focused on gaps exceeding 12 hours and occurring more
than 50 nautical miles from shore, incorporating additional factors
such as loitering behavior, proximity to restricted areas, and piracy
risks. While our findings indicate that AIS gaps in the Black Sea are
concentrated in specific coastal areas rather than in offshore waters,
Welch et al. (2022) identified hotspots of AIS disabling near
contested Exclusive Economic Zones (EEZs) and regions of high
transshipment activity. Welch et al. (2022)’s identification of gaps
beyond 50 NM offers a useful contrast to our study, which finds
nearshore concentration of AIS gaps—suggesting differences in
enforcement strategies and vessel behavior across regions.

While AIS devices can be disabled to conceal illegal activities
(Bunwaree, 2003; Galdelli et al., 2021), there is also evidence
suggesting that interruptions may occur during legal fishing
operations, such as during open season in designated areas.
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Chlorophyll emerged as a significant driver of AIS deactivation
for both trawl types, indicating that fishers may intentionally switch
off AIS devices to prevent competitors from identifying productive
fishing grounds. However, multiple motivations are possible,
including competition avoidance (as expressed by fisher),
masking IUU activities (during open season in forbidden zones).
Since trawl fishing activity is spatially concentrated on continental
shelves, it is far more localized and dense compared to other fishing
methods, making competition particularly relevant for this gear
type. In the Black Sea, the narrow continental shelf further
intensifies this spatial concentration (Yildiz, 2016), forcing vessels
to operate within forbidden zones, which may contribute to the
strategic deactivation of AIS to avoid detection by other fishers.
Although these patterns do not directly indicate IUU fishing,
intense fishing pressure—exacerbated by limited available fishing
grounds—has contributed to overexploitation and population
declines in many commercially important stocks.

The decision to disable AIS transmissions may be partly rooted
in broader socio-economic challenges faced by Turkish small- and
medium-scale fishers. Several studies have documented how limited
fishing grounds, increasing operational costs, and shrinking profit
margins have contributed to heightened economic pressure across
the sector (Unal and Ulman, 2020; Saglam et al., 2016; Sahin, and
Ozekinci, 2020). These pressures are particularly acute in coastal
communities where fishers rely heavily on high-value target species
to sustain livelihoods (Dogan, 2010). In this context, the strategic
deactivation of AIS may be perceived not only as a means to avoid
detection during illegal fishing, but also as a competitive tactic to
conceal productive grounds from other vessels (Unal et al., 2009).
This behavior aligns with observations from recent field interviews
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and surveys indicating that some fishers express mistrust in
monitoring technologies and fear data-sharing may undermine
their economic resilience. Moreover, studies have highlighted that
despite national regulations such as BAGIS enforcement, awareness
and compliance vary significantly depending on vessel size,
education level, and engagement with cooperatives (Birkan and
Ondes, 2020; Dogan, 2018). These findings reinforce the
importance of addressing socio-economic vulnerabilities in
tandem with technological and legal monitoring strategies, as
fishers’ responses to regulation are shaped not only by
enforcement capacity but also by livelihood imperatives and
perceived fairness of governance.

Machine learning insights
To comprehensively capture both the occurrence and duration

of AIS gaps, we adopted a dual-model approach using XGBoost.
Specifically, we trained a classification model to predict whether an
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Relative importance of environmental and spatial variables in predicting AIS gaps for bottom trawl (upper) and pelagic trawl (Lower) activities.

0.15

AIS gap would occur, and a separate regression model to estimate
the duration of the gap in minutes. This two-model structure
enabled us to disentangle different aspects of vessel behavior,
allowing for more interpretable results. It also helped identify
which variables were more influential in predicting the likelihood
of AIS deactivation versus those affecting the length of
signal silence.

The use of XGBoost regression models allowed for detailed
predictions of AIS gap durations, demonstrating high explained
variance and R* values for both pelagic and bottom trawl datasets.
While our findings highlight the effectiveness of machine learning
in capturing AIS data patterns, they should be interpreted with
caution. Wolsing et al. (2022) reviewed various anomaly detection
approaches in AIS data and noted that while machine learning
methods are frequently used their review does not explicitly
conclude that machine learning is superior for identifying
patterns. Rather, it emphasizes the diversity of approaches and
the need to evaluate model suitability based on specific maritime
contexts. Our results contribute to this discussion by demonstrating
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Partial dependence plots depict the influence of environmental variables (e.g., chlorophyll, sea surface temperature) and spatial features (e.g.,
distance to shore, port) on AIS gap durations for bottom trawl (upper) and pelagic trawl (Lower).

the predictive utility of machine learning when tailored to fishing-
specific variables. The high accuracy and low error metrics in our
models underscore their reliability, offering actionable insights for
fisheries management and regulatory bodies. Notably, the bottom
trawl model outperformed the pelagic trawl model across all
evaluation metrics, including accuracy, AUC, TSS, and Kappa.
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This suggests that environmental and operational factors, such as
depth and proximity to shore, are stronger predictors for bottom
trawl activities. In contrast, the weaker performance of the pelagic
trawl model indicates that additional features, such as migratory
patterns of pelagic species or dynamic oceanographic variables, may
be necessary to enhance predictive accuracy.
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Implications for ecosystem and regulatory
monitoring

The concentration of AIS signal gaps in nearshore areas where
trawlers frequently operate indicates potential challenges for
monitoring and protecting coastal waters. Identifying and
understanding the spatial distribution of these gaps can help
refine compliance strategies and support sustainable fisheries in
ecologically sensitive zones. Clustering of AIS gaps in shallow
waters near the Istanbul Strait suggests priority areas for
compliance monitoring. However, further investigation is needed
to distinguish whether these gaps primarily result from
transmission issues or intentional AIS disabling, as noted in
previous studies. Future research should integrate external sources
(e.g., Fishing Vessels Monitoring System (Balik¢1t Gemilerini {zleme
Sistemi - BAGIS) or independent vessel monitoring reports) to
better understand the causes of these gaps and refine enforcement
strategies accordingly. According to the relevant authority, the
Vessel Monitoring Device installed on Turkish fishing vessels
sends the position, speed and direction information of the vessel
received at 10 minutes intervals to the Vessel Monitoring Centre
primarily via GSM, and if the vessel is outside the GSM coverage
area, via Satellite, and this frequency seems to be sufficient to reveal
the mentioned analysis.

Although AIS data gaps may occur due to technical issues
unrelated to deliberate disabling, ad-hoc interviews were conducted
informally with fishers during field visits between 2022 and 2023.
These insights, while not part of a structured survey, provided
qualitative support for observed AIS deactivation patterns. To
examine this hypothesis, the variable Nearby Vessel Activity was
included in the model, based on the assumption that increased
vessel density might influence AIS behavior. However, analysis
showed this variable had the least explanatory power, indicating
that fishers’ justification may not fully explain the observed AIS
gaps. According to the Regulation on the Equipping and Use of AIS
Devices by Marine Vessels (Official Gazette No. 28510, 2016),
vessels equipped with AIS must ensure continuous operation
except during dry dock, system malfunction, or extreme weather
conditions. Fishing vessels with AIS Class B devices cannot view
other fishing vessels’ signals, but non-fishing vessels and coastal
stations can access all AIS transmissions (Official Gazzette, 2022).
Non-fishing vessels can monitor all AIS messages, including those
from fishing vessels, and AIS Coastal Stations and non-fishing
vessels can view fishing vessel data. One key limitation of this
study is its reliance solely on AIS data from fishing vessels, which
restricts insights into interactions with commercial, recreational, or
other non-fishing vessels. In highly trafficked areas such as the
Istanbul Strait—a major international shipping corridor—these
unaccounted interactions may influence AIS transmission
behavior in complex ways. For a more precise assessment,
additional data on the overall maritime traffic, including
commercial and transport vessels, would be necessary. This is
particularly relevant in high-traffic areas such as the Istanbul
Strait, which serves as a major international shipping route with a
high volume of cargo ships, tankers, and passenger vessels. The
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presence of these large vessels may influence AIS transmission
patterns in ways not fully accounted for in this study. Future
research would include both fishing and non-fishing vessels, and
provide a more comprehensive understanding of the factors
influencing AIS transmission behavior in Turkish waters. Several
studies (e.g., Iphar et al., 2019; Welch et al., 2022) have shown that
AIS transmission can be affected by surrounding traffic density,
especially in regions with large commercial vessel flows, such as
straits or transshipment zones.

Regulatory enforcement in Tiirkiye has identified significant
trawl violations, with a 2019 study reporting that nearly 60% of
these violations occurred in the Gulf of Samsun-Sinop Inceburun
region and 40% in the Black Sea Eregli-Kefken region (Karabacak
and Deval, 2023). Additionally, 28% of recorded trawl violations
were in Istanbul (Karabacak and Deval, 2023). In 2022, the most
common fisheries violations (25% of all legal actions) were related
to field and seasonal restrictions (Turkish Coast Guard Commande,
2022). These patterns, combined with enforcement reports, suggest
a possible link between AIS gaps and illegal fishing practices.
However, since AIS is used primarily for real-time tracking rather
than retrospective monitoring, such gaps rarely lead to formal
sanctions. Moreover, there is no fishing vessel actually penalized
if the AIS device is closed outside the specified limits. All licensed
fishing vessels over 12 meters must install and maintain BAGIS
devices, which transmit real-time data on location, speed, and
fishing activities to authorities. Operators must ensure continuous
BAGIS operation. If a device stops transmitting for six hours, they
must report the issue within 12 hours. Failure to do so results in the
device being classified as inoperative, risking compliance penalties.
Unlike AIS, which is not regularly audited unless integrated with
national monitoring programs, BAGIS is directly managed by
Turkish authorities. Article 22 of the Fisheries Regulation requires
mandatory BAGIS reporting and outlines penalties for non-
compliance, including suspension of fishing licenses (Resmi
Gazete, 2016) (Denizhaber.net, 2017; 7Deniz.net, 2024;
Denizhaber.com, 2024). Scientific analyses indicate that Vessel
Monitoring Systems (VMS) provide broader fleet coverage and
stronger legal enforcement capacity, while Automatic Identification
Systems (AIS) offer high-resolution monitoring in coastal areas and
greater public transparency. For example, the studies by Hintzen
etal. (2012) and Vespe et al. (2016) demonstrated that AIS enables
intensive tracking near ports, whereas VMS covers wider marine
areas. Additionally, research by Guillot et al. (2017) and Watson
and Haynie (2016) emphasized that combining both systems can
significantly enhance monitoring accuracy. As also noted by the
FAO (2007), AIS was originally developed for maritime safety,
whereas VMS is a system specifically designed for fisheries
monitoring, providing encrypted and regular data transmission to
regulatory authorities. This distinction highlights the regulatory gap
in AIS oversight, despite its broader visibility in vessel tracking
systems. In conclusion, this study contributes to the broader
discourse on sustainable fisheries management, emphasizing the
critical role of AIS data and machine learning techniques. By
addressing gaps in monitoring and providing actionable insights
into fishing behaviors, it supports efforts to combat IUU fishing and
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promote ecosystem resilience, aligning with global conservation
goals. These findings emphasize the urgent need for integrated
monitoring systems and policy reforms that align national
enforcement tools with international best practices in
fisheries governance.
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