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Habitat heterogeneity is known to influence faunal community structure, but its

influence on deep-sea benthic communities remains understudied, particularly

for polymetallic nodule environments in abyssal waters. As nodules are currently

of interest for mining, understanding the potential impact of this disturbance on

habitat heterogeneity, and the subsequent effect on faunal communities,

becomes critical for developing environmental management plans. Although

some aspects of the influence of habitat heterogeneity on the nodule-associated

fauna have been studied, the influence on multiple size components of the

benthic community across varying spatial scales has not yet been fully assessed,

and the current metrics by which habitat heterogeneity is measured may be

insufficient. This review synthesizes existing research regarding habitat

heterogeneity, the influence of disturbance on habitat heterogeneity, and the

influence of this heterogeneity onmetazoan fauna (megafauna, macrofauna, and

meiofauna) in polymetallic nodule environments across spatial scales. Current

gaps in knowledge and the implications of this knowledge for the management

of proposed deep-seabed mining are also discussed.
KEYWORDS

habitat heterogeneity, polymetallic nodules, deep sea, deep-sea mining, community
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1 Introduction

Habitat heterogeneity is generally defined as variety in habitat types and has several

synonymous terms, including habitat diversity, habitat complexity, and habitat structure

(Carvalho and Barros, 2017). Extensive research has examined the influence of habitat

heterogeneity on the structure of communities (e.g., Watson, 1964; Bazzaz, 1975; Jumars,
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1975a, Jumars, 1975b; Heck and Wetstone, 1977; Abele and

Walters, 1979; Rigby and Lawton, 1981; Sardà et al., 1994; Kaiser

et al., 1999; Tews et al., 2004; Bulling et al., 2008; McClain and

Barry, 2010; Godbold et al., 2011; Zeppilli et al., 2016), including

ecological succession (Cordes et al., 2010; Meyer et al., 2016; Aguzzi

et al., 2018), and community resilience to disturbance (Kaiser et al.,

1999; Boyero, 2003; Rees et al., 2009; Godbold et al., 2011; Clark

et al., 2016; Sweetman et al., 2017). However, due to its

inaccessibility, much of the deep sea (> 200 m water depth)

remains understudied and therefore the influence of habitat

heterogeneity on benthic communities in this environment

remains poorly understood (Baco et al., 2016; Amon et al., 2022;

Radziejewska et al., 2022). This lack of knowledge is particularly

true for polymetallic nodule environments, which are commonly

located in the most remote parts of the ocean (typically at abyssal

depths, 3000–5000 m deep; Simon-Lledó et al., 2019b; Amon et al.,

2022; Radziejewska et al., 2022).

In the deep sea, habitat heterogeneity comes in many forms, and

varies considerably across spatial and temporal scales (Figure 1). On

large (i.e., regional) scales, habitat heterogeneity generally takes the

form of broad-scale environmental variability. For example, depth

gradients and proximity to shore influence the presence of

physiological stressors (e.g., pressure, salinity) and critical

resources (e.g., oxygen, food, calcium carbonate, etc.), which

together exert a considerable influence on the diversity,

composition, and abundance of deep-sea faunal communities

over large spatial scales (Sanders and Hessler, 1969; Thiel, 1979;

Etter and Grassle, 1992; Rex et al., 2006; Rex and Etter, 2010; Priede

et al., 2013). Temporal scales may also influence deep-sea habitat

heterogeneity through seasonal (Billett et al., 2001; Ruhl and Smith,

2004; Moran et al., 2005; Sun et al., 2006) or climatic cycles (e.g.,

climate oscillations; Billett et al., 2001; Levin et al., 2001; Ruhl and

Smith, 2004; Arntz et al., 2006; Hooff and Peterson, 2006) that

influence the flux of surface-derived carbon to the seafloor.

However, the extent of the relationship between temporal cycles

and benthic community structure remains ambiguous (Thurston

et al., 1998; Radziejewska, 2002; Gambi et al., 2014; Woolley et al.,

2016), particularly in remote and understudied abyssal

environments (Lutz et al., 2007; Kahn et al., 2012). At

intermediate scales, habitat heterogeneity in the form of habitat

type (e.g., methane seep, seamounts) and substrate type (e.g., soft or

hard substrate, biogenic structures) remains a significant factor

influencing community structure (Levin et al., 1986; Cordes et al.,

2010; Danovaro et al., 2014; Meyer et al., 2016; Gooday et al., 2021;

Kazanidis et al., 2021), with higher heterogeneity generally

correlated with higher diversity and higher abundance of fauna

(Samadi et al., 2006; Levin et al., 2010; Huvenne et al., 2011; Zeppilli

et al., 2011, Zeppilli et al., 2012; Robert et al., 2015; Lacharité and

Metaxas, 2017). However, variation in environmental variables

(e.g., currents/flows, hypoxic conditions) can overshadow these

effects at certain locations (Gooday et al., 2010; Pereira et al.,

2022). At intermediate to small scales, food flux can enhance

habitat heterogeneity through the creation of food patches, which

can be characterized by low (e.g., diffuse patches of POC flux or
Frontiers in Marine Science 02
marine snow; McClain et al., 2011; Danovaro et al., 2013; Gambi

et al., 2014; Lacharité and Metaxas, 2017) or high organic carbon

enrichment (e.g., an organic fall; Lundsten et al., 2010; Laurent et al.,

2013; Smith et al., 2015; Silva et al., 2021). Low-enrichment food

patches often support higher faunal diversity (McClain et al., 2011;

Danovaro et al., 2013; Lacharité and Metaxas, 2017), while high-

enrichment food patches (i.e., organic falls) consistently increase

faunal abundance (Smith et al., 2015; Webb et al., 2017; Young et al.,

2022). Although these high-enrichment patches often also support

higher species richness, dominance by organic fall specialists

generally results in lower evenness than background communities

(Lundsten et al., 2010; Cunha et al., 2013; Young et al., 2022). At

smaller spatial scales, the influence of substrate heterogeneity tends

to be stronger than the influence of broader scale environmental

heterogeneity. For example, across ocean basins, environmental

conditions, and broader habitat type, high sediment grain size

diversity consistently correlates with higher infauna species

diversity in the deep sea (Etter and Grassle, 1992; Parry et al.,

2003; Rex and Etter, 2010). Habitat heterogeneity can also be

influenced by geological factors in the deep sea, which can

operate at a variety of scales, including mineral composition (e.g.,

heavy metals or minerals grains decrease faunal diversity, as in

Cerrano et al., 1999), seafloor bathymetry (e.g., heterogenous

seafloor morphology supports higher faunal abundance or

diversity as in Durden et al., 2015 and Zeppilli et al., 2016,

respectively), and hydrodynamics (e.g., structures that alter

hydrodynamics influence community composition, as in Levin

et al., 1986; Zajac et al., 2000; Alt et al., 2013).

Habitat heterogeneity is also frequently influenced by

disturbance, which creates habitat patches that may increase or

decrease local habitat heterogeneity depending on the size and scale

of the disturbance and the spatial scale of focus (Grassle and

Morse-Porteous, 1987; Gallucci et al., 2008; Willig and Presley,

2018). The kinds of natural disturbance influencing habitat

heterogeneity in the deep ocean can range from small

disturbances created by burrowing fauna or biogenic structures

(e.g., burrows, tests, etc.; Kukert and Smith, 1992; Levin et al., 2003;

Jones et al., 2007) to strong bottom currents (Levin et al., 1994;

Harris, 2014; Liao et al., 2017; Tung et al., 2023) to underwater

landslides and turbidity currents (Glover et al., 2010; Harris, 2014;

Heijnen et al., 2022; Bigham et al., 2023) to episodic influxes of food

from the surface (e.g., organic falls, strong seasonal pulses of

phytodetritus; Thurston et al., 1998; Smith et al., 2008, Smith

et al., 2015). Often, one of these disturbances (e.g., turbidity

currents) can lead to another (e.g., food flux; Harris, 2014;

Heijnen et al., 2022). The smallest of these disturbances (e.g.,

bioturbation) increase small-scale patchiness and local habitat

heterogeneity to promote overall species diversity for larger faunal

size classes (Jumars, 1975b; Thistle, 1979; Levin et al., 1986;

McClain et al., 2011). However, meiofauna bioturbation has been

observed to homogenize surface sediments in some cases, which

may reduce surface patchiness (Cullen, 1973). Larger disturbances

that significantly alter baseline habitat structure or food availability

(e.g., an underwater landslide, a whale or wood fall), can create
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significant patchiness that results in colonization by faunal

communities in a series of distinct successional stages (Bienhold

et al., 2013; Harris, 2014; Smith et al., 2015).

The deep sea is also subjected to disturbance from human

activities (Ramirez-Llodra et al., 2011; Clark et al., 2016; Chiba et al.,

2018; Jamieson et al., 2022; Santibañez-Aguascalientes et al., 2023).

This includes large quantities of pollution and litter (Tyler, 2003a;

Ramirez-Llodra et al., 2011; Chiba et al., 2018; Abel et al., 2023),

nuclear and chemical waste disposal (Looser et al., 2000; Tyler,

2003a; Kivenson et al., 2019), sunken infrastructure (Tyler, 2003a;

Macreadie et al., 2011; Ramirez-Llodra et al., 2011), drilling and

blasting (Coleman and Koenig, 2010; Montagna et al., 2013; Fisher

et al., 2014; Nakajima et al., 2015; Gates et al., 2017), resource

extraction (Roberts, 2002; Benn et al., 2010; Coleman and Koenig,

2010; Ramirez-Llodra et al., 2011; Bakke et al., 2013; Clark et al.,

2016), and disturbance resulting from climate change (Company

et al., 2008; Levin and Le Bris, 2015; Sweetman et al., 2017). In the

future, the deep sea at abyssal depths (3000–6000 m) is likely to be

subjected to disturbance from deep-seabed mining (Amon et al.,

2022; Leduc et al., 2024a; Pickens et al., 2024). Proposed forms of

mining would alter habitat heterogeneity by removing hard

substrates (e.g., polymetallic nodules) and removing and mixing

the top layers of sediment (Amon et al., 2016; Vanreusel et al., 2016;

Simon-Lledó et al., 2019c; Uhlenkott et al., 2023b; Pickens et al.,

2024). As a result, consideration of the effect of habitat
Frontiers in Marine Science 03
heterogeneity on benthic faunal communities of these

environments has become critical for developing management

and conservation plans for regions targeted for mining. Most

recent research on polymetallic nodule ecosystems has focused on

establishing ecological baselines and cataloguing ecological

communities in mining license areas in the Clarion-Clipperton

Zone (CCZ) in the Central Pacific Ocean, with the goal of informing

the management of deep-seabed mining under the jurisdiction of

the International Seabed Authority (Durden et al., 2015; Amon

et al., 2016; Vanreusel et al., 2016; Gooday et al., 2017; Simon-Lledó

et al., 2019c; Weaver and Billett, 2019; Washburn et al., 2021a;

Kaiser et al., 2023). Though earlier research focused on the impact

of potential mining disturbances on nodule communities (Bluhm,

1994; Bluhm et al., 1995; Borowski and Thiel, 1998; Tkatchenko and

Radziejewska, 1998; Fukushima et al., 2000; Radziejewska, 2002;

Ingole et al., 2005) and on the physical environment (Jankowski

et al., 1996; Koschinsky et al., 2001; Sharma et al., 2001; Khadge,

2005; Khripounoff et al., 2006), the potential alteration of habitat

heterogeneity from mining has only recently begun to attract

research interest (Simon-Lledó et al., 2019b; Cuvelier et al., 2020;

Amon et al., 2022; Uhlenkott et al., 2023b).

Previous reviews that have included a focus on the influence of

habitat heterogeneity on one or more size classes of benthic

communities in the deep sea have considered continental margins

(Levin and Sibuet, 2012), reducing ecosystems (Bernardino et al.,
FIGURE 1

Summary of factors influencing habitat heterogeneity in the deep sea, according to the spatial scale of focus. Arrows indicate direction of increasing
scale and delineate different types of factors. Dotted line indicates interaction or overlap between types of factors. Modified from Rosli et al., 2017.
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2012), and submarine canyons (De Leo and Puig, 2018). Although

some reviews have explored abyssal polymetallic nodule

ecosystems, these have focused solely on the CCZ (e.g., Gooday

et al., 2021; Kaiser et al., 2023) or on disturbance experiments (e.g.,

Jones et al., 2017) without a dedicated focus on habitat

heterogeneity, or have been part of a larger comprehensive review

across habitats (e.g., Vanreusel et al., 2010).

This review covers three main size classes of benthic metazoans:

megafauna, macrofauna, and meiofauna. Megafauna has been

defined variably throughout the scientific literature, but generally

refers to “animals readily visible in photographs” (Grassle et al.,

1975) or collected on mesh sizes of 1–3 cm (as in Haedrich and

Rowe, 1977), and are generally easy to see with the naked eye (e.g.,

holothuroids, ophiuroids, decapods). Macrofauna is the next-largest

faunal size class, and generally refers to fauna collected in the deep

sea on a 300-micron screen, though some European research

institutes use a 250-micron screen with similar results (Gage

et al., 2002). Macrofauna may be just visible, but not identifiable,

with the naked eye (e.g., polychaetes, amphipods, tanaids).

Meiofauna is the smallest faunal size class relevant to this review

and is dominated by nematodes, but also includes other

invertebrates such as harpacticoid copepods, tardigrades, and

ostracods (Hakenkamp and Palmer, 2000). Sieve sizes used to

separate meiofauna vary within a range of 20–64 microns, with

20–45 microns considered best practice in the deep sea (Leduc et al.,

2014; Jones et al., 2017; Neira et al., 2018; dos Santos et al., 2020;

Uhlenkott et al., 2020).

This review evaluates existing knowledge about habitat

heterogeneity, the influence of disturbance on habitat

heterogeneity, and the influence of this heterogeneity on benthic

metazoan fauna in polymetallic nodule environments across faunal

size classes and spatial scales. Current gaps in knowledge and the

implications of this knowledge for the management of proposed

deep-seabed mining are also discussed.
2 Polymetallic nodules

Polymetallic nodules, also referred to as manganese nodules, are

small rocks found on the ocean floor in various parts of the world's

oceans. While they commonly measure between 3 and 10

centimeters in diameter and exhibit a spherical or oblong shape

(Kuhn et al., 2020), larger nodules exceeding 20 centimeters and

displaying irregular shapes or structures are not uncommon

(Joseph, 2017). Nodules originate from substrates such as rocks

or shark's teeth, onto which minerals gradually precipitate and bind

over geological timescales, growing at a rate of a few millimeters per

million years (Cronan, 2019). Though nodules can occur at other

depths, they are most abundant in the abyssal ocean basins of the

Pacific, Indian, and Atlantic oceans between 4000–6500 m

(Figure 2). Economically viable nodules are primarily iron or

manganese-based (approximately 6 to 30%) and contain smaller

concentrations of valuable minerals such as nickel, cobalt, copper,

and rare earth elements (0.25-3%; Joseph, 2017).
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As a geological feature, polymetallic nodules have been known

to science since the Challenger Expedition of 1873-1876 (Murray

and Renard, 1891). While this and other early oceanographic

expeditions revealed a fair amount about the chemistry and

geology of polymetallic nodules (Summerhayes, 1967; Glasby,

1976; Kerr, 1984), little was known about their associated fauna

until technological developments facilitated better exploration of

abyssal depths in the late 1900s (Danovaro et al., 2014). Recent

studies into polymetallic nodule ecosystems—particularly those in

proposed mining areas (e.g., the CCZ)—have provided greater

knowledge about faunal communities associated with polymetallic

nodules in the central Pacific (e.g., Simon-Lledó et al., 2020;

Uhlenkott et al., 2021, Uhlenkott et al., 2023a; Washburn et al.,

2021b). However, these environments remain understudied,

particularly outside of the CCZ, and baselines for their associated

communities are still being established (e.g., Simon-Lledó et al.,

2019c, Simon-Lledó et al., 2019d).
3 Metrics of habitat heterogeneity
used to describe polymetallic nodule
environments

Though few studies focus explicitly on habitat heterogeneity,

most studies in nodule environments include metrics that

characterize heterogeneity in the form of environmental factors

(standard for most ecological studies) and/or nodule

characteristics (relevant both for its ecological influence and its

focus for mining interests). At the smallest spatial scales, habitat

heterogeneity in nodule environments is generally measured in

the form of grain size heterogeneity for nearby sediments (Mewes

et al., 2014; De Smet et al., 2017; Lefaible et al., 2023), or—in some

cases—by nodule type or “facies” (a qualitative description of

nodule surface texture and some aspects of nodule density or

seafloor topography; Wright et al., 2005; Veillette et al., 2007a;

Fleming et al., 2025). Intermediate spatial scales of heterogeneity

are generally focused on nodule abundance or percent cover

(Mewes et al., 2014; De Smet et al., 2017; Simon-Lledó et al.,

2019c, Simon-Lledó et al., 2020; Durden et al., 2021), and may

include other aspects of seafloor heterogeneity such as bottom

topography (Simon-Lledó et al., 2019b, Simon-Lledó et al., 2020;

Durden et al., 2021) or the occurrence of non-nodule hard

substrates (Mejıá-Saenz et al., 2023; Uhlenkott et al., 2023b). At

larger spatial scales, heterogeneity is generally measured based on

study area and its associated environmental conditions (e.g.,

depth, POC flux, etc.; Jones et al., 2021; Washburn et al.,

2021a). However, since most studies in nodule environments

focus on one or two spatial scales, the most prevalent metrics

used to characterize substrate heterogeneity are nodule abundance

(kg/m2 or nodules/m2; e.g., Amon et al., 2016) or nodule cover

(percent cover; e.g., Simon-Lledó et al., 2019b). Though other

metrics have been used across a range of studies (e.g., nodule size,

facies, volume), it is common for studies to use just one metric

(typically nodule cover), which can cause the other aspects of
frontiersin.o
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habitat heterogeneity (e.g., nodule distribution, nodule patch size,

bo t tom topography , s ed iment he te rogene i ty ) to be

underestimated or overlooked.
4 Habitat heterogeneity in
polymetallic nodule environments

Habitat heterogeneity in polymetallic nodule environments

depends on the spatial scale of focus (Figure 3). The smallest scale

(millimeters to centimeters) depends on variability of the nodule
Frontiers in Marine Science 05
itself, such as the presence or absence thereof, and—if present—

differences in their minerality, rugosity, size, and shape, as well as

the surrounding sediments (e.g., vertical resource gradients and

grain size heterogeneity). At the patch-scale (centimeters to meters)

heterogeneity is driven by differences in nodule density and

arrangement. At the field-scale (10s to 1000s of meters),

heterogeneity across a nodule field may take the form of nodule

patch density and arrangement, differences in bottom topography,

or in the occurrence of non-nodule hard substrates such as rock

outcrops or seamounts. Finally, at the regional scale (10s to 1000s of

kilometers), heterogeneity generally takes the form of broad
FIGURE 2

(A) Map of polymetallic nodule environments of interest for mining (outlined in blue). Inset figure shows a whole polymetallic nodule and cross-
section (1 cm scale bar). Map from World Ocean Review; inset photos from Earth Sciences New Zealand. (B) Map of the exploration and reserved
areas for polymetallic nodules in the Clarion-Clipperton Zone. Map by the International Seabed Authority (https://www.isa.org.jm/).
frontiersin.org

https://www.isa.org.jm/
https://doi.org/10.3389/fmars.2025.1650660
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ullmann et al. 10.3389/fmars.2025.1650660
environmental differences (e.g., resource availability such as organic

matter flux, geomorphological structures, geological variability).

Due to the different “windows of perception” of different faunal

size classes (Kotliar and Wiens, 1990; Attrill et al., 2000), taxa

naturally interact with these spatial scales differently (Figure 3). As a

result, a deeper, more comprehensive assessment of habitat

heterogeneity across these spatial scales is critical for

understanding nodule faunal community structure and resilience

to potential disturbance from seabed mining.
4.1 Habitat heterogeneity among nodules
and within sediments

At small spatial scales, there is substantial habitat heterogeneity

within sediments, in both nodule-free and nodule-rich areas.

Sediment depth is one of the most important drivers of infaunal

communities (particularly meiofauna) due to heterogeneity in

resource availability (namely organic matter content). As organic

matter content decreases with depth, infaunal abundance often

mirrors this decline, and community composition shifts (Thiel,

1983; Soetaert et al., 2002; Ingels and Vanreusel, 2013; Rosli et al.,

2018). While infaunal abundance is generally higher at shallower

sediment depths, peaks may occur in subsurface sediment layers

(e.g., 1–2 or 2–3 cm deep) due to environmental conditions (e.g.,

strong currents, coarser sediments; Zeppilli et al., 2012, Zeppilli

et al., 2014). In nodule-free areas, the effect of the vertical gradient

through sediment layers is relatively consistent across habitat type

(Ingels and Vanreusel, 2013; Rosli et al., 2018). In nodule

environments, it remains unknown whether nodules may block

the penetration of organic matter into the sediments beneath them,
Frontiers in Marine Science 06
leading to the concentration of organic matter in exposed sediments

between the nodule, creating coarser sediments through nodule

fragments, or altering the flux of other nutrients (e.g., oxygen).

However, it is possible that their presence in otherwise sediment-

dominated environments may influence sediment depth-related

patterns in community structure by contributing to greater

resource patchiness.

Among nodules within a patch, variations in habitat

heterogeneity are largely structural and geochemical. Polymetallic

nodules can vary in size, shape, and composition (Joseph, 2017;

Mizell et al., 2022). This heterogeneity not only influences the size of

the hard substrate habitat provided by nodules (e.g., as an

attachment surface for mega- and/or macrofaunal sessile fauna;

Meyer et al., 2016; Simon-Lledó et al., 2019b), but also the rugosity

(roughness) of the nodule. Higher rugosity nodules can provide

additional habitat beyond acting as an attachment surface, as their

pores and crevices often support distinct faunal communities

dominated by smaller-sized meiofauna (namely small nematodes;

Thiel et al., 1993; Singh et al., 2019). Though nodule crevices tend to

be small, and therefore support fewer individuals and species than

nearby sediments (Thiel et al., 1993; Singh et al., 2019; Pape et al.,

2021), this heterogeneity within the nodule could have implications

for nodule-specific faunal communities. Nodule-to-nodule faunal

community comparisons that focus on this small-scale

heterogeneity are not common, but a positive relationship

between nodule dimensions and crevice meiofaunal abundance

has been observed (Pape et al., 2021). Based on observations of

distinct crevice-faunal communities on nodules (Thiel et al., 1993;

Singh et al., 2019), it is likely that substantial differences in rugosity

among nodules would influence the structure of meiofaunal nodule

communities. The varied geochemical composition of nodules can
FIGURE 3

Habitat heterogeneity at different spatial scales of interest in polymetallic nodule environments from smallest (left) to largest (right). The variability at
each spatial scale will hold different relevance for different size classes of fauna. For example, variability at the nodule scale (e.g., number and size of
crevices) will be most relevant for meiofauna; while variability at the patch scale (e.g., density of nodules blocking sediment habitats or providing
attachment surfaces for sessile fauna) may be more relevant for macrofauna; variability at the field scale (e.g., available sediment patches for mobile
scavengers and density of nodule patches for connectivity between hard substrate communities) may be most relevant for megafauna.
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also contribute to this small-scale habitat heterogeneity, as different

minerals support different bacterial communities (Blöthe et al.,

2015), which may influence metazoan communities through

short-term carbon cycling and resource availability (Sweetman

et al., 2019; Stratmann et al., 2021; Stratmann, 2023). For

example, laboratory experiments have indicated that higher

diversity of bacterial communities directly influences nematode

community composition by supporting higher nematode

abundance and reducing competitive exclusion amongst

nematode species (Derycke et al., 2016; Guden et al., 2021).
4.2 Habitat heterogeneity among nodule
patches

The next largest spatial scale of interest is among nodule patches

within a field, namely through differences in the density and

arrangement of nodules among patches. Broadly, the occurrence

of nodules (i.e., compared to sediments within a field without

nodules) has been shown to increase megafaunal density (Amon

et al., 2016; Vanreusel et al., 2016; Cuvelier et al., 2020; Simon-Lledó

et al., 2020; Durden et al., 2021; Uhlenkott et al., 2023b), diversity

(Uhlenkott et al., 2023b), and exhibit different community

composition (Simon-Lledó et al., 2019c; Cuvelier et al., 2020;

Simon-Lledó et al., 2020; Durden et al., 2021). Megafaunal

abundance largely correlates with nodule abundance across the

CCZ, particularly for suspension feeders (Tilot, 2006; Amon et al.,

2016; Vanreusel et al., 2016; Simon-Lledó et al., 2019b). The

relationship between nodule abundance and diversity, though

positive, may be limited: the habitat heterogeneity provided by

nodules enhances megafaunal species richness and diversity, but

this effect exhibited diminishing returns above a certain level of

nodule abundance in the eastern CCZ (UK-1; Amon et al., 2016).

Certain macrofaunal taxa (e.g., polychaetes, tanaids, and isopods) in

the eastern CCZ (GSR) have been observed to covary with nodule

abundance, but sampling design may account for much of this trend

(De Smet et al., 2017). Studies in both the Indian (CIOB) and Pacific

Oceans (multiple areas in the CCZ) have indicated a positive

relationship between nodule density and macrofaunal diversity

(Parulekar et al., 1982; Yu et al., 2018) and/or abundance

(Parulekar et al., 1982; Mullineaux, 1987; Tilot, 2006), while

others indicate a unimodal relationship between nodule density

and macrofaunal abundance (GSR, eastern CCZ; De Smet et al.,

2017), or no discernible relationship at all (GSR, eastern CCZ;

Pasotti et al., 2021). These varying relationships indicate that

macrofaunal communities may be influenced by additional factors

found at each study site. For example, in the southwest Pacific at

around 400 m, macrofaunal community structure was found to

correlate with phosphorite nodule abundance, but mesoscale

(10-100s of m) topographical variability (e.g., uneven areas,

seafloor depressions) drove diversity patterns at smaller spatial

scales (< 1 m; Leduc et al., 2015). However, across study locations

in the CCZ, macrofaunal community composition largely varied
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according to polymetallic nodule density, likely due to substrate

preference (e.g., higher percent composition of sessile fauna at

nodule-rich sites vs. higher percent composition of infauna at

nodule-poor sites; Mullineaux, 1987; Tilot, 2006). Though the

presence of nodules (and therefore nodule crevice fauna) may

marginally increase local meiofaunal diversity at the centimeter-

scale (Pape et al., 2021), nodules also occupy the first several

centimeters of sediment that could otherwise serve as habitat for

sediment infauna, often resulting in lower abundance of sediment

meiofauna at nodule-rich sites compared to nodule-free areas in

both the Indian and Pacific Oceans (Tilot, 2006; Mahatma, 2009;

Miljutina et al., 2010; Singh et al., 2016; Hauquier et al., 2019; Pape

et al., 2021).
4.3 Habitat heterogeneity among nodule
fields

At larger spatial scales, habitat heterogeneity among nodule fields

within a region may also influence benthic communities. In

particular, among-field differences in local topography that occur

on scales of 10s to 1000s of meters can influence mega- and

macrofaunal communities at smaller spatial scales (< 1 m to 5 m)

by providing additional habitat heterogeneity in the form of

depressions, non-nodule hard substrates, or hills/seamounts

(Durden et al., 2015, Durden et al., 2020; Leduc et al., 2015;

Cuvelier et al., 2020; Leitner et al., 2021; Mejıá-Saenz et al., 2023).

Topographical variability has been observed to support higher mega-

and macrofaunal diversity in deep-sea sediment communities,

including in nodule regions, likely due to increased sediment

heterogeneity and the alteration of small-scale environmental

factors (e.g., the accumulation of POC in seafloor depressions;

Durden et al., 2015, Durden et al., 2020; Leduc et al., 2015). The

presence of non-nodule hard substrates (e.g., rocks, seamounts) has

also been observed to strongly influence megafaunal community

structure, with higher diversity and densities than sediment-

dominated areas in the eastern CCZ (BGR, GSR, APEI-3, and

APEI-6; Cuvelier et al., 2020; Mejıá-Saenz et al., 2023; Uhlenkott

et al., 2023b). The communities found on these substrates are distinct

from nodule communities (Cuvelier et al., 2020; Laroche et al., 2020;

Mejıá-Saenz et al., 2023; Uhlenkott et al., 2023b), indicating that

nodules provide unique habitat that may not be easily substituted by

other hard substrates. Heterogeneity in the form of the distribution of

nodule fields within a region could also have implications for the

biodiversity of faunal communities. For example, higher density of

nodule fields could enhance population connectivity and successful

larval dispersion within regions, particularly for fauna dependent on

hard substrates (Taboada et al., 2018). Smaller habitat patches acting

as “stepping stones” that connect larger populations of fauna have

been observed in other deep-sea ecosystems (e.g., organic falls

connecting vents or seeps; Bienhold et al., 2013; Cunha et al.,

2013). Scattered fields of nodules could similarly act as “stepping

stones” that connect nodule fauna populations across sediment-
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dominated areas. However, connectivity and larval dispersion in the

abyss remain understudied, particularly in nodule environments

(Kersten et al., 2017), and no study has yet explored connectivity

and larval dispersion with regard to habitat heterogeneity in

nodule environments.
4.4 Habitat heterogeneity within and
among regions

At the largest spatial scales (among nodule fields within and

among regions), environmental variability (e.g., resource

availability, geomorphological structures) influences faunal

community structure both directly and through its influence on

habitat heterogeneity.
4.4.1 Food flux variability
At within-region scales (100s of meters to 100s of kilometers), the

influence of environmental variability—particularly food availability

—on polymetallic nodule communities becomes more pronounced.

For example, POC flux to the seafloor varies substantially (> 2x)

across the CCZ, generally declining from east (closer to nutrient

inputs from land) to west (Tyler, 2003b; Washburn et al., 2021a).

Mega-, macro-, and meiofaunal community structure has been

observed to vary accordingly across this gradient, with higher POC

flux generally correlating with both higher faunal abundance and

diversity (Hannides and Smith, 2003; Smith and Demopoulos, 2003;

De Smet et al., 2017; Christodoulou et al., 2020; Laroche et al., 2020;

Nomaki et al., 2021; Washburn et al., 2021a; Tong et al., 2022).

However, when sites within a region exhibit substantial differences in

both local habitat heterogeneity (e.g., nodule abundance) and POC

flux, the influence of POC flux on community structure may be

diminished or masked (Durden et al., 2021; Washburn et al., 2021b).

For example, an area of particular environmental interest (APEI) in

the CCZ with 73% higher POC flux but lower habitat heterogeneity

(i.e., dominated by soft sediments; APEI-7) exhibited lower

megafaunal densities than in sites with lower POC flux but high

nodule abundance (APEI-1; Durden et al., 2021). Variability in these

two ecological factors also influenced megafaunal community

composition, as fauna with certain functional traits (e.g., sessile

suspension feeders vs mobile scavengers) correlated with higher

availability of related resources (e.g., hard substrates for attachment;

Durden et al., 2021). However, related environmental factors (e.g.,

oxygen content), may have also played a role in this trend, as APEI-7

has lower dissolved oxygen content (3.84 ± 0.02 ml/L) than APEI-1

(4.12 ± 0.05 ml/L; (Washburn et al., 2021a).

POC flux to the seafloor also varies among regions (1000s of

kilometers or more), including among ocean basins that contain

large nodule reserves (e.g., the central Indian Ocean, the central

Pacific, the southwest Pacific; Jahnke, 1996). Though the waters

over polymetallic nodule environments tend to be oligotrophic

(Mizell et al., 2022), POC flux to the seafloor does vary between

ocean basins (Xie et al., 2019), which can contribute to differences in

nodule fauna among regions (Washburn et al., 2021b). Equatorial

ocean regions (e.g., the central Pacific) tend to exhibit higher POC
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flux to the seafloor than tropical and sub-tropical regions due to

heightened surface productivity fed by equatorial upwelling (Honjo

et al., 2008). The Indian Ocean basin, due to its proximity to large

landmasses and the equator, tends to exhibit higher POC flux than

the north or south Pacific Ocean basins (Jahnke, 1996; Rixen et al.,

2019). As a result, in addition to among-basin variability in habitat

heterogeneity that may influence faunal community patterns (e.g.,

presence of nodules, seamounts, rock outcrops), POC flux can

create regional differences in faunal communities directly (e.g.,

higher abyssal benthic standing stock in the Pacific than the

Indian Ocean; Neyman et al., 1973; Parulekar et al., 1982; Tyler,

2003b). Ultimately, the complexities of the relationship between

mega-, macro-, and meiofaunal community structure and POC flux

remain poorly understood and merit further investigation in nodule

environments at different sites, in different regions, and on longer

timescales. However, existing research indicates that neither the

presence of certain habitat features (e.g., nodules) nor the level of

certain environmental conditions (e.g., POC flux) can serve as a

perfect proxy for faunal diversity or abundance. Though

preliminary efforts to model polymetallic nodule meio- and

megafauna communities in the eastern CCZ (BGR) have shown

promise (Uhlenkott et al., 2020, Uhlenkott et al., 2021, Uhlenkott

et al., 2022), the explanatory and predictive capabilities of these

models remain constrained by limited baseline data.
4.4.2 Temporal variability
Environmental conditions in abyssal regions can also vary

considerably on temporal scales due to seasonality and climate

oscillations affecting surface productivity, and thereby POC flux to

the seafloor (Billett et al., 2001; Kuhnz et al., 2014; Taylor et al.,

2017). Though evidence of temporal variability in food flux has

been observed in nodule environments (Kaufmann and Smith,

1997; Hannides and Smith, 2003; Miljutin et al., 2015; Hoving

et al., 2023), the results of the few studies monitoring temporal

changes in nodule faunal communities have been mixed. Across the

CCZ, isopod diversity exhibited strong temporal variation (Kaiser

et al., 2023), and macrofaunal densities overall were higher during

El Niño years, though low sample sizes limited statistical testing and

inconsistencies in sampling methodology have contributed

substantially to the observed results (Kaiser et al., 2024). Also in

the CCZ (eastern CCZ; IOM and Ifremer areas), certain meiofauna

taxa were found to exhibit a strong shift in community structure

following natural episodes of phytodetritus input (Radziejewska

et al., 2001; Radziejewska, 2002; Miljutin et al., 2015). However, a

different study in the eastern CCZ (GSR area) found that meiofauna

showed no significant temporal variation in abundance, diversity, or

community composition (Pape et al., 2017), though this difference

may be due to geographical variation among the contract areas,

which span hundreds of kilometers. Additional research on

megafaunal communities has been largely limited to disturbance

response studies (see below), in which the effects of anthropogenic

(experimental) disturbances and the effect of spatiotemporal cycles

can be difficult to parse.

Among ocean basins, temporal variation can differ further. For

example, the Indian Ocean is influenced by monsoons, which create
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seasonal nutrient inputs that boost surface productivity and

therefore POC flux to the seafloor (Lutz et al., 2007). Due to its

size, the Pacific Ocean does not have universal seasonal variation.

However, the east Pacific Ocean experiences seasonal coastal

upwelling that can have a cascading influence on POC flux to the

deep sea (Lutz et al., 2007). The Pacific is also strongly influenced by

the El Niño-Southern Oscillation (ENSO), which creates substantial

temporal variation in POC flux to the seafloor on cycles of several

years, and whose influence extends to the Indian and Southern

Oceans (Wang et al., 2017; Xie et al., 2019). The effects of ENSO in

the central and eastern equatorial Pacific (including around the

CCZ) are particularly acute, with decreased POC flux during El

Niño events (due to weakened equatorial upwelling) and increased

during La Niña events (due to enhanced upwelling; Smith et al.,

2006; Xie et al., 2019). The temporal variability in the southwestern

Pacific tends to be less dramatic and less consistent, as it is further

removed from both seasonal and climactic shifts in equatorial

upwelling (Lutz et al., 2007; Wang et al., 2017). However, ENSO

still influences regional ocean circulation and temperatures in the

southwestern Pacific, which likely influences surface productivity

and therefore POC flux to the seafloor (Chiswell et al., 2015).

Though no consistent trends in temporal faunal variability among

regions have yet emerged, food flux to the seafloor remains a strong

environmental influence on abyssal communities. Due to the strong

but variable influence of climatic cycles (e.g., ENSO) and seasonality

on POC flux among regions, it remains likely that these temporal

cycles have a strong influence on regional nodule faunal

communities that could be revealed by future research (Hannides

and Smith, 2003; Ruhl and Smith, 2004). However, to date, the

paucity of long-term sampling and ocean monitoring programs in

remote polymetallic nodule regions have prevented a robust

assessment of the influence of large-scale temporal cycles on

nodule-associated fauna.

4.4.3 Bathymetric and topographic variability
At within- and among-region scales, bathymetry becomes more

influential, both through depth gradients and through the presence

of large geomorphological structures. Though depth remains

relatively consistent in most nodule environments, generally

between 4000 and 5000 m, community structure can still be

strongly influenced by this variability. For example, in the CCZ,

the carbon compensation depth lies between 4,300 and 4,800 m

(Berger et al., 1976). Across this threshold, megafaunal community

composition shifts significantly as animals relying on calcium

carbonate body parts (e.g., corals, shelled mollusks) are replaced

by soft-bodied organisms (e.g., anemones, sea cucumbers; Simon-

Lledó et al., 2023). Despite this dramatic shift in phylum-level

community composition, megafaunal species richness across this

threshold is maintained (Simon-Lledó et al., 2023). As in most

deep-sea environments, food availability also declines with depth,

and abyssal environments with lower POC flux often exhibit lower

mega-, macro-, and meiofaunal densities (Thurston et al., 1998;

Veillette et al., 2007b; Schmidt and Martıńez Arbizu, 2015; Wilson,

2017; Błażewicz et al., 2019) and diversities (Glover et al., 2002;

Veillette et al., 2007b; Wilson, 2017; Błażewicz et al., 2019; Laroche
Frontiers in Marine Science 09
et al., 2020), though this can vary depending on the amount of

substrate heterogeneity present (i.e., nodules vs. no nodules;

Veillette et al., 2007a; Vanreusel et al., 2016) and across

taxonomic groups (Wilson, 2017; Simon-Lledó et al., 2020).

Regional environmental variability in the form of larger

topographical variations (e.g., seamounts, troughs) can also

influence communities as bottom currents and hard substrate

availability in nodule environments influence resource availability

(e.g., food, habitat). For example, the occurrence of seamounts near

polymetallic nodule fields in the eastern CCZ provides increased

habitat heterogeneity that supports high faunal diversity and

abundance (Cuvelier et al., 2020; Mejı ́a-Saenz et al., 2023;

Uhlenkott et al., 2023b). In the Bounty Trough of the southwest

Pacific (1500–4800 m depth), bottom currents are strong enough to

create ripples in sedimented areas (Daniel Leduc, personal

communication), which may influence communities both directly

and through the creation of greater habitat heterogeneity that can

alter hydrodynamic conditions and influence sediment grain

heterogeneity, larval settlement, and food availability (Leduc et al.,

2012, Leduc et al., 2015; Durden et al., 2015). In the abyssal

sediments of the Peru Basin (equatorial eastern Pacific), high-

walled troughs created by an experimental disturbance collected

pyrosomes (megafauna) at significantly higher concentrations

(4-76x) than in the flat (undisturbed) sediments nearby (Hoving

et al., 2023). Though the benthic community response to this influx

of food was not assessed at this site, other studies of pyrosomes as a

food source in the deep sea indicate that this substantial input of

organic matter would likely have influenced the community

structure (Lebrato and Jones, 2009; Smith et al., 2014).

Additionally, topographic features such as trenches have been

documented to share genera with nearby nodule environments,

indicating that connectivity within regions is likely not impeded by

these features (Vanreusel et al., 2010; Horacek et al., 2022).

Seafloor topographic complexity (e.g., seamounts, steppes,

troughs) can also vary substantially among regions. The Pacific

Ocean is estimated to contain significantly more seamounts (9,000-

16,000/106 km2 seamounts) than the Indian Ocean (500-1600/106

km2 seamounts; Das et al., 2007). However, in polymetallic nodule

environments specifically, the abundance of seamounts is relatively

similar between the Indian and Pacific Oceans, despite the CCZ

being almost 40x larger than the surveyed area of the Central Indian

Ocean Basin (CIOB; Das et al., 2007; Vineesh et al., 2009; Leitner

et al., 2021, and references therein). More seafloor features (e.g.,

steps, troughs, hills, rises) have been observed in the CCZ than the

CIOB (Parianos and Madureira, 2021), but this could be a product

of the different sizes of the two regions and/or of the differing

research efforts to characterize them. Seafloor topographic

complexity also varies among Pacific basins. The southern Pacific

Ocean contains slightly more seamounts per square kilometer than

the central Pacific, and nodule regions of the southwest Pacific can

be topographically complex. For example, the Cook Islands

(southwest Pacific) Exclusive Economic Zone (EEZ) contains over

50 large seamounts, many of which are connected through chains of

smaller volcanic knolls and the majority of which lie within the

nodule-rich areas of the country’s EEZ (Browne et al., 2023).
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Though recent research has found that seamounts provide

additional habitat heterogeneity that supports distinct megafaunal

communities (Cuvelier et al., 2020; Leitner et al., 2021; Uhlenkott

et al., 2023b), there have not yet been any studies assessing the

possible regional differences in these communities by comparing

seamounts in different ocean basins.

4.4.4 Geological and geochemical variability
Finally, polymetallic nodules themselves can vary considerably

in shape, size, and density at among-region scales. For nodules to

form, environmental conditions must be relatively stable.

Sedimentation rates, in particular, must be low (< 10 mm per

thousand years) to prevent the burial of developing nodules (Kuhn

et al., 2017; Hein et al., 2020; Mizell et al., 2022). As a result, nodules

generally form in areas with relatively flat seafloor topography and

in regions with lower rates of surface productivity (Kuhn et al.,

2017; Hein et al., 2020; Mizell et al., 2022), due to their associated

low sedimentation rates (Mewes et al., 2014; Mizell et al., 2022).

Though polymetallic nodules are found globally, their mineral

makeup and structure vary based on the environmental

conditions and process under which they form (Hein and Mizell,

2022). There are several varieties of polymetallic nodules (Cronan,

2019), but the ones of greatest commercial interest are hydrogenetic

nodules (formed by mineral precipitates from seawater; e.g., west

and southwest Pacific nodules), diagenetic nodules (formed by

mineral precipitates from sediment pore waters; e.g., Peru Basin

nodules), and mixed hydrogenetic-diagenetic nodules (formed from

both seawater and sediment pore waters; e.g., CCZ and CIOB

nodules; Mizell et al., 2022). Hydrogenetic nodules are most

common in regions with low surface productivity, while

diagenetic nodules form in areas with moderate surface

productivity, which provides the organic matter (and resulting

suboxic sediment conditions) needed for diagenetic reactions in

sediment pore waters (Mewes et al., 2014; Mizell et al., 2022). Based

on these different processes—and differing mineral concentrations

in seawater and sediment pore water among ocean basins—the

mineral makeups of nodules vary according to both nodule type and

location (Hein and Mizell, 2022; Mizell et al., 2022). This variability

in both geology and biogeochemistry may also contribute directly to

regional differences in faunal communities. Nodules of different

varieties and/or from different regions have been shown to harbor

distinct microbial communities and exhibit different local

biogeochemistry (Blöthe et al., 2015; Wear et al., 2021; Bergo

et al., 2022). Microbes play a critical role in nutrient cycling,

metal sequestration, and abyssobenthic food webs (de Jonge et al.,

2020; Orcutt et al., 2020), and biogeochemical conditions (e.g., high

concentrations of certain metals, low oxygen penetration depths;

Paul et al., 2018; Haffert et al., 2020) can favor or preclude certain

fauna. As a result, it is likely that these regional differences in nodule

composition or geochemistry may have a direct influence on

regional faunal community structure.

The same broad-scale environmental conditions that influence

the formation of nodule environments also directly influence the

communities living in them. Due to the stability of nodule
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environments, nodule fauna are generally slow growing and many

are sessile, particularly at larger faunal size classes (Veillette et al.,

2007b; De Smet et al., 2017). Reproduction in polymetallic nodule

communities remains poorly understood for all faunal size classes,

but existing research indicates that they exhibit significantly lower

larval abundance and flux (vertical movement of larvae to the

seafloor over time; ind. d−1 m−2) and higher retention of larvae

near the benthos than in other deep-sea habitats (Kersten et al.,

2017, Kersten et al., 2019). This may contribute to slow recovery

rates (Miljutin et al., 2011; Jones et al., 2017; Simon-Lledó et al.,

2019a), as larvae retained near the seafloor would be more

vulnerable to disturbances that create adverse conditions near the

benthos (e.g., sediment plumes).
5 Disturbance in polymetallic nodule
environments

Disturbance in polymetallic nodule environments can influence

fauna both directly and through the disturbance’s impact on habitat

heterogeneity. Though many forms of disturbance occur naturally

in polymetallic nodule environments, large-scale natural

disturbances are uncommon. Polymetallic nodule mining would

effectively act as a large-scale disturbance that would alter habitat

heterogeneity through the removal of hard substrates, the creation

of troughs or tracks in the sediment, and the deposition of sediment

that may smother fauna and homogenize the texture of the seafloor

(Figure 4). While existing research has offered valuable insights

about disturbance in nodule environments, particularly at smaller

spatial scales, the influence of disturbance on nodule communities—

including through its impact on habitat heterogeneity—remains

poorly understood.
5.1 Natural disturbance

Due to most nodule fields’ locations beneath abyssal waters,

naturally reoccurring disturbance in nodule ecosystems generally

takes the form of biogenic disturbance (e.g., bioturbation; Volz

et al., 2020) or food flux (e.g., Amon et al., 2017). Regular small-

scale disturbances in the form of bioturbation and biogenic

structures (i.e., Lebensspuren) generally correlate with higher

faunal diversity and density throughout the deep sea (Kukert and

Smith, 1992; Meadows and Meadows, 1994; Meadows et al., 2012),

including at abyssal depths (Ruhl and Smith, 2004; Bell et al., 2016;

Rosli et al., 2018). Bioturbation lowers sediment shear strength,

which may provide more microhabitats that support higher

infaunal diversity or abundance (Tong et al., 2022) and helps to

transport critical resources (namely food and oxygen) into deeper

sediments where they support life ranging from microbes to

megafauna (Rosli et al., 2018; Bonaglia et al., 2020; Haffert et al.,

2020; Tong et al., 2022). The openings to biogenic structures also

increase the texture of the seafloor. This texture creates greater

habitat heterogeneity and promotes the resuspension of materials at
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the sediment-water interface (Huettel et al., 1996), which facilitates

nutrient cycling and supports local faunal communities through the

resuspension of organic matter (Levinton, 1995; Ford et al., 1999).

As in other ecosystems in the food-limited deep sea, food flux

can also act as a disturbance agent in polymetallic nodule

environments. Though thought to be less common than on

continental margins, organic falls do occur in nodule

environments (Amon et al., 2017), and exhibit similar faunal

communities to continental margin organic falls (Bienhold et al.,

2013; Cunha et al., 2013; Amon et al., 2017). Organic falls observed

throughout the CCZ hosted common organic fall specialists (e.g.,

Xylophagaidae mollusks, mobile scavengers), along with several

other species not observed elsewhere in the CCZ (Amon et al.,

2017). While temporal variability in the influx of food (e.g.,

phytodetritus, pyrosome carcasses) has been observed in some

nodule environments, the extent to which these food fluxes may

be cyclical or act as a disturbance remains poorly understood

(Durden et al., 2021; Uhlenkott et al., 2021). However, based on

the influence of large food fluxes in other abyssal environments, it

remains likely that these events may temporarily restructure local
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faunal communities (Thurston et al., 1998; Ruhl and Smith, 2004;

Bailey et al., 2006; Woolley et al., 2016).

Large natural disturbances are not uncommon in abyssal

environments, which can be impacted by gravity currents such as

turbidity flows that reach abyssal plains through canyons and channels

on the continental rise (Bigham et al., 2021) or from benthic storms

(Miguez-Salas et al., 2020). The CCZ is subject to energetic mesoscale

eddies (Aleynik et al., 2017), which may cause episodic environmental

stress from strengthened bottom currents and sediment resuspension.

However, the characteristics that facilitate the formation of nodules

over long time frames indicate that nodule environments are generally

relatively stable, with flat topography and low sedimentation rates. As

a result, catastrophic large-scale disturbances are unlikely to occur

naturally in polymetallic nodule environments.
5.2 Anthropogenic disturbance

Understanding the potential impact that deep-seabed mining

may have on nodule communities has necessitated in-situ
FIGURE 4

Schematic of conceptual deep-sea polymetallic nodule mining system (figure adapted from Figure 2 in Gillard et al., 2022).
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experimentation or the study of proxies in similar environments,

though these have remained limited in scope and scale (Gollner

et al., 2017; Jones et al., 2017; Cuvelier et al., 2018). The study of

proxies, in particular, has yielded little information about the

possible reaction of nodule communities due either to the scale of

the proxy disturbance (e.g., Jamieson et al., 2022) or its location

(e.g., at bathyal depths, close to shore, at hydrothermal vents;

Gollner et al., 2017; Bigham et al., 2024; Leduc et al., 2024a;

Murray et al., 2024). As a result, in-situ experimentation remains

the most promising avenue for estimating the possible impacts of

polymetallic nodule mining on faunal communities.

5.2.1 Historic disturbance experiments
Experiments conducted in the late 1980s and 1990s throughout

nodule areas of the Central and Eastern Pacific provided the first

glimpses of ecological responses to disturbances meant to mimic the

effects of mining in the CCZ (Brockett and Richards, 1994;

Trueblood and Ozturgut, 1997; Borowski and Thiel, 1998;

Tkatchenko and Radziejewska, 1998) and in the Peru Basin (Thiel

and Schriever, 1990; Borowski and Thiel, 1998; Bluhm, 2001;

Borowski, 2001; Thiel et al., 2001; Radziejewska, 2014)(Table 1).

The footprint of these experiments varied, with most experiments

disturbing at the patch or field scale, using either a series of

unidirectional tracks (generally 2–4 km each in length) or

disturbed plots (up to 11 km2; Jones et al., 2017). Across all the

experiments, the disturbances left physical marks (troughs or scars

generally 2–8 m wide and 2–4 km long) on the seafloor that

remained visible throughout the timeframes of the experiments

(1–26 years) (Figure 5). All experiments resulted in a decrease in

both faunal abundance and diversity immediately following the

disturbances (Bluhm et al., 1995; Schriever et al., 1997; Borowski

and Thiel, 1998; Ahnert and Schriever, 2001; Borowski, 2001;

Radziejewska, 2014). Most experiments resulted in long-term

reductions of both faunal density and diversity, though some

faunal groups (e.g., meiofauna in the Indian Ocean, mobile

deposit feeders in the CCZ) showed partial recovery towards pre-

disturbance densities on the timescale of months to years,

depending on the site (Jones et al., 2017, Jones et al., 2025). The

only studies investigating fauna living directly associated with the

nodules saw a shift in megafauna community composition from

mixed sessile and mobile fauna to solely mobile fauna (e.g.,

holothurians, ophiuroids) at study sites where nodules were

removed, and recovery by sessile fauna (e.g., gorgonians, sponges,

crinoids) was not observed after 26 years—likely due to the lack of

hard substrates for attachment (Bluhm et al., 1995; Bluhm, 2001;

Miljutin et al., 2011; Amon et al., 2016; Jones et al., 2025).

These first long-term studies of mining-like disturbances in

polymetallic nodule environments provided important early

observations of the resilience of nodule communities. However,

the studies were limited in scope, scale, and sampling integrity

(Radziejewska, 2014; Gollner et al., 2017; Jones et al., 2017). Each of

the experiments used different methodologies and sampling devices,

and the wider applicability of the findings in many cases suffered
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from technological limitations and low replicate numbers

(Fukushima, 1995; Fukushima et al., 2000; Gollner et al., 2017;

Jones et al., 2017; Fukushima and Tsune, 2019). The devices used to

create the disturbances also varied between studies (e.g., nodules

removed vs displaced or buried; different depths of sediment

disturbance; different sediment plume scales; Jones et al., 2017),

which may have contributed to the different results observed across

sites (e.g., increased sediment heterogeneity supporting increased

nematode diversity at some experiment sites in the CCZ; Jones et al.,

2017; Fukushima et al., 2022). This research also focused on soft

sediment communities in areas with lower nodule densities, and,

with the exception of megafauna studies, did not investigate the

impact of disturbance on nodule-specific fauna, despite their

vulnerability to nodule removal (Jones et al., 2017). Since the

scale of the experiments was small (a maximum of tens of square

kilometers over a few days), it remains difficult to extrapolate their

results to the scale of proposed commercial mining (tens of

thousands of square kilometers over years), which will influence

habitat heterogeneity with greater totality (i.e., complete removal of

nodules over large spatial and temporal scales), and therefore

benthic communities are likely to exhibit longer recovery times

(Borowski and Thiel, 1998; Borowski, 2001; Jones et al., 2017).

5.2.2 Recent disturbance experiments
Given the limitations of previous research, further

experimentation has begun in the CCZ and the Peru Basin to fill

in the gaps of earlier research (e.g., Gollner et al., 2022; Muñoz-

Royo et al., 2022; Stenvers et al., 2023; Lefaible et al., 2024;

Vornsand et al., 2024)(Table 1). However, the timescales of these

experiments currently remain short, as many of these studies began

only within the past several years (e.g., Lefaible et al., 2024) and/or

rely on the limited data collected in the aforementioned studies to

serve as baselines (e.g., Vornsand et al., 2024; Jones et al., 2025).

Furthermore, while many recent disturbance experiments use

nodule collector prototypes that closely imitate proposed mining

(e.g., nodule removal, movement via caterpillar tracks), the spatial

scales of these experiments (<0.05 km2) remain small compared to

commercial exploitation (10–100 km2; Muñoz-Royo et al., 2022;

Lefaible et al., 2024; Vornsand et al., 2024).

A study of a sediment track in the Peru Basin (near the 1989

experiment site) exhibited 50% lower abundance of Lebensspuren

(track, trails and other visible signs of benthic epi- and in-fauna

activity) six months after a disturbance event compared to pre-

disturbance levels, potentially due to reduced labile carbon

availability in the sediments (Vornsand et al., 2024). This

speculation is supported by a recent study in the CCZ, which

found significantly lower total organic carbon in sediments along

the path of a mining prototype and lower food availability in nearby

sediments covered by settling sediment plumes (Lefaible et al.,

2024). This disturbance and its associated reduction in organic

carbon may effectively homogenize sediments and resource

availability, therefore reducing patch-scale habitat heterogeneity

that supports biodiversity. Additionally, the deposition of
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TABLE 1 Historic and recent disturbance experiments conducted to simulate the effects of deep-seabed mining, including the equipment used and the scale of the disturbance, along with an inexhaustive list
of relevant references.

Duration Plume size References

3x dredges of 15, 33,
and 54 hours

16 km, with models
extrapolating plumes up to
160 km

Morgan et al., 1999; Radziejewska, 2014; Jones
et al., 2017

4 days
Estimated 0–10 mm over
10s of meters

Khripounoff et al., 2006; Miljutin et al., 2011;
Jones et al., 2017, Jones et al., 2025; Chung,
2021

78 deployments 30 mm thick

Bluhm et al., 1995; Schriever et al., 1997;
Borowski and Thiel, 1998; Ahnert and
Schriever, 2001; Borowski, 2001; Thiel et al.,
2001; Radziejewska, 2014; Jones et al., 2017;
Stratmann et al., 2018b, Stratmann et al.,
2018a; Simon-Lledó et al., 2019a; de Jonge
et al., 2020; Boehringer et al., 2021; Vornsand
et al., 2024

49 deployments
4000 m3 of sediment over
1–2 km2

Trueblood and Ozturgut, 1997; Radziejewska,
2014; Jones et al., 2017

20.5 hours for 16
days

0–7 cm thick, mostly within
500 m of tracks

Fukushima, 1995; Fukushima et al., 2000,
Fukushima et al., 2022; Jones et al., 2017;
Fukushima and Tsune, 2019

14 tows 1800 m3 total
Radziejewska, 2002, Radziejewska, 2014; Jones
et al., 2017

42.23 hours 6000 m3 covering 88.3 km
Rodrigues et al., 2001; Ingole et al., 2005;
Valsangkar, 2005; Jones et al., 2017

6-7.5 hours each Unknown
Martıńez Arbizu and Haeckel, 2015;
Boehringer et al., 2021; Gollner et al., 2022

7–15 mins each
Peak turbidity 100m and
200m from track

Boehringer et al., 2021; Haeckel and Linke,
2021; Gollner et al., 2022

40 hours
2–3 cm thick within 100 m;
not observed > 2 km

Gollner et al., 2022; Lefaible et al., 2023
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Experiment
name

Year Location Equipment Track size
Disturbance
footprint

DOMES (OMI)
1978 Western CCZ

Suction dredge on
skis

2.4 m wide ~0.4 km2

OMCO
1979 Ifremer (eastern CCZ) Collector vehicle

1–3 m wide, 0.2-0.8 m
deep

0.4 km2

DISCOL

1989 Peru Basin Plough harrow 8 m wide 11 km2

BIE-II
1993 Eastern CCZ Benthic Disturber 2.4 m wide; 29 cm deep 150x3000 m

JET
1994 DORD (western CCZ) Benthic Disturber

2.4 m wide; 19.5 mm
deep

2000 m

IOM BIE
1995 IOM (eastern CCZ) Benthic Disturber 2.4 m wide 200×2500 m

INDEX
1995 CIOB Benthic Disturber 2.4 m wide 3000x200 m

SO239 small-scale
plume experiment

2015
BGR, GSR (eastern
CCZ)

Epibenthic sled 1.2m wide
4x tows of
2300-3800m each

SO268/1+2 small-scale
plume experiment

2019 BGR (eastern CCZ) Chain dredge 1.5m wide, ~5 cm deep
11 tows over
100x500 m area

Patania II test
2021

BGR, GSR (eastern
CCZ)

Mining prototype
4.8 mm wide, more than
5 cm deep

30,000 m2

https://doi.org/10.3389/fmars.2025.1650660
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ullmann et al. 10.3389/fmars.2025.1650660
sediments may smother sediment fauna and disrupt natural

processes of nutrient flux along sediment depths (Miljutin et al.,

2011; Gollner et al., 2017). An ongoing study in the CCZ is currently

investigating the potential for restoration through the provision of

artificial hard substrates, but the feasibility of this possible

restoration method will not be known until the completion of the

decades-long experiment (expected to end in approximately 30

years; Gollner et al., 2022). The initial observation of colonization

after eight weeks of deployment found only one mobile polychaete

on the deployment apparatus and no sessile fauna on the ceramic
Frontiers in Marine Science 14
“nodules” (Gollner et al., 2022), which aligns with the slow

colonization and recovery rates known to characterize nodule

ecosystems. Though still in the early stages of long-term

monitoring (and still limited in scale compared to proposed

commercial mining), the CCZ experiments using nodule collector

prototypes will likely provide a more robust estimation of the

potential effects of industrial mining than historic experiments,

including on habitat heterogeneity, as the devices use similar

collection and locomotory mechanisms to devices proposed for

industrial-scale operations.
FIGURE 5

Example of plough-disturbed seafloor from a disturbance experiment (top) and undisturbed seafloor from a nearby site (bottom) in the Peru Basin.
Photographs from Figure 1 of Simon-Lledó et al., 2019d.
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5.3 Climate change

In addition to the impact of direct anthropogenic disturbance,

polymetallic nodule environments are also increasingly influenced

by climate change. Climate change is expected to impact primary

productivity throughout the ocean, including through the

disruption of regular large-scale climate oscillations (e.g., ENSO),

which will have cascading impacts on food flux to the deep sea and

therefore on faunal communities (Jones et al., 2014; Yasuhara and

Danovaro, 2016; Sweetman et al., 2017; Intergovernmental Panel on

Climate Change, 2022). Though the influence of large-scale climatic

variations on nodule communities remains understudied, climate

oscillations have been observed to influence abyssal fauna,

including nodule fauna, through their influence on regional

habitat heterogeneity via their effect on resource availability

(Billett et al., 2001; Smith et al., 2006; Kaiser et al., 2024). The

deep sea is also vulnerable to other climate impacts, including ocean

acidification and deoxygenation, whose impacts are only beginning

to be understood in abyssal environments (Hennige et al., 2015;

Levin and Le Bris, 2015; Sweetman et al., 2017), and which could

degrade biogenic structures that provide patch- and field-scale

substrate heterogeneity, or reduce regional habitat heterogeneity

through the homogenization of environmental conditions,

respectively. As the impacts of climate change intensify and

accelerate, these disruptions to the environmental conditions of

the deep sea are likely to compound with direct anthropogenic

disturbances such as deep-seabed mining (Sweetman et al., 2017;

Levin et al., 2020; Smith et al., 2020). Proponents of deep-seabed

mining have presented nodules as essential for addressing climate

change by providing minerals for green energy technologies.

However, new discoveries (e.g., the possible production of “dark

oxygen” in nodule environments; Sweetman et al., 2024) indicate

that knowledge gaps about nodule environments remain, including

unknown ecological or environmental phenomena that may

interact with known climate impacts. It is therefore critical that

these effects are studied further and considered in concert with

ongoing mining disturbance studies and other baseline research to

inform the development of environmental management plans for

the mining of polymetallic nodules.
6 Knowledge gaps and management
implications

Among polymetallic nodule environments, studies of habitat

heterogeneity (e.g., Simon-Lledó et al., 2019b; Mejıá-Saenz et al.,

2023; Uhlenkott et al., 2023b) remain relatively rare, and are often

limited in size or scope (e.g., covering only one faunal size class or

spatial scale). While existing studies represent a crucial

advancement on the subject, it is critical to include considerations

of habitat heterogeneity in a greater breadth of future studies

spanning faunal size classes, spatial scales, and sites.

Examinations of multiple faunal size classes in the same study

ensures the most holistic approach to investigating benthic faunal

communities, however, this is rarely achieved in deep-sea studies.
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Size differences naturally influence the interaction between faunal

communities and different spatial scales of habitat heterogeneity

(Gee andWarwick, 1994a; McClain and Barry, 2010; van der Grient

and Rogers, 2019), as organisms of different sizes have different

windows of perception (e.g., a sessile macrofaunal polychaete will

interact with its environment at a smaller spatial scale than a mobile

megafaunal scavenger will; Kotliar and Wiens, 1990; Attrill et al.,

2000). Therefore, while a nodule-rich area of only a few square

meters could be enough to support macrofaunal diversity and

connectivity, megafauna communities may require a larger area

that encompasses multiple spatial scales of habitat heterogeneity,

which could have substantial implications for the designation of

areas protected from mining. Furthermore, fauna of different size

classes generally exhibit different life cycles and other biological

traits which influence their response to disturbance (Gage and

Tyler, 1991; Warwick and Clarke, 1996; Rex and Etter, 2010;

Zeppilli et al., 2015), including any disturbance affecting habitat

heterogeneity. If mining regulators decided that mining operators

needed to leave patches of untouched nodule habitat between

mining tracks to facilitate recolonization and recovery,

information about the complex interactions between faunal size

class, community structure, and nodule density and distribution

would be crucial to determine the most effective patch size and

arrangement to leave undisturbed. Though multiple studies of

nodule fauna have included multiple size classes (e.g., Veillette

et al., 2007a; Jones et al., 2021; Stratmann et al., 2021), no studies

have yet done so with a specific focus on the habitat heterogeneity-

community structure relationship. Future studies should therefore

include an assessment of the influence of habitat heterogeneity on

multiple faunal size classes together within the same study to

increase comparability, help elucidate this habitat heterogeneity-

community structure relationship, and inform relevant

management decisions.

In conjunction with understanding the influence of habitat

heterogeneity across faunal size classes, its influence must be

further investigated across spatial scales to help determine at what

scale habitat heterogeneity most profoundly affects faunal

communities (e.g., what metric of habitat heterogeneity supports

the highest biodiversity, and at what magnitude). Though a growing

body of research has compared faunal communities among nodule

fields (e.g., sampling sites; Simon-Lledó et al., 2019c; Chuar et al.,

2020; Pasotti et al., 2021) and regions (Vanreusel et al., 2016;

Hauquier et al., 2019; Cuvelier et al., 2020; Simon-Lledó et al.,

2020), little research has compared communities at the nodule or

patch scales (Veillette et al., 2007a; Singh et al., 2019; Pape et al.,

2021). Furthermore, though studies have investigated the influence

of habitat heterogeneity at more than one spatial scale, no research

has yet examined its influence comprehensively across a broad

range of spatial scales, from among nodules to among regions. Due

to the size of mining contract areas and the variability in sampling

methodology, comparing results at different scales from different

studies can be difficult. As a result, conducting these scale-

dependent assessments comprehensively within one research

endeavor could ensure more reliable results about how the

influence of habitat heterogeneity changes with the spatial scale of
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focus. Information about how habitat heterogeneity supports faunal

diversity, density, or rarity can inform which areas should be

prioritized for protection (e.g., via an Area of Particular

Environmental Interest or other marine protected area) and can

ensure that rare or endemic species are protected from extinction

(e.g., Reed et al., 2006; Lowry et al., 2011). Additionally, this

information can be used to protect areas of higher faunal

diversity or abundance on spatial scales that preserve population

connectivity and facilitate the recolonization of areas disturbed by

mining. More knowledge about the habitat heterogeneity-

biodiversity relationship will ultimately be crucial for managing

nodule mining.

Multiple studies have explored and developed management

frameworks to assess the environmental impact of proposed

mining activities and avoid “serious harm” as required by ISA

regulations (Levin et al., 2016; Durden et al., 2017; Ellis et al., 2017;

Christiansen and Bräger, 2023; Leduc et al., 2024a). These

frameworks use an assessment of both the mining disturbance

(e.g., duration, size, frequency, etc.) and the structural

components of the ecosystem being impacted (e.g., rarity/

endemism, productivity, growth rates, etc.; Leduc et al., 2024b).

An understanding of the relationship between habitat heterogeneity

and community structure—particularly biodiversity—could be a

critical contribution to the assessment of these structural ecosystem

components and could therefore help inform the designation of

thresholds that trigger management or mitigation requirements

under these frameworks. Figure 6 illustrates the different theoretical

habitat heterogeneity-biodiversity relationships that could exist at

the field scale (10s to 1000s of meters) in a polymetallic nodule

contract area, and the associated levels of caution with which

management decisions should be made for seabed mining. For

example, if a positive linear relationship exists between habitat

heterogeneity and biodiversity in a mining contract area (as has

been found in other deep-sea habitats; Etter and Grassle, 1992),

serious harm to benthic communities in areas with high levels of

heterogeneity may impact more fauna than in areas with low levels

of heterogeneity if mining occurs there. As a result, mining

regulator authorities may decide to exercise increased caution

when determining if and how mining may occur in these high

heterogeneity areas (Figure 6A). If a unimodal relationship between

habitat heterogeneity and biodiversity is observed (as suggested for

nodule environments in Amon et al., 2016), this may increase the

level of caution with which management occurs for areas with

moderate levels of habitat heterogeneity, where biodiversity is

highest and therefore serious harm from mining more likely to

occur to more fauna (Figure 6B). Alternatively, an asymptotic

relationship may be discovered or predicted between habitat

heterogeneity and biodiversity in a contract area, in which habitat

heterogeneity only supports high diversity up to a certain threshold

after which there are diminishing returns (as suggested for cold

water coral reefs in Rowden et al., 2020), mining regulators could

exercise less caution in the bottom half of the curve, but may take a

more conservative management approach to avoid serious harm for

areas at or near the maximum point in the biodiversity-habitat

heterogeneity curve (Figure 6C). In this case, the required level of
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caution would likely vary on a case-by-case basis, depending on the

scale of proposed mining, the habitats or communities of interest,

and the overall management goals. Ultimately, the biodiversity-

habitat heterogeneity relationship will be just one of many factors

informing the management of claim areas under a future mining

scenario. However, the nature of the habitat heterogeneity-

biodiversity relationship can be used to help inform managers

which areas in the claim area may be vulnerable to serious harm

from seabed mining, and thus where mitigation measures or a more

precautionary approach are likely to be required (Figure 6).

Another substantial knowledge gap regarding habitat

heterogeneity is a lack of research across nodule-rich geographic

locations. Understandably, the recent surge of research activity on

the benthic fauna associated with polymetallic nodules has been

focused in the CCZ, where proposed mining is under the most

immediate consideration. However, even the best-studied nodule

environments in the CCZ remain poorly understood compared to

other deep-sea environments, and areas considered for nodule

mining within countries’ EEZs (e.g., the Cook Islands nodule

fields in the Penrhyn Basin) have never been the subject of any

formal ecological research. In the deep sea, habitat heterogeneity

and broad-scale environmental variability are often deeply

intertwined. As a result, both habitat heterogeneity and its

influence on benthic fauna may vary substantially between

different geographical regions, making area-specific research both

necessary and urgent. Without understanding the composition of

different nodule communities and how the habitat heterogeneity-

biodiversity relationship varies across geographic regions,

management practices suitable to one area may be applied

universally with ineffective results.

In addition to the above knowledge gaps, current methodology

and metrics for studying habitat heterogeneity in nodule ecosystems

may be insufficient to thoroughly describe it and its associated

fauna. The metrics used to describe habitat heterogeneity in nodule

environments vary considerably (Table 2), but most studies focus

on just one metric (generally related to nodule abundance) at one

spatial scale. Many of these metrics only measure habitat area or

volume, simplifying patch- and field-scale habitat complexity into

the presence or absence of hard substrates and overlooking

heterogeneity at the smallest scale (millimeters to centimeters)

entirely. Quantifying habitat heterogeneity is notoriously difficult,

as the irregularity and complexity of natural heterogeneity makes

simple equations difficult to create and apply broadly (Loke and

Chisholm, 2022). Furthermore, measuring the relationship between

habitat heterogeneity and biodiversity can be confounded by the

species-area relationship (Arrhenius, 1921) when using simply

habitat area or volume (or metrics based on area or volume) as a

metric (Steinmann et al., 2011). However, metrics like rugosity or

fractal dimension, which allow a quantitative assessment of surface

complexity along a continuous scale, have successfully quantified

habitat heterogeneity in other studies (e.g., on coral reefs,

macroalgae; Gee and Warwick, 1994b; McAbendroth et al., 2005;

Walker et al., 2009), and show promise as a method for nodule

environments, particularly at the nodule scale. Rugosity is

calculated as the ratio of a surface’s actual 3D area to its planar
frontiersin.org

https://doi.org/10.3389/fmars.2025.1650660
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ullmann et al. 10.3389/fmars.2025.1650660
(projected) area, providing a measure of surface roughness relative

to flatness. Fractal dimension quantifies surface complexity by

evaluating how detail or irregularity scales with measurement

resolution (e.g., using box-counting or other multi-scale

methods), making it particularly successful at describing fine-scale

habitat heterogeneity. However, fractal dimension requires habitats

or objects to be fractal (or nearly fractal), which is done by testing its

proximity to fractal at 2–3 orders of magnitude (Gonzato et al.,

1998), making it difficult to apply to real-world heterogeneity, and
Frontiers in Marine Science 17
particularly to objects as small as nodules. Vector dispersion, which

describes the heterogeneity of surface angles at a specific resolution

(with higher values indicating greater roughness), has also showed

promise in some heterogeneity studies (e.g., on coral reefs;

(Carleton and Sammarco, 1987; McCormick, 1994; Young et al.,

2017), but has not been as widely tested and, like many metrics

(Table 2), can be confounded with area (Loke and Chisholm, 2022).

There are also metrics of habitat heterogeneity that can be borrowed

from studies of landscape ecology which can be usefully applied at
FIGURE 6

Different theoretical relationships between biodiversity and habitat heterogeneity in nodule environments at the field scale (solid lines) and potential
associated levels of caution (shaded colors) recommended for determining management strategies for nodule mining license claim areas: (A) linear,
(B) unimodal, and (C) asymptotic. Shaded colors indicate lower (yellow), intermediate (orange), and high (red) levels of caution, based on the
hypothetical ranges at which disturbance to habitat heterogeneity would be more likely to cause serious harm. Levels of caution could be associated
with different impact assessment or mitigation requirements for mining contractors, with higher levels of caution necessitating adherence to more
stringent requirements.
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TABLE 2 Metrics for measuring habitat heterogeneity in nodule environments and their associated advantages and disadvantages, according to spatial scale and faunal size class of focus.

Environment

es References

t for diversity in nodule shape or
oes not provide patch scale

Vanreusel et al., 2016; Cuvelier
et al., 2020; Mejıá-Saenz et al.,
2023; Uhlenkott et al., 2023b

erally partially buried, surface and
s of nodules generally not
analysis; does not account for
le shape or surface texture; does
patch characteristics like density;
esents measure of available habitat
tangle species-area relationship from
eity-biodiversity relationship when

De Smet et al., 2017; Chuar et al.,
2020; Tong et al., 2022

Mewes et al., 2014; De Smet et al.,
2017; Simon-Lledó et al., 2019c;
Durden et al., 2021; Lefaible et al.,
2023, Lefaible et al., 2024

iption (limited use in quantitative
and nodule characteristics are often
ies description so influence of
eity can be difficult to determine;
way of defining facies

Wright et al., 2005; Veillette et al.,
2007a, Veillette et al., 2007b; Tilot
et al., 2018; Simon-Lledó et al.,
2020; Fleming et al., 2025)

t for diversity in nodule size, shape,
e; ignores other hard substrates;
ce/density also represents measure
tat so have to disentangle species-
from habitat heterogeneity-
ionship when using this metric

Mewes et al., 2014; De Smet et al.,
2017; Simon-Lledó et al., 2020;
Durden et al., 2021

s 2D surface; can be time-intensive
s not generally account for diversity
hape, or surface texture; nodule
o represents measure of available
o disentangle species-area
habitat heterogeneity-biodiversity

n using this metric

Amon et al., 2016; De Smet et al.,
2017; Simon-Lledó et al., 2019c,
Simon-Lledó et al., 2020; Chuar
et al., 2020; Durden et al., 2021;
Tong et al., 2022; Fleming et al.,
2025

ualitative description (to date
antitative analysis); resolution
ry with other metrics

Simon-Lledó et al., 2019b, Simon-
Lledó et al., 2019c, Simon-Lledó
et al., 2020; Durden et al., 2021
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in which
metric has
been tested

Target
spatial
scale

Habitat
heterogeneity
metric

Target faunal
size class

Advantages Disadvanta

Nodule
environments

Nodule

Nodule presence/
absence

Meiofauna, macrofauna,
megafauna

Easy to measure; accounts for presence of hard
substrates

Does not accou
surface texture;
information

Nodule volume Meiofauna, macrofauna Accounts for 3-dimensionality of nodules

Nodules are gen
sub-surface part
differentiated in
diversity in nod
not account for
volume also rep
so have to disen
habitat heteroge
using this metri

Patch
Sediment grain size
diversity

Meiofauna, macrofauna
Typically measured in benthic studies; standard
protocols exist; relates directly to heterogeneity

Sediment only

Nodule,
patch, field

Nodule facies
Meiofauna, macrofauna,
megafauna

Accounts for diversity in nodule size, shape,
and surface texture; accounts for some patch
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TABLE 2 Continued
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the patch and field scale in nodule environments. Metrics such as

spatial congruence and nearest neighbor distance have been used for

many years to examine the habitat heterogeneity-biodiversity

relationship in terrestrial environments (e.g., Watling et al., 2011;

Huntington and Lirman, 2012; Xu et al., 2019), and can provide

information about the uniformity or irregularity of patches and their

spatial arrangement, respectively. The application of metrics like

these, and those indicated for examining the nodule scale, could

more robustly characterize habitat heterogeneity—and therefore its

influence-in nodule environments, and do so in a more standardized

way. Although there are some commonalities, sampling devices vary

in both design and size, which can complicate comparing these

metrics of habitat heterogeneity across studies (Washburn et al.,

2021b; Kaiser et al., 2023). Semi-quantitative, information-based

metrics (e.g., defining a metric for nodule patch density) also show

promise at intermediate spatial scales (Loke and Chisholm, 2022), but

would similarly require standardization to ensure the metric is

comparable across study designs and sampling devices.

Finally, the monetary and temporal costs of more focused

sampling and analysis remain hurdles to closing the knowledge

gaps around the influence of habitat heterogeneity and disturbance

on benthic community structure. However, closing these gaps

remains critical to informing the successful management and

conservation of polymetallic nodule ecosystems.
7 Conclusion

There is a growing body of knowledge regarding the community

structure and disturbance resilience of benthic communities associated

with polymetallic nodule environments. However, better ecological

baselines and other knowledge, particularly in understanding the

relationship between habitat heterogeneity and benthic community

structure, will be required to accurately predict—and therefore

manage—the impact that mining may have on faunal communities

(Gollner et al., 2017; Jones et al., 2017; Haffert et al., 2020). Current

research indicates that nodules play an important role in structuring

communities (Veillette et al., 2007a, Veillette et al., 2007b; Simon-Lledó

et al., 2019c; Chuar et al., 2020; Cuvelier et al., 2020; Leitner et al., 2021).

Nodules have been consistently found to support higher diversity and

abundance in megafauna (Amon et al., 2016; Vanreusel et al., 2016;

Tilot et al., 2018; Mejıá-Saenz et al., 2023; Uhlenkott et al., 2023b,

Uhlenkott et al., 2023a) and macrofauna (De Smet et al., 2017; Yu et al.,

2018; Chuar et al., 2020) compared to nodule-free sediments. Though

some studies have indicated an inverse relationship between meiofauna

abundance and nodule abundance (Hauquier et al., 2019; Pape et al.,

2021), nodules have also been found to support slightly higher

meiofaunal diversity in others (Singh et al., 2016; Pape et al., 2021).

Other forms of habitat heterogeneity in nodule environments (e.g.,

seamounts, rocks, topographical variations) have been shown to support

distinct communities with higher diversity than flat, soft sediments

(Cuvelier et al., 2020; Leitner et al., 2021; Mejıá-Saenz et al., 2023;

Uhlenkott et al., 2023b). However, the full extent of the relationship

between habitat heterogeneity and faunal community structure remains

ambiguous in polymetallic nodule environments, particularly across
Frontiers in Marine Science 20
different spatial scales and faunal size classes, and due in part to the

limited metrics currently used to measure it. Without the development

of robust knowledge about the habitat heterogeneity-community

structure relationship in polymetallic nodule environments, extractive

industries may irreversibly alter the habitat heterogeneity that nodules

provide before its importance is fully understood.
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Fleming, B. F. M., Simon-Lledó, E., Benoist, N., O’Malley, B., and Jones, D. O. B.
(2025). Influence of seabed heterogeneity on benthic megafaunal community patterns
in abyssal nodule fields. Elem. Sci. Anthr. 13, 49. doi: 10.1525/elementa.2024.00049

Ford, P. W., Bird, F. L., and Hancock, G. J. (1999). Effect of burrowing macrobenthos
on the flux of dissolved substances across the water–sediment interface. Mar. Freshw.
Res. 50, 523–532. doi: 10.1071/mf98059

Fukushima, T. (1995). OverviewJapan deep-sea impact experiment = JET (Tsukuba,
Japan: OnePetro). Available online at: https://dx.doi.org/.

Fukushima, T., Shirayama, Y., and Kuboki, E. (2000). The characteristics of deep-sea
epifaunal megabenthos community two years after an artificial rapid deposition event.
Publ. SETO Mar. Biol. Lab. 39, 17–27. doi: 10.5134/176293

Fukushima, T., and Tsune, A. (2019). “Long-term monitoring of environmental
conditions of benthic impact experiment,” in Environmental issues of deep-sea mining:
impacts, consequences and policy perspectives. Ed. R. Sharma (Springer International
Publishing, Cham), 191–211. doi: 10.1007/978-3-030-12696-4_7

Fukushima, T., Tsune, A., and Sugishima, H. (2022). “Comprehensive understanding
of seafloor disturbance and environmental impact scenarios,” in in perspectives on
deep-sea mining: sustainability, technology, environmental policy and management.
Ed. R. Sharma (Springer International Publishing, Cham), 313–337. doi: 10.1007/978-
3-030-87982-2_12

Gage, J. D., Hughes, D. J., and Vecino, J. L. G. (2002). Sieve size influence in
estimating biomass, abundance and diversity in samples of deep-sea macrobenthos.
Mar. Ecol. Prog. Ser. 225, 97–107. doi: 10.3354/meps225097

J. D. Gage and P. A. Tyler (Eds.) (1991). “Smaller animals,” in in deep-sea biology: A
natural history of organisms at the deep-sea floor (Cambridge University Press,
Cambridge). doi: 10.1017/CBO9781139163637.009

Gallucci, F., Moens, T., Vanreusel, A., and Fonseca, G. (2008). Active colonisation of
disturbed sediments by deep-sea nematodes: evidence for the patch mosaic model.Mar.
Ecol. Prog. Ser. 367, 173–183. doi: 10.3354/meps07537

Gambi, C., Pusceddu, A., Benedetti-Cecchi, L., and Danovaro, R. (2014). Species
richness, species turnover and functional diversity in nematodes of the deep
Mediterranean Sea: searching for drivers at different spatial scales. Glob. Ecol.
Biogeogr. 23, 24–39. doi: 10.1111/geb.12094

Gates, A. R., Benfield, M. C., Booth, D. J., Fowler, A. M., Skropeta, D., and Jones, D.
O. B. (2017). Deep-sea observations at hydrocarbon drilling locations: Contributions
from the SERPENT Project after 120 field visits. Deep Sea Res. Part II Top. Stud.
Oceanogr. 137, 463–479. doi: 10.1016/j.dsr2.2016.07.011

Gee, J. M., and Warwick, R. M. (1994a). Body-size distribution in a marine metazoan
community and the fractal dimensions of macroalgae. J. Exp. Mar. Biol. Ecol. 178, 247–
259. doi: 10.1016/0022-0981(94)90039-6

Gee, J. M., and Warwick, R. M. (1994b). Metazoan community structure in relation
to the fractal dimensions of marine macroalgae. Mar. Ecol. Prog. Ser. 103, 141–150.
doi: 10.3354/meps103141

Gillard, B., Harbour, R. P., Nowald, N., Thomsen, L., and Iversen, M. H. (2022).
Vertical distribution of particulate matter in the clarion clipperton zone (German
sector)—Potential impacts from deep-sea mining discharge in the water column. Front.
Mar. Sci. 9. doi: 10.3389/fmars.2022.820947

Girard, F., Caress, D. W., Paduan, J. B., Kuhnz, L. A., Litvin, S. Y., Flattery, E., et al.
(2025). Habitat heterogeneity over multiple scales supports dense and diverse
megafaunal communities on a northeast Pacific ridge. Limnol. Oceanogr. 70, 377–
392. doi: 10.1002/lno.12766

Glasby, G. P. (1976). Surface densities of manganese nodules in the southern sector of the
South Pacific. N. Z. J. Geol. Geophys. 19, 771–790. doi: 10.1080/00288306.1976.10420739

Glover, A. G., Gooday, A. J., Bailey, D. M., Billett, D. S. M., Chevaldonné, P., Colaço,
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Simon-Lledó, E., Pomee, C., Ahokava, A., Drazen, J. C., Leitner, A. B., Flynn, A., et al.
(2020). Multi-scale variations in invertebrate and fish megafauna in the mid-eastern
Clarion Clipperton Zone. Prog. Oceanogr. 187, 102405. doi: 10.1016/
j.pocean.2020.102405
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