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Studying oceanic eddies in the Antarctic marginal ice zone (MIZ) is essential due

to their unique characteristics and their significant influence on polar climate

systems. However, the automated detection of such features remains largely

underexplored in general. Moreover, even manual eddy detection has been

practically neglected within the Antarctic MIZ specifically. This work presents

the first study on the implementation of the machine learning approach for

automatic eddy identification in the Antarctic MIZ. We investigate the potential of

YOLOv11, a state-of-theart deep learning model, to detect and classify Antarctic

eddies using high-resolution synthetic aperture radar imagery. By fine-tuning

YOLOv11 on a specialized dataset representing the dynamic Antarctic MIZ, we

achieved robust detection of submesoscale and mesoscale eddies. Special

significance was placed on distinguishing between cyclonic and anticyclonic

eddies, providing essential insights for compiling statistical datasets. Moreover,

YOLOv11 architecture was evaluated through a variety of quantitativemetrics and

visual inspection. The integration of SAHI module with YOLOv11 demonstrated

its capability to improve detection of small eddies and increased the mAP0.5 -0.95

by 50% in comparison with the baseline YOLOv11 model.Experimental results

highlight the model’s capability to reliably identify eddies across diverse scales

and environmental conditions. Overall, this study addresses a significant gap in

Antarctic eddy research and sets the stage for advancing automated

oceanographic studies in polar regions.
KEYWORDS

mesoscale eddies, submesoscale eddies, eddy detection, marginal ice zone, deep
learning, YOLOv11
1 Introduction

The Southern Ocean, bounded to the north by the Antarctic Circumpolar Current

(ACC) and to the south by subglacial continental shelf cavities, plays a crucial role in global

climate dynamics due to its unique circulation pattern and significant capacity to absorb

heat and carbon dioxide (DeVries, 2014; Frölicher et al., 2015). The Southern Ocean is the
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central hub of the world ocean, where the mixing of waters from the

Atlantic, Pacific, and Indian basins occurs. The large-scale

circulation of the Southern Ocean includes the Antarctic

Circumpolar Current, the Antarctic Slope Current, the subpolar

gyres, and the meridional overturning circulation, which is part of

the global thermohaline circulation Bennetts et al. (2024). Here,

warm, nutrient-poor water sinks, and cold, nutrient-rich water

rises, facilitating the transport of heat and dissolved gases across

the ocean basins. As the primary source for meridional heat and

volume transport over the upper-ocean ACC, ocean eddies play a

crucial role in the circulation system of the Southern Ocean (Jayne

and Marotzke, 2002). Eddies also play one of the key roles in

determining the shape of the Southern Ocean meridional

overturning circulation (Speer et al., 2000; Marshall, 2003;

Ivchenko et al., 2008) and the ACC momentum balance (Gille,

1997; Rintoul et al., 2001; Ivchenko et al., 2008).

The Antarctic Ice Sheet, which is millions of years old and

averages 3.5 km thick, is the dominant feature of the region. The

mass of the Antarctic Ice Sheet is increased by the accumulation of

snow on the Antarctic continent. On the other hand, ice shelves

regulate the flow of ice from the continent to the ocean. Ice shelf

runoff occurs through several processes: basal melting (Palóczy

et al., 2018; Stewart et al., 2018) and calving of icebergs at the ice

shelf fronts (Greene et al., 2022). Total melting of the Antarctic ice

shelf base is estimated to exceed iceberg calving (Rignot et al., 2013;

Depoorter et al., 2013; Liu et al., 2015). The dynamics of sea ice

extent is an important process that regulates heat exchange between

the atmosphere and deep waters through changes in surface water

salinity and density (Bitz et al., 2006; Kirkman and Bitz, 2011).

The Antarctic marginal ice zone (MIZ) separates the open

ocean from dense drift ice. It is characterized by strong lateral

gradients in temperature and salinity caused by seasonal sea ice

regime, atmosphere-ice-ocean interactions (Lu et al., 2015;

Manucharyan and Thompson, 2017; Timmermans et al., 2012),

and increased biological productivity (von Appen et al., 2018). The

presence of high lateral buoyancy gradients in the MIZ promotes

the development of submesoscale oceanic processes (eddies and

jets) with a characteristic scale of several kilometers and a time scale

of several hours to several days (Boccaletti et al., 2007; Fox-Kemper

et al., 2008; Horvat et al., 2016). These eddies can be enhanced or

disrupted by interactions with wind currents (du Plessis et al., 2019;

Mahadevan et al., 2012; Thomas, 2005). Horizontal buoyancy

gradients also show some seasonality, characterized by two peaks

during the year, in late summer and mid-winter (Biddle and

Swart, 2020).

In the context of ongoing global warming, the Antarctic MIZ

remains a major source of uncertainty in sea ice prediction models

(Tietsche et al., 2014). The CMIP5 project (Taylor et al., 2012) has

shown that global climate models have large uncertainties in the

dynamics and distribution of Antarctic sea ice (Roach et al., 2018;

Swart and Fyfe, 2013; Turner et al., 2013). Errors in the distribution

of sea ice concentration are partly due to insufficient knowledge of

the thermodynamic processes of sea ice, including the effects of

lateral melting (Roach et al., 2018), which contributes to the

development of ocean eddies (Horvat et al., 2016). The lack of in
Frontiers in Marine Science 02
situ observations of sea ice dynamics leads to current climate

models underestimating the magnitude of lateral buoyancy

gradients of modeling sea ice. Studies investigating feedback

between submesoscale processes and sea ice reveal the

significance of accounting for these processes for correct climate

change modeling (Lu et al., 2015; Manucharyan and Thompson,

2017; Timmermans et al., 2012).

Several researchers have made attempts to detect mesoscale

eddies in the Southern Ocean subpolar zone using altimetry (Dotto

et al., 2018; Mizobata et al., 2020; Auger et al., 2022). In Auger et al.

(2023), mesoscale eddies were identified using a 25 km resolution

retracked satellite altimetry product for the Southern Ocean. One of

the major complications in eddy detection for this region is the

decrease of the Rossby radius at high latitudes, which is only 10–20

km for subpolar eddies and a few km for eddies over the continental

shelf. The eddy detection and tracking from satellite altimetry

products are significantly limited by the spatial resolution of the

conventional altimetry L4 datasets, as well as contamination from

the presence of sea ice in the MIZ area.

Synthetic aperture radar (SAR) is a universal source for

studying mesoscale and submesoscale eddies in the polar regions

(Kozlov and Atadzhanova, 2022; Kozlov et al., 2020; Bondevik,

2011; Johannessen et al., 1987). High-resolution SAR images cover a

large area, are weather and light-independent, and allow for detailed

tracking of eddy dynamics and their effects on sea ice distribution.

However, most studies are based on the visual identification of

submesoscale eddies from SAR images, which significantly slows

down the process of studying the dynamics of these phenomena.

Therefore, the development of methods that optimize the detection

of eddies from the SAR images is one of the priority tasks of

this field.

In recent years, there have been repeated attempts to implement

various machine learning algorithms for automatic eddy detection

from SAR images (Du et al., 2019; Xu et al., 2019; Zhang et al., 2020;

Xia et al., 2022; Zi et al., 2024). However, these studies are primarily

focused on eddy detection in the open ocean areas. Eddy detection

in the MIZ presents an additional challenge, due to the presence of

sea ice. Hence, there is a clear necessity for a more robust and

automated methodology for eddy detection in the MIZ.

Additionally, no studies on the application of machine learning

algorithms to eddy detection in the Antarctic MIZ have been found

in the literature to date.

The main objective of this study is to develop an improved

methodology for the automatic detection of oceanic eddies in the

MIZ of Antarctica using machine learning techniques applied to

SAR imagery. The selected study area is located in East Antarctica

(5°–75°E, 33°–71°S, Fi), encompassing the Lazarev, Riiser-Larsen,

Cosmonauts, and Commonwealth Seas. This region is known for its

active eddy generation, driven by the complex interplay of ocean

currents, atmospheric forcing, and dynamic sea ice processes.

Additionally, the region is bordered by shelf glaciers exhibiting

significant thinning trends, contributing to the instability of the

Antarctic ice sheet (Pritchard et al., 2009; Davis et al., 2005).

Building upon our previous works (Khachatrian et al., 2023;

Sandalyuk and Khachatrian, 2025), this study introduces several key
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advancements and novel contributions that further extend both the

methodology and application scope:
Fron
• New geographic focus: Unlike prior studies, this work

targets the East Antarctic MIZ (Figure 1), a region that

not only lacks extensive prior eddy detection efforts but also

plays a critical role in global ocean circulation and climate

feedback mechanisms. The unique ocean-ice-atmosphere

interactions in this zone necessitated the collection and

incorporation of new SAR datasets, significantly expanding

the model training.

• Extensive dataset collection and annotation: As part of this

study, we collected and manually labelled a new set of 234

high-resolution SAR scenes from 2018 and 2022, covering

the entire sea ice formation period. These scenes were

specifically chosen to capture seasonal variability within

the East Antarctic MIZ. All visible eddy structures were

meticulously labeled to create a high-quality ground truth

for training and validation. This manually curated dataset
tiers in Marine Science 03
represents a substantial advancement in data availability

and precision for eddy detection in polar regions.

• Updated model architecture: We employ the state-of-the-

art YOLOv11 object detection framework, which offers

enhanced accuracy, real-time inference capabilities, and

improved generalization over earlier versions. This model

was retrained and fine-tuned specifically for the Antarctic

MIZ, accounting for its unique textural and structural

features in SAR imagery.

• Integration of the SAHI Module: To better address the

challenge of detecting small-scale and partially obscured

eddy features, we incorporated the Slicing Aided Hyper

Inference (SAHI) module. SAHI enables efficient detection

at varying scales by dividing images into smaller slices,

thereby enhancing detection resolution without incurring

excessive computational costs.
These innovations collectively enable a more robust, scalable,

and accurate eddy detection pipeline tailored to the unique
FIGURE 1

Overview map of the Antarctic region with a close-up of the study area.
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environmental conditions of the Antarctic MIZ, positioning this

work as a significant methodological advancement over

previous efforts.

The paper is organized as follows: Section 2 provides details

about the datasets and methods used in this study; Section 3 focuses

on the obtained Experimental Results. The summary and

conclusion are formulated in Section 4.
2 Datasets and methods

2.1 Datasets

2.1.1 Remote sensing data
Over recent decades, synthetic aperture radar (SAR) has

become an indispensable remote sensing technology. It has

significantly improved a wide range of applications. Currently,

various SAR instruments orbit the Earth, operating across

different frequency bands, polarization configurations, and spatial

resolutions. One of SAR’s key advantages is its ability to provide

reliable data under all weather and lighting conditions. This is

particularly valuable in critical regions such as the polar areas,

where optical sensors often fail to deliver complementary

information. The combination of this capability with SAR’s high

spatial resolution makes it especially effective for detecting oceanic

phenomena, such as eddies in the marginal ice zone. However,

interpreting SAR imagery remains challenging due to its

complexity. Effective processing and analysis often require expert

knowledge and experience.

This study focuses on the Sentinel-1 mission, widely utilized for

its open-access data provided through the Copernicus Data Space

Ecosystem, part of the European Union’s Earth observation

program (ESA, 2024). The Sentinel-1 mission operates in the C-

band with a central frequency of 5.404 GHz and includes polar-

orbiting satellites Sentinel-1A, Sentinel-1B, and the recently

launched Sentinel-1C. These satellites support multiple sensing

modes tailored to various applications. For this research, we used

data acquired in the extra-wide (EW) swath mode with dual

polarization (HH and HV), a configuration commonly employed,

particularly for sea ice monitoring. With a spatial resolution of 40

meters, this mode enables the identification of eddies of varying

sizes and reveals complex details on the sea ice and ocean surface.

2.1.2 Dataset composition
To prepare the data for subsequent analysis, specifically, the

automated detection of eddies in the MIZ, a series of preprocessing

steps were applied. These included corrections for thermal and

speckle noise, along with radiometric calibration to sigma nought

values in dB, using the Sentinel Application Platform (SNAP)

developed by the European Space Agency (ESA). The dataset

consists of 234 scenes collected for 2018 and 2022, covering the

whole year of the sea ice formation period, including ice development

and melting. Additionally, the 115 scenes from MIZ of the Fram

Strait region were added to the training sample. This data was partly

collected for a case study on automatic eddy detection in the Arctic
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region Khachatrian et al. (2023) and partly for our current research

on submesoscale dynamics in the Arctic MIZ (Sandalyuk and

Khachatrian, 2025). Insertion of this data expanded our training

sample and added additional variability patterns to the model

training. Since the eddy vorticity sign changes in the Southern

Hemisphere, it also helps balance the classes.

A subset of 14 scenes was reserved for testing, while the

remaining scenes were divided into training and validation

samples to evaluate model performance. It is worth mentioning

that eddy signatures in the MIZ can vary depending on sensing

parameters, geographic location, and environmental conditions.

Hence, for the testing sample, we used only data from the

Antarctic region.

To enhance eddy detection in SAR imagery, we employed a

false-color composite approach. By combining the HV, HH, and

HH bands into a composite representation, we improved the

contrast and feature differentiation essential for identifying eddies

in the MIZ. This technique leverages the distinct scattering

properties captured by each polarization channel, accentuating

subtle variations in sea ice cover and delineating the transition

zone between open ocean and sea ice. The resulting false-color

composite highlights eddy signatures by integrating surface

roughness and scattering data, thereby facilitating more accurate

and timely detection. This enhancement is particularly valuable for

operational applications aimed at monitoring and understanding

ice dynamics in near real-time.
2.2 Methodology

2.2.1 Overall framework of YOLO model
For automatic eddy detection in SAR imagery, we utilize the

You Only Look Once (YOLO) model as a basic framework. YOLO

is a one-stage state-of-the-art object detection model widely used

for a wide range of object detection and classification tasks (Jocher

et al., 2024). It has also proved to be an effective tool for eddy

detection in SAR images in MIZ regions (Khachatrian et al., 2023),

as well as in open ocean areas (Zi et al., 2024; Xia et al., 2022). In our

work, we utilize the latest version of the YOLO model - YOLOv11,

which incorporates various enhancements and provides better

efficiency and optimized architecture in comparison with the

previous versions. The basic structure of the YOLOv11 includes

three modules: backbone, neck, and head (Jocher et al., 2024). The

backbone module extracts features from the image at multiple

scales. The neck is responsible for upsampling and concatenation

of feature maps from different levels. On the head level, the final

predictions are generated as a set of bounding boxes enclosing the

objects on the image. More information regarding the specifics of

the YOLOv11 architecture can be found at (Jocher et al., 2024).

2.2.2 Data augmentation
Data augmentation is a widely used technique in Machine

Learning, which involves artificial expansion of the training

dataset by generating new samples derived from the existing data.

The use of various data augmentation techniques introduces
frontiersin.org
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additional variability into the training dataset. Given the limited

training sample, we employ aggressive augmentation techniques

during model training, including Hue/Saturation adjustments,

Rotation, Mosaic transformations, Gaussian noise addition, and

Copy-paste augmentation. During the fine-tuning process, the

Mosaic augmentation technique has proven to be the most

effective. Therefore, we set the probability of the Mosaic operation

to 1, which means it was implemented in every training epoch.

We deliberately avoid certain widely used data augmentation

techniques, such as Flip and Transpose. The reason for that is that

the implementation of these settings will lead to changes in the

eddies’ polarity, and consequently to the switching between classes.

For example, if we flip an image containing CE horizontally or

vertically, it becomes an AE, and vice versa. To tackle this problem,

the flipping technique was implemented on the whole training

dataset prior to training. Additionally, the corresponding labels

were adjusted to align with the flipped images, and the classes were

swapped accordingly. The resulting dataset was mixed with the

main training dataset prior to model training. Flipping the training

sample solved two problems at once: it significantly expanded the

initial training dataset and balanced the two classes. Cyclonic eddies

are usually more ubiquitous in the ocean, especially in the early

stage of their life cycle (Chelton et al., 2011). This leads to the

unequal representation of eddy polarities, which can also be

observed in our dataset. We are aware that such an approach can

lead to possible overfitting. However, no signs of model overfitting

were observed after adding the flipped data to the training dataset.
Frontiers in Marine Science 05
2.2.3 Slicing aided hyper inference
During the model testing, we conducted additional experiments

with the implementation of the Slicing Aided Hyper Inference

(SAHI) module (Akyon et al., 2022). SAHI is designed to optimize

the object detection process by splitting the image into separate

overlapping tiles, running object detection on each slice, and finally

merging slices back together into the resulting image. This effective

technique allows for the enhancement of the detection of smaller

objects on the satellite image. SAHI seamlessly integrated with the

YOLOv11 model, offering easy implementation without requiring

additional resources.

2.2.4 Geographical coordinates extraction
To extract actual geographical information of the detected

eddies, we implement the affine transformation model, which

converts pixel coordinates of the bounding boxes to their

respective geographically referenced latitude and longitude

coordinates (Warmerdam, 2008). We define the geometrical eddy

center as the center of the bounding box that encloses the detected

eddy. (Figure 2a) shows the geographical locations of the eddy

centers, which were manually labeled for model training

and validation.

Additionally, we compute the eddy spatial scale (Figure 2b).

Following the assumption that generally eddies have an elliptical

shape (Chen et al., 2019; Bashmachnikov et al., 2020), we define the

eddy scale as an average of the lengths of the major and minor axes,

which in our case corresponds to the average of the sum of the
FIGURE 2

(a) Geographical position of the eddies acquired for the training and validation dataset; (b) Histogram distributions of the number of eddies and their
scales; (c) The example of anticyclonic eddy center (red dot), obtained from the geographical coordinates extraction module.
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height and width of the eddy bounding box. The utilized approach

for eddy spatial scale definition has been previously implemented in

several studies (Kozlov et al., 2019b, a; Kozlov and Atadzhanova,

2022; Zi et al., 2024). Eddy spatial scales range from around 2.5 to

85 km. (Figure 2b). The cyclones have a peak in the scale range of

10–15 km. At this scale, cyclones strongly dominate over

anticyclones. However, starting from the scale values above 25

km, anticyclones are predominant.

2.2.5 Evaluation Metrics
We assess the YOLO model’s performance using standard

detection metrics: precision, recall, and mean average precision

(mAP). The precision and recall metrics are defined according to

the Equations 1, 2 where TP, FP, and FN are the number of true

positive, false positive, and false negative predictions, respectively.

TP is a correctly identified eddy, FP occur when non-eddy features

are misclassified as eddies, while FN represent missed eddies.

Precision reflects the ratio of true positives to all eddy predictions,

whereas recall indicates the model’s ability to capture all genuine

eddy occurrences in the data.

 Precision  =
TP

TP + FP
(1)

 Recall  =
TP

TP + FN
(2)

The AP (Equation 3) andmAP (Equation 4) indicate an optimal

trade-off between precision and recall:

AP =
Z 1

0
P(R)dR (3)
Frontiers in Marine Science 06
mAP = o
n
i=1APi
n

(4)

where R is recall, P(R) is a function of recall, n is the number of

classes being averaged. P(R) represents precision as a function of

recall. The mAP (Equation 4) is usually calculated for a specific

confidence level, which in our case is defined by the Intersection

over Union (IoU) value. The IoU measures the level of overlap

between the predicted and the ground-truth bounding boxes. The

IoU thresholds of 0.5 (mAP0.5) and threshold range of 0.5-0.95

(mAP0.5−0.95) were employed for model evaluation. The main goal

during the model training and tuning was the minimization of the

number of false positive detections. This approach is preferable to

alternatives that maximize recall at the expense of precision, as it

avoids false detections of filamentary structures and other eddy-like

features that could compromise quantitative analyses. Additionally,

the visual inspection of every detection result for every image from

the validation and test datasets was conducted.
3 Experimental results

3.1 Validation sample evaluation

Figure 3 displays examples of the YOLOv11 model’s outputs for

validation samples taken from the same region, captured on February

01, 2018, and February 10, 2018. In these images, bounding boxes

denote detected eddy signatures categorized as blue for cyclonic eddies,

red for anticyclonic eddies (blue and red correspond to initially labeled

and detected signatures), and yellow for eddies that were either

misclassified or not initially labeled but detected by the algorithm.
FIGURE 3

Examples of the YOLOv11 model’s outputs showing detected eddies within the MIZ from validation samples acquired on (a) February 01, 2018, and
(b) February 10, 2018. Rectangles indicate identified eddy signatures: blue for cyclonic eddies that were both initially labeled and detected by the
algorithm, red for anticyclonic eddies that were both initially labeled and detected by the algorithm, and yellow for eddies that were either
misclassified or not initially labeled but detected by the algorithm.
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The YOLOv11 model demonstrates strong performance in

detecting submesoscale and mesoscale eddies within the MIZ,

effectively identifying both cyclonic and anticyclonic features. In

the first image (a), the model successfully detected an additional

cyclonic eddy that was not initially labeled. This newly identified

eddy appears accurate upon inspection and is notable for being in

an early developmental stage compared to the more established

eddies present in the scene. This highlights the model’s capability to

recognize smaller-scale or less-developed features, which might be

overlooked during manual labeling.

In contrast, the second image (b) shows a case where the

algorithm missed a cyclonic eddy signature present in the initial

labels. Despite this, the majority of the detected eddy signatures

align with their respective categories, underscoring the model’s

overall accuracy and consistency in identifying mesoscale eddies.

The side-by-side comparison of validation scenes illustrates both

the strengths and limitations of the YOLOv11 model, offering

valuable insights into its ability to capture dynamic eddy behavior

over time and its sensitivity to changes in eddy characteristics.
3.2 Test sample evaluation

Figure 4 displays the YOLOv11 model’s outputs, illustrating

eddy detection within the study region and providing a compelling

demonstration of its capability to identify and classify eddies in

diverse sea ice conditions. Each test image from December 23,

February 01, and April 10, 2022, showcases distinct scenarios with

varying levels of sea ice concentration and eddy dynamics.
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Figure 4a highlights the very edge of the MIZ, where sea ice

concentration is notably high and observed eddies are densely

packed in the ice field. The detected eddies in this region are in

their early developmental stages but remain distinct and

identifiable. The algorithm successfully identifies most eddies,

demonstrating its robustness even in challenging high-

concentration ice zones. However, one potential eddy on the

right, which appears similar to the detected instances, is not

identified. This feature might represent an eddy in an even earlier

developmental stage, which has not yet formed a fully circular

pattern and thereby explains the exclusion from detection by

the model.

Figure 4b illustrates a scenario with reduced sea ice

concentration compared to (a), revealing a mix of large

anticyclonic eddies, approximately 50 km in diameter, and

smaller cyclonic eddies. The YOLOv11 model performs admirably

in this environment, correctly identifying all eddies and their

polarities without misclassification. This scene underscores the

algorithm’s precision in detecting eddy features across varying

scales and contrasts, even in less congested ice fields.

Nevertheless, the overall performance remains highly effective

and reliable.

Figure 4c demonstrates a chaotic, smaller-scale eddy dynamic

within the MIZ, capturing the intricate and turbulent nature of the

environment. This complexity is emphasized in the zoomed-in

views provided in Figures 4d, e, which focus on the finer-scale

eddies present within the region. Despite the highly chaotic

behavior exhibited in this dataset, the model continues to

perform reliably, accurately detecting and distinguishing between
FIGURE 4

Examples of the YOLOv11 model’s outputs showing detected eddies within the MIZ from test data acquired on (a) December 23, (b) February 01,
and (c) April 10, 2022. Rectangles indicate identified eddy signatures (blue for cyclonic, red for anticyclonic). Images (d, e) provide zoomed-in views
of smaller-scale eddy dynamics in the MIZ, which exhibit highly chaotic behavior, as highlighted in image (c). Circles refer to the approximate eddy
centers.
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cyclonic and anticyclonic eddies. These results demonstrate the

model’s resilience and adaptability to challenging conditions.

Combined, these three images showcase the YOLOv11 model’s

capacity to analyze and interpret exceptionally different sea ice

scenarios. From high-concentration zones with dense sea ice fields

to chaotic dynamics, the algorithm effectively identifies eddies and

their polarities, proving its robustness across a range of conditions.

While minor challenges remain, the overall performance indicates

that the model is a valuable tool for studying eddy dynamics in the

MIZ. The final metrics obtained during the model testing are

presented in Table 1.
3.3 Enhancing eddy detection with SAHI

Figure 5 illustrates the outputs of the YOLOv11 model with the

implementation of the SAHI module, showing detected eddies

within the MIZ, based on test data acquired on December 23,

February 01, and April 10, 2022.

It should be noted that the SAHI module has two basic settings:

the height and width of the slice, and the overlap height and width

ratio. Variations of these settings can significantly affect the final

output, either decreasing the accuracy of eddy detection or leading

to excessive detection of small features. Both scenarios result in a

decline in overall metrics. After conducting a series of experimental

runs, we identified the optimal combination of SAHI settings, which

optimizes the detection of the small mesoscale eddies in the MIZ

without compromising the overall quality. The updated results with

SAHI demonstrate its potential to enhance object detection in

complex and dynamic environments, as well as improve the

detection of smaller-scale eddies, with noteworthy observations

for each test case.

For the data acquired on December 23, 2022, there were

minimal changes compared to the results without SAHI. The

addition of one previously missed anticyclonic eddy highlighted

an improvement in sensitivity. However, a limitation of the

algorithm emerged when one eddy was simultaneously detected

as both cyclonic and anticyclonic, revealing a potential conflict or

ambiguity in detection. Overall, SAHI maintained the accuracy of

the original model while marginally improving its ability to identify

smaller features.
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In the case of February 01, 2022, the majority of eddies detected

matched those identified without the use of SAHI. Importantly,

SAHI enabled the detection of smaller-scale eddies that were missed

in the previous iteration, confirming its utility for identifying finer

details. Similar to the December 23 results, one eddy was

misclassified as both cyclonic and anticyclonic, indicating the

need for better handling of overlapping or ambiguous features

within the algorithm.

The results for April 10, 2022, demonstrated significant

improvements with SAHI. The model detected more eddies in the

highly dynamic and chaotic eddy field, underscoring SAHI’s ability

to resolve complex spatial features. However, two cyclonic eddies

were incorrectly identified on land. This misclassification points to a

lack of geographical awareness in the model. One of the key features

of the study region is the close proximity of the Antarctic ice sheet,

which is present in almost every scene. In some cases, the glaciers

exhibit circular patterns that can be misidentified by the model as

eddies. This issue is illustrated in Figure 4c at the upper right corner

(purple rectangles), where two marked false detections over the

glacier/land can be seen. Nonetheless, this limitation is not

critical, as it can be effectively addressed by incorporating a land

mask. Despite this issue, the ability to detect additional instances in

such a dynamic environment reflects the considerable potential

of SAHI.

After SAHI implementation the Precision and mAP0.5 values

increased by the ~ 25% (Table 1), with the mAP0.5–0.95 increased by

50% in comparision with the baseline YOLOv11 model. At the same

time, the overall Recall value slightly decreased after the inclusion

the SAHI in the detection process. The observed recall reduction

likely occurs because some eddies located near slice overlap regions

are either undetected or truncated during the slicing process.

In conclusion, the integration of SAHI with YOLOv11

demonstrates its capability to improve object detection by

capturing smaller and more complex features, particularly in

dynamic environments. SAHI enhances the sensitivity of the

model to the small submesoscale structures while maintaining

accuracy in simpler cases. However, it also highlights the need for

refinement to address issues such as conflicting classifications and

misdetections on land. The performance improvements achieved

with SAHI suggest it has significant potential to enhance object

detection workflows, especially when paired with supplementary

modules like geographical masks. However, we did not apply a land

mask in this study, as we aimed to clearly illustrate both the

advantages and limitations of SAHI. This currently represents a

limitation that could be addressed in future work.
4 Summary and conclusion

This work presents the first attempt to implement a machine

learning approach for automatic eddy identification in the Antarctic

MIZ region, as well as the first assessment of eddy dynamics using

SAR images in this area. While the present study focuses on the

Antarctic, the methodology builds upon our previous developments

and applications in the Arctic MIZ (Khachatrian et al., 2023;
TABLE 1 Overview of performance evaluation metrics for multi-
class model.

Model Class Precision Recall mAP0.5
mAP0.5-

0.95

YOLOv11

all 0.60 0.49 0.49 0.20

CE 0.62 0.59 0.54 0.22

AE 0.58 0.39 0.44 0.18

YOLOv11
+SAHI

all 0.80 0.43 0.63 0.40

CE 0.83 0.44 0.66 0.44

AE 0.78 0.42 0.60 0.35
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Sandalyuk and Khachatrian, 2025), demonstrating its adaptability

across polar environments. These prior studies highlight the

robustness of YOLO-based eddy detection from Sentinel-1 SAR

data, providing a solid foundation for extending the approach to

different polar regions and for potential integration into operational

sea ice and ocean monitoring systems.

The Antarctic MIZ is a region characterized by the highly

intense dynamical processes that have a major influence on the

atmosphere–ice-ocean interactions, heat and salt transport, and

biological productivity. Moreover, this region remains a major

source of uncertainty in eddy-resolving models, due to the sparse

in situ measurements, presence of sea ice, and, specifically, limited

data on the eddy dynamics (Tietsche et al., 2014). In our study, we

took the first steps toward developing a robust tool for obtaining

high-quality data on eddy characteristics in this region.

During the data collection and image labeling for training and

validating the model, we collected extensive information on the

locations and sizes of mesoscale and submesoscale eddies in the

MIZ of the study area. As no prior research has been done in this

area, these findings represent valuable new insights. We can observe

a dense, wide band of eddy detections, resulting from the seasonal

and inter-annual variability of the sea ice edge (Figure 2). It is

evident from the experimental results that the study region presents

a hot spot of MIZ eddy generation. The possible eddy generation

mechanism and eddy influence on the location of the ice edge will

be the main focus of future research.

Our research demonstrates the efficiency of YOLOv11, a state-

of-the-art deep learning model, in detecting and classifying oceanic
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eddies within the Antarctic MIZ using high-resolution SAR

imagery. By finetuning YOLOv11 on training and validation

datasets, we successfully identified both submesoscale and

mesoscale eddies across diverse sea ice conditions, achieving

robust performance in distinguishing cyclonic and anticyclonic

eddies. These advancements represent a vital step in the

automated study of Antarctic oceanographic processes, an area

that has remained largely unexplored compared to the more

extensive efforts conducted in the Arctic.

The experimental results highlight the adaptability and

accuracy of the YOLOv11 model. It performed reliably across

varying ice concentrations and eddy dynamics, from high-

concentration zones to chaotic, small-scale eddy fields. While the

base model demonstrated considerable strength, the integration of

the SAHI module further improved its performance, particularly in

detecting smaller and more complex features. Notably, SAHI

enhanced sensitivity and accuracy in dynamic environments,

revealing additional eddies and capturing finer-scale dynamics

that were previously overlooked.

Despite the robust performance, certain challenges were

identified. A recurring issue was the occasional misclassification

of eddies as both cyclonic and anticyclonic, reflecting ambiguities in

detection under specific conditions. Additionally, the

misidentification of eddies on land during SAHI-enabled

inference underscores the need for the potential integration of

additional features, such as the incorporation of a land mask.

These limitations highlight opportunities for future refinement of

the model architecture and supporting workflows.
FIGURE 5

Examples of YOLOv11 model outputs using the SAHI module to detect eddies within the MIZ from test data acquired on (a) December 23, (b) February
01, and (c) April 10, 2022. Images (d, e) provide zoomed-in views of smaller-scale eddy dynamics in the MIZ. Blue and red rectangles correspond to
cyclonic and anticyclonic eddies detected by YOLOv11 alone, as shown in Figure 4. Yellow rectangles indicate additional valid detections made by the
SAHI module that were missed previously, while purple rectangles represent false positives introduced by SAHI.
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The findings of this study underline the potential of deep learning

models like YOLOv11, particularly when integrated with modules

such as SAHI, for advancing polar oceanography. By enabling more

detailed and accurate analysis of eddy dynamics in the Antarctic MIZ,

this research lays the groundwork for compiling comprehensive

statistical datasets and improving our understanding of polar

climate systems. Future efforts could focus on addressing the

identified limitations, exploring complementary datasets, and

enhancing model robustness to ensure consistent performance

across a broader range of environmental scenarios.

Overall, this work bridges a critical gap in Antarctic eddy research,

providing a scalable and automated solution for studying these vital

oceanographic features. The success of the YOLOv11 model and its

integration with SAHI points to promising directions for further

research, offering a pathway to more comprehensive and efficient

studies of dynamic polar systems. As a potential future step, the

authors intend to make publicly available the training dataset and

YOLOv11 configuration after obtaining data on inter-annual variability

and statistics on eddy occurrences for the study region.
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