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polymer layer-reinforced
materials in practical marine
engineering based on physical
experiments and artificial
intelligence modelling
Danda Shi1, Kaiwei Xu1, Xin Yu1, Peng Cui2,3*

and Zhiming Chao1,4*

1College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, China, 2School
of Civil Engineering, Nanjing Forestry University, Nanjing, China, 3Department of Applied Physics and
Electronics, Umea University, Umea, Sweden, 4Institute of Water Sciences and Technology, Hohai
University, Nanjing, China
Marine coral sand-clay mixtures (MCCM) are widely used as fill materials in ocean

engineering, where their strength is influenced bymarine clay content. This study

investigates the mechanical behavior of textured polymer layer-reinforced

MCCM using 3D-printed technology with varying asperity heights, spacings,

and reinforcement layers. Triaxial tests reveal that increased reinforcement,

higher asperities, and smaller spacings enhance strength and internal friction

angle with minimal effect on cohesion. Particle breakage increases with

reinforcement, and fractal analysis shows a linear relationship between fractal

dimension and breakage rate. SEM images reveal the complex interfacial

interaction mechanisms between the MCCM and the polymer layer. A

comprehensive dataset from these tests supports the development of

predictive models, including BPNN, GA-BPNN, PSO-BPNN, and LDA-BPNN,

with the LDA-BPNN showing the highest accuracy and generalization.

Compared with existing approaches, the proposed model framework achieves

significant improvements in predictive performance and robustness. Sensitivity

analysis identifies asperity spacing and asperity height as key factors. An empirical

formula derived from the LDA-BPNN enables practical strength prediction,

offering valuable guidance for marine construction design.
KEYWORDS

textured polymer layer reinforcement, marine coral sand-clay mixture, 3D printing
technology, triaxial shear tests, machine learning
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1 Introduction

Marine coral sand is abundantly found in tropical and

subtropical marine zones and is frequently used as core material

in marine engineering projects (Qi et al., 2022). It is characterized

by diverse particle shapes, high calcium carbonate content, high

porosity, and a tendency to break easily (Ding et al., 2022;

Shahnazari and Rezvani, 2013). Nevertheless, the fill material

used in many marine engineering projects in tropical and

subtropical regions is not typically pure marine coral sand, but

rather a marine coral sand-clay mixture (MCCM) (Chen et al.,

2024), as the sand dredging process for subsea construction

inevitably includes marine clay (Prakasha and Chandrasekaran,

2005; Xu et al., 2020). Meanwhile, some scholars find that while

marine clay exhibits excellent seepage resistance (Wang et al., 2013),

marine coral sand is weakly cemented while being prone to fine

particle loss under wave action, making MCCM vulnerable to

seepage damage (Shen et al., 2021). Moreover, the low strength

and high deformability of marine coral sand, combined with the

debilitating influence of marine clay, significantly reduce the

strength and stability of structures such as marine foundations,

where MCCM serves as the primary material (Lv et al., 2021; Peng

et al., 2022). To resolve the issue, some researchers suggest that

replacing the polymer layer with a textured polymer layer for

reinforcement can notably enhance the strength and reliability of

ocean engineering installations (Bacas et al., 2011; Xu et al., 2023a).

Consequently, the reinforcement of MCCM to enhance its strength,

stability, and seepage resistance has become a critical area of focus

in marine engineering research.

For the reinforcement of MCCM, scholars have conducted

relevant research and obtained valuable findings, with most of

these concerning the reinforcement regarding pure marine coral

sand (Peng et al., 2022; Xu et al., 2023b). These approaches involve

biological, chemical, and physical reinforcement techniques that

enhance the strength and deformation characteristics of marine

coral sands, ultimately improving the reliability and structural

integrity of marine engineering installations (Han et al., 2020;

Zeng et al., 2021). At the same time, many scholars in marine

engineering have explored physical reinforcement methods,

including the application of polymer layer (Kalpakcı et al., 2018;

Kermani et al., 2018; King et al., 2017). The polymer layer is an

effective waterproof material (Luciani et al., 2020). In addition to its

excellent seepage control, the polymer layer also features a long

service life, resistance to seawater erosion, ease of construction, high

cost-effectiveness, and strong reinforcement, which makes it an

ideal choice for large-scale marine engineering applications (Chao

et al., 2024b). These studies provide preliminary references for the

reinforcement of marine coral sand. Nonetheless, in practice, the

blow-fill material used is MCCM, and there is limited research on

the reinforcement of MCCM through the application of textured

polymer layer.

In MCCM, the variety of coral structures results in significantly

different marine coral sand particle shapes (Jin et al., 2022; Wu

et al., 2023; Yang et al., 2024). These differences require matching

specific polymer layer sizes to achieve optimal reinforcement
Frontiers in Marine Science 02
(Cheng et al., 2022), Conventional production methods are

complex and costly, which makes it difficult to produce polymer

layer in precise shapes. Industrialized 3D printing technology offers

a solution by enabling the customization of polymer layers to match

the different characteristics of marine coral sand particles, which, in

turn, enhances the reinforcement (Giroud et al., 2023; Tavakoli

et al., 2023; Van Eekelen and Han, 2020). The above study confirms

the applicability of 3D printed polymer layers in engineering and

highlights their rapid, precise fabrication advantages. However,

research on their mechanical properties primarily focuses on a

single soil type, with limited attention given to MCCM. Thus,

incorporating 3D printing technology is crucial for optimizing the

polymer layer size for MCCM and offers valuable insights for the

design of practical marine engineering projects.

In recent years, the rapid advancement of machine learning has

highlighted its unique advantages in capturing complex nonlinear

relationships among multiple variables, leading to its growing

application and recognition in the field of marine engineering

(Chao and Fowmes, 2021; Kumar et al., 2016a, 2016b; Tetteh,

2016). Numerous studies have demonstrated that machine

learning techniques are highly accurate and adaptable in

predicting the strength characteristics of specialized foundation

materials, such as marine coral sand (Chao et al., 2023). For

instance, some researchers have employed Genetic Algorithm

(GA) to optimize Back Propagation Neural Networks (BPNN) for

predicting the shear strength of soils, while intelligent optimization

methods like Particle Swarm Optimization (PSO) have been widely

used to enhance model robustness and predictive accuracy (Nhu

et al., 2020; Pham et al., 2018). Although preliminary efforts have

been made to apply machine learning to foundation material

modelling, research specifically focused on the mechanical

behaviour of MCCM remains limited (Chao et al., 2024b). Most

existing models rely on relatively simple network structures and

basic optimization strategies, lacking the integration of advanced

techniques such as ensemble learning and hybrid algorithm

frameworks (Chao et al., 2021). Moreover, machine learning

model performance is highly sensitive to the choice of

hyperparameters (Chao et al., 2024d). Proper tuning of these

hyperparameters plays a critical role in improving training

efficiency, accelerating convergence, and enhancing generalization

capability (Chao et al., 2024e). Overall, the integration of advanced

machine learning models with efficient optimization algorithms

offers a promising approach to accurately predict the mechanical

properties of MCCM. This combined strategy not only enhances the

precision of strength prediction but also provides a novel path for

rapid evaluation and intelligent design of complex marine materials.

Such an approach marks a significant shift in marine engineering.

In practical engineering applications, traditional optimization

algorithms such as Particle Swarm Optimization (PSO) and Genetic

Algorithm (GA), while widely used, often face notable limitations

(Chao and Fowmes, 2022; Wang et al., 2018). These include

relatively low computational efficiency and a tendency to become

trapped in local optima when handling high-dimensional and

nonlinear problems, which can reduce both accuracy and

reliability (Chao and Fowmes, 2021). To address these challenges,
frontiersin.org

https://doi.org/10.3389/fmars.2025.1653741
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Shi et al. 10.3389/fmars.2025.1653741
researchers have introduced a novel heuristic optimization

technique known as the Logical Development Algorithm (LDA)

(Jie et al., 2004). Unlike conventional methods, LDA accelerates the

optimization process by performing similarity and dissimilarity

operations in parallel (Chao et al., 2024e). This approach not only

preserves essential data characteristics but also significantly

enhances global search capability and convergence speed (Chao

et al., 2022; Zhang et al., 2022). Compared to traditional algorithms,

LDA has demonstrated superior performance across a range of

machine learning tasks (Chao et al., 2024c). This is particularly

advantageous in addressing complex problems such as predicting

the strength of MCCM, where nonlinear interactions and

uncertainty are prevalent (Chao et al., 2024a). The high efficiency

and global optimization capabilities of LDA offer a promising

pathway for advancing the intelligent modelling and rapid

evaluation of marine materials.

In the paper, the MCCM is reinforced with a 3D printed,

customized small-scale double-textured surface polymer layer. A series

of unconsolidated undrained triaxial tests is carried out to examine its

performance. This study compares the effects of variations in asperity

size on the surface of textured polymer layers and their influence on the

mechanical properties in polymer layer-reinforcedMCCM. The strength

and deformation characteristics of MCCM enhanced by reinforcement

with textured polymer layers are further examined, with emphasis on the

effect of confining pressure, the number of reinforcement layers, and

grain size. Particle breakage characteristics are also evaluated through

sieving tests. Microscopic interfacial interactions between the polymer

layer and marine coral sand or clay particles are analysed with scanning

electron microscopy (SEM), which provides insights into the underlying

mechanical reinforcementmechanisms. This research offers insights into

3D-printed textured polymer layer reinforcement for MCCM and other

marine soils, and it optimizes polymer layer size for both reinforcement

and seepage control.
2 Physical test methodology

2.1 Equipment

The instruments used in the study were static and dynamic

triaxial testing systems from VJ Tech, UK. The apparatus primarily

comprises a load frame with an integrated high-speed servo

controller, an automatic confining pressure regulator, and an

automatic back pressure regulator. The accompanying system

software facilitates parameter setting, test control, and data

acquisition, while also ensuring excellent interactive performance

throughout the process. The instrument diagram is shown

in Figure 1.
2.2 Materials

2.2.1 Marine coral sand and clay
The materials employed in the test included marine coral sand

and kaolin clay. The marine coral sand was sourced from an island
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in the South China Sea. After drying and screening, the 2-4 mm

grain size fraction was selected for testing. The kaolin clay used had

a grain size of 10 mm. Figure 2 shows the grain size distribution

curve, and Table 1 enumerates the relevant parameters. The marine

coral sand owned a non-uniformity coefficient of 1.32 and a

curvature coe ffic ient of 1 .08 , which indica ted poor

particle gradation.

2.2.2 3D printed polymer layer
Polymer layer materials with various double-textured surfaces,

which have surface asperity heights of 1 mm, 2 mm, and 3 mm, and

spacings of 10 mm, 15 mm, and 20 mm, are fabricated through 3D

printing technology (SLA). The textured surface of the polymer

layer is conical, and the material used is white resin. Given the

boundary effects during sample preparation and reinforcement, the

polymer layer has a 96 mm diameter and a 2 mm thickness.

Figure 3. shows the textured polymer layer model and the printed

entity, while Table 2 provides detailed parameters of the

polymer layer.
2.3 Testing program

The textured polymer layer’s potential reinforcement position is

located in the shallow surface layer of the island in the South China

Sea (Chao et al., 2024c), where the marine coral sand-clay mixture

(MCCM) remains dry for extended periods and has very low water

content due to prolonged sun exposure, which causes moisture

evaporation (Chen et al., 2021). Yet, due to the inevitable wave

action and the impact of extreme weather conditions such as heavy

rainfall, seepage control must still be carefully considered.

Therefore, the use of a polymer layer is essential to enhance

stability and prevent potential damage in marine engineering

applications. In this paper, however, MCCM is regarded as dry,

which remains consistent with its condition in most ocean

engineering applications. Unconsolidated undrained tests are

performed to examine the mechanical properties of MCCM

reinforced by textured polymer layers of varying surface types,

confining pressures, and reinforcement layer numbers. These tests

aim to minimize the effect of water content on the results. Given

that marine coral sand particles are easy to break, particles are

screened prior to and following the experiment to study the

fragmentation characteristics of the MCCM under different

conditions, and a quantitative analysis is performed. The sample

dimensions are F100 mm × 200 mm, with a shear rate of 1

mm·min−¹. The details of the test design are provided in Table 3.
2.4 Testing step

To minimize the impact of water content on experimental

results, dry marine coral sand and kaolin clay are used for sample

preparation, with a dry mass ratio of 58.8% marine coral sand to

41.2% kaolin clay (Xu et al., 2020; Zhao et al., 2025). Before sample

preparation, marine coral sand and kaolin clay are blended in the
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specified proportions. The sample is prepared in six layers using a

custom sand mold, with each layer compacted to a designated

position. The reinforcement position diagram of the polymer layer

is illustrated in Figure 4.

After sample preparation, a triaxial compression test is

conducted. The software automatically records axial force and

strain data during the test and stops once the axial strain reaches

12%. Following the test, the MCCM undergoes cleaning, separation,

drying, and screening. The gradation curve of marine coral sand

particles after the test is obtained.
3 Methodology

3.1 Machine learning algorithms

In this study, a machine learning approach using a Back

Propagation Neural Network (BPNN) is employed. To improve

the model’s performance, various optimization techniques, such as

Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and

Logical Development Algorithm (LDA), are integrated into the

framework. These techniques provide several advantages, with three

key benefits standing out in particular:
Fron
1. Each algorithm was developed using a consistent and

systematic framework (Kardani et al., 2020).
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2. These algorithms have been widely applied to address

various challenges in the field of ocean engineering (Zhou

et al., 2017).

3. They are highly effective in identifying complex nonlinear

relationships between a variety of contributing variables

(Liu et al., 2015).
3.1.1 BPNN
The Back Propagation Neural Network (BPNN) is an artificial

neural network that processes data through multiple layers by

iteratively adjusting weights and biases (Hecht-Nielsen, 1992). It

takes input variables through the input layer, which are then

propagated to the hidden layer, where weighted calculations and

nonlinear transformations are performed using activation functions.

The final output is the predicted result. In this study, the BPNNmodel

is configured with five input parameters—Asperity spacing, Asperity

height, confining pressure, number of reinforcement layers, and strain

—and one output parameter: stress. The model uses the Log-Log

Sigmoid function as the activation function and is built with the Newff

function. Initial weights and biases are optimized to improve prediction

accuracy. The BPNN model is shown in Figure 5.

3.1.2 GA and PSO
The Genetic Algorithm (GA) is a population-based

optimization method inspired by the principles of natural

selection (Lambora et al., 2019). It seeks optimal or near-optimal

solutions by simulating evolutionary processes like selection,

crossover, and mutation. The process starts with a randomly

initialized population, where each individual is evaluated using a

fitness function. High-performing individuals are selected for
TABLE 1 Basic physical parameters of marine coral sand.

GS D50/mm Cc Cu emin emax

2.81 3.3 1.08 1.32 0.99 1.49
FIGURE 1

Static and dynamic triaxial testing systems.
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reproduction, and genetic diversity is introduced through crossover

and mutation. This iterative process continues until a stopping

criterion, such as a maximum number of iterations or an acceptable

fitness level, is met. GA is particularly effective in solving complex

optimization problems due to its strong global search capability and

adaptability in nonlinear, high-dimensional spaces.

Particle Swarm Optimization (PSO) is a population-based

heuristic algorithm inspired by the coordinated behavior of

swarming organisms, such as birds and fish (Wang et al., 2018).
Frontiers in Marine Science 05
In PSO, each potential solution is represented as a particle that

moves through the search space, adjusting its velocity and position

based on both its personal best performance and the best result

found by the entire swarm. This process allows the swarm to

collectively converge on optimal solutions. PSO offers several

advantages, including a simple structure, ease of implementation,

no need for gradient information, and strong global optimization

capabilities. It has been successfully applied in various optimization

tasks, such as function optimization and neural network training.
FIGURE 2

Grain size grading curve of marine coral sand.
FIGURE 3

3D printing of polymer layer models.
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3.1.3 LDA
The Logical Development Algorithm (LDA) is a supervised

dimensionality reduction technique that reduces the dimensionality

of input features by maximizing the ratio of between-class variance

to within-class variance (Chao et al., 2024b). In regression tasks,

LDA is used as a preprocessing step to extract the most relevant and

uncorrelated features, which enhances model stability, reduces

overfitting, and improves prediction accuracy. When integrated

with neural networks, LDA simplifies the input space while

preserving essential discriminative information, leading to more

efficient and robust learning. The LDA-BPNN model is shown

in Figure 6.
3.2 Model parameter setting

3.2.1 Hyperparameter optimization
Optimizing hyperparameters is essential for improving the

performance of machine learning models, as varying settings can

greatly influence training efficiency and prediction accuracy. In this

study, Genetic Algorithm (GA), Particle Swarm Optimization (PSO),

and Logical Development Algorithm (LDA) were employed to enhance

the hyperparameter tuning of a Backpropagation Neural Network

(BPNN), thereby boosting its overall effectiveness.

To enhance convergence efficiency and prediction accuracy, key

hyperparameters for each optimization algorithm were strategically

configured, as detailed in Table 4. For the Genetic Algorithm (GA),

the population size (pop_num) was set to 10 to balance

computational cost with exploration capability. The number of

generations (gen) was fixed at 80, allowing sufficient evolution

without excessive runtime. The selection probability parameter

(normGeomSelect) was adjusted to 0.1, increasing the likelihood
Frontiers in Marine Science 06
of choosing high-fitness individuals. The crossover rate

(arithXover) was defined as 2, promoting genetic diversity, while

the mutation setting (nonUnifMutation) was specified as [0.3, 40, 2]

to improve the algorithm’s global search behavior and prevent local

optima entrapment. The convergence tolerance (maxGenTerm)

was set at 1e-5, enabling continued refinement near optimal

solutions. In the Particle Swarm Optimization (PSO) framework,

cognitive and social learning factors (c1, c2) were each assigned a

value of 2.0, ensuring a balanced influence between personal and

group experiences on particle motion. The position search space

was restricted to the interval [-2.0, 2.0], maintaining solution

feasibility. A swarm size (sizepop) of 20 and a maximum iteration

count (maxgen) of 120 were chosen to achieve a good compromise

between search depth and computational load. The BPNN was

trained with 200 epochs to provide adequate learning capacity. For

the LDA approach, a population size of 25 and a maximum

iteration count of 60 were selected. The mutation factor (F) was

set at 0.6 to encourage robust global search, and the crossover

probability (CR) was set at 0.85 to maintain population diversity

during recombination. These settings allowed the model to better

exploit class discriminative features during dimensionality

reduction, thereby enhancing classification performance. Overall,

the refined hyperparameter configurations for GA, PSO, and LDA

significantly improved the BPNN’s performance by accelerating

convergence, mitigating overfitting, and increasing predictive

accuracy. These enhancements demonstrated strong applicability

in tasks such as strength prediction of reinforced MCCM.

Figure 7 presents a comparative analysis of RMSE trends for

GA, PSO, and LDA throughout the optimization process. The

horizontal axis denotes the number of iterations (0–50), while the

vertical axis reflects RMSE values, representing the prediction error

of the model. As observed, all three algorithms progressively reduce
TABLE 2 Physical and mechanical properties of the polymer layer.

Standard
Tensile
modulus

Tensile
strength

Elongation
at break

Flexural
modulus

Impact
strength

Distortion
temperature

ASTM 2,450Mpa 50Mpa 10% 2,400Mpa 45J/m 56°C
TABLE 3 Experimental scheme.

Number Asperity spacing (mm) Asperity height (mm) Confining pressure (kPa) Polymer layer layers

T1 – – 10, 30, 50 0

T2 10 1 10, 30, 50 1, 2

T3 10 2 10, 30, 50 1, 2

T4 10 3 10, 30, 50 1, 2

T5 15 1 10, 30, 50 1, 2

T6 15 2 10, 30, 50 1, 2

T7 15 3 10, 30, 50 1, 2

T8 20 1 10, 30, 50 1, 2

T9 20 2 10, 30, 50 1, 2

T10 20 3 10, 30, 50 1, 2
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RMSE with increasing iterations, highlighting their capability to

minimize prediction error effectively. Among them, PSO exhibits

the fastest convergence, achieving lower RMSE values within fewer

iterations, which indicates greater efficiency in navigating the

solution space. However, after an initial sharp decline, PSO’s

improvement rate slows and eventually plateaus at an RMSE of

around 3. In comparison, GA also experiences a rapid early decrease

in RMSE, followed by a steadier decline that levels off near 1.5 after

roughly 20 iterations. LDA, meanwhile, begins with a slower

reduction but accelerates in the later stages, ultimately converging

to an RMSE close to 1. Overall, while PSO leads in early-stage

convergence speed, LDA demonstrates superior final accuracy and

stability, outperforming both GA and PSO in the long-term

optimization performance.

3.2.2 Establishment of database and data
processing

To analyze the strength behavior of MCCM under varying

conditions, a dataset of 2436 samples was developed. It includes five
Frontiers in Marine Science 07
essential variables: asperity spacing, asperity height, confining pressure,

number of reinforcement layers, and strain. To enhance the modeling

efficiency and ensure consistency in data scale, all input and output

variables were normalized prior to training. This normalization process

helps accelerate model convergence and improves the overall predictive

performance of the proposed machine learning model:

The summary statistics of the variables in the dataset are

presented in Table 5. Asperity spacing ranges from 10 to 20 mm,

while asperity height is categorized into three levels: 1 mm, 2 mm,

and 3 mm. The number of reinforcement layers includes three

levels: 0, 1, and 2. Confining pressure varies between 10 kPa and 50

kPa. The strain values span from 1% to 12%. To ensure data quality

and the suitability for machine learning modeling, data

preprocessing procedures were applied, including data cleaning,

normalization, and dataset partitioning.

3.2.3 Establishment of data sets
In this study, the dataset creation serves as the foundation for

training the machine learning algorithms. A dataset with 5 input
FIGURE 4

Polymer layer reinforcement position diagram.
FIGURE 5

The typical structure of BPNN.
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parameters and 1 output parameter was developed to train and

validate the performance of BPNN, GA-BPNN, PSO-BPNN, and

LDA-BPNN, as illustrated in Figure 8. The dataset was randomly

divided into a training set (80%) and a testing set (20%) to ensure

fair evaluation and minimize partitioning bias.

A total of 2,436 data samples were compiled, each comprising

five critical input variables: asperity spacing, asperity height,

confining pressure, number of reinforcement layers, and strain.

To evaluate the model’s ability to generalize, the dataset was

partitioned into two subsets: a training set and a testing set. The

model was developed using the training data, while the test data was

reserved for final performance validation. Specifically, 80% of the

data was allocated for training and the remaining 20% for testing,

enabling a reliable evaluation of the model’s predictive capability

and real-world applicability. The parametric analysis diagram is

shown in Figure 9.
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3.3 Predictive performance assessment
index

During model development and optimization, selecting suitable

evaluation metrics is crucial for assessing predictive performance.

In this study, two primary evaluation indicators are employed:

1, Root Mean Square Error (RMSE): This metric quantifies the

standard deviation of the residuals between predicted and actual

values. A lower RMSE signifies reduced prediction error, indicating

higher model accuracy and reliability (Hodson, 2022). The RMSE

calculation formula is shown in Equation 1.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
yi − ŷ ið Þ2

s
(1)

Where n is the number of samples, yi is the observed value, and

fi is the predicted value.
FIGURE 6

LDA-BPNN model workflow. (a) LDA structure diagram (b) The operation flow for LDA-BPNN.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1653741
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Shi et al. 10.3389/fmars.2025.1653741
2, Mean Absolute Percentage Error (MAPE): This indicator

measures the average absolute difference between predicted and

actual values, expressed as a percentage of the actual values. A lower

MAPE reflects smaller prediction deviations, indicating improved

model accuracy and effectiveness (Chicco et al., 2021). The MAPE

calculation formula is shown in Equation 2.

MAPE =
1
no

n

i=1

yi − ŷ i

yi

����
����� 100% (2)
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Where n is the number of samples, yi is the observed value, and

ŷ i  is the predicted value.
4 Results and analysis of the
experiment

4.1 Examination of sample failure patterns

After each test, the pressure chamber was disassembled, and

the typical morphologies of the specimens with varying

reinforcement layers after the test were recorded, as illustrated

in Figure 10. Overall, the marine coral sand-clay mixture

(MCCM) specimens did not show distinct shear planes and

exhibited a bulging behaviour. In the unreinforced specimen,

lateral bulging was most pronounced. With one layer of

reinforcement, the bulging was reduced, primarily occurring

above and below the reinforced area, where the textured

polymer layer acted as a “belt” to restrain lateral bulging. With

two layers of reinforcement, the bulging decreased further and

became more evenly distributed across the top, middle, and

bottom parts of the specimen, where the textured polymer layer

acted like two ‘belts,’ further restricting the bulging. The

phenomenon is similar to the one examined by some scholars

(Ding et al., 2022). This phenomenon clearly shows that as the

number of textured polymer layer reinforcement layers increases,

the lateral bulging of the MCCM specimens is notably reduced.
4.2 Deviatoric stress-strain relationship

Based on the experimental data, deviator stress-strain

relationship curves were obtained for each experiment. Figure 11a

presents the curves for plain MCCM under different confining

pressures, which shows that the sample strength steadily rises with

increased confining pressures. The deviator stress-strain curves

exhibit a strain-hardening behaviour, which becomes more

evident with increasing confining pressure. The maximum axial

deviator stresses are 44.84 kPa, 110.44 kPa, and 214.70 kPa,

respectively. Figures 11b–j present the deviator stress-strain

curves for different types of textured polymer layers, various

numbers of reinforcement layers, and confining pressures. As

confining pressure and the number of reinforcement layers

increase, the deviator stress-strain curves shift upward, the

hardening trend becomes more evident, and shear strength
frontiersin.org
TABLE 4 Parameter settings for GA, PSO and LDA optimized BPNN.

Hyperparameter Parameter name Range of values

GA

Population size
(pop_num)

10

Genetic generations(gen) 80

Selection function
parameter

(normGeomSelect)
0.1

Crossover function
parameter (arithXover)

2

Mutation function
parameter

(nonUnifMutation)
[0.3,40,2]

Optimal solution
tolerance(maxGenTerm)

1e-5

PSO

Learning factors (c1, c2) 2

Maximum
position (popmax)

2.0

Minimum
position (popmin)

-2.0

Population size (sizepop) 20

Population updates
times (maxgen)

120

Training
iterations (epochs)

200

LDA

Population
size(pop_num)

25

Maximum number of
iterations (max_iter)

60

Mutation factor (F) 0.6

Crossover
probability (CR)

0.85
TABLE 5 Statistical table of factors affecting the stress of the MCCM.

Argument Type Minimum value Maximum value Mean value Standard deviation

Asperity spacing

Numerical type

10 20 15 5

Asperity height 1 3 2 1

Confining pressure(Kpa) 10 50 30 20

Number of reinforcement layers 0 2 1 1

Strain(mm) 1 12 7.27 3.26
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steadily improves. When the confining pressure is 10 kPa, the

deviator stress increases by up to 92.51%. At lower axial strains, the

deviator stress-strain curves of reinforced and unreinforced MCCM

samples almost overlap at the same confining pressure. With the

increase in axial strain, the curves of the reinforced samples start to

separate, clearly showing the reinforcement effect. With different

types of textured polymer layers, the deviator stress-strain curves of

the reinforced MCCM show only slight improvements, with

minimal variations. The strength variations are not easily

distinguishable from the deviator stress-strain curves. Section 4.3

analyses the impact of polymer layer surface texture size on MCCM

strength by evaluating the strength enhancement rates of the

reinforced samples.
4.3 Strength impact analysis

To better analyse the effects of different roughness types of

polymer layers, confining pressure, and reinforcement layer

numbers on the strength of MCCM, this study introduces the

strength enhancement rate (Rs) and the Mohr-Coulomb failure

criterion for quantitative analysis (Luo et al., 2024). According to

the data shown in Figure 12, the strength enhancement rates under

both reinforced and unreinforced conditions are observed.

Figures 12a–c illustrate the strength enhancement rates under

different types of polymer layers, confining pressures, and

reinforcement layer numbers. The analysis indicates that polymer

layer reinforcement can improve the strength of the MCCM to

varying degrees. With an increase in reinforcement layers, the

strength enhancement rate rises, while the strength enhancement
Frontiers in Marine Science 10
rate generally decreases as the confining pressure increases. Under

one and two reinforcement layers, the average strength

enhancement rates increased by 26.92% and 74.39%, respectively.

The three confining pressures (10kPa, 30kPa, 50kPa) showed

average strength enhancement rates of 55.87%, 54.62%, and

41.47% under one and two reinforcement layers. Under different

confining pressures and reinforcement layers, as the height of the

asperity on the rough polymer layer surface increases and the

spacing between them decreases, the strength enhancement rate

slightly changes, with an overall increasing trend. In conclusion,

under low confining pressures and multiple reinforcement layers,

the reinforcement effect of rough polymer layers is optimal. The

reinforcement effect is positively correlated with the increase in the

height of asperity and the reduction in their spacing.

Additionally, the cohesion and internal friction angle of the

MCCM specimens under various conditions were calculated, with

results presented in Table 6 and Figure 13. From the table and image, it

can be observed that the cohesion ofMCCMunder different conditions

is very small, with similar values and no obvious pattern. Therefore, the

average cohesion under different reinforcement layer numbers was

calculated, showing a slight increase in cohesion with reinforcement.

The internal friction angle of the MCCM specimens exhibits a more

significant trend, increasing with the number of reinforcement layers.

Under one and two reinforcement layers, the average internal friction

angle increased by 6.77% and 15.58%, respectively, compared to the

unreinforced samples. The larger the height of the asperity on the

rough polymer layer surface, the larger the internal friction angle.

However, the spacing between the asperity has little to no effect on the

internal friction angle. It is evident that these nonlinear relationships

are difficult to accurately describe using traditional methods, so this
FIGURE 7

Number of RMSE iterations for GA, PSO and LDA.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1653741
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Shi et al. 10.3389/fmars.2025.1653741
study will further explore these patterns using machine learning in

section 4.5.
4.4 Particle breakage analysis

The particle gradation data before and after the experiments

(T1-T10) were obtained through sieving tests, and the

corresponding curves were plotted. Figure 14 shows the particle

gradation curves under different conditions. In Figure 14a, with an

increase in confining pressure, the particle gradation curve
Frontiers in Marine Science 11
gradually shifts upward, indicating an increase in the degree of

particle breakage. Upon zooming in on the local curves, the particle

breakage is concentrated between 2-2.5 mm. In Figures 14b–d, the

degree of particle breakage increases with both the number of

reinforcement layers and the confining pressure. However, due to

the overlap of the particle gradation curves, the influence of

different rough polymer layer types on particle breakage is not

clearly discernible from the gradation curves. In all conditions, the

particle breakage zone is concentrated between 2-2.5 mm.

In conclusion, an increase in confining pressure and

reinforcement layers leads to a greater degree of particle breakage,
FIGURE 8

Distribution for data in the constructed database. (a) Asperity spacing (b) Asperity height (c) Confining pressure (d) Reinforced layers (e) Strain.
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but the influence of different rough polymer layer types on particle

breakage is not significant. Therefore, an attempt was made to

analyse the particle breakage using the relative breakage rate (Br)

(Hardin, 1985). The relative breakage rate Br diagram is shown in

Figure 15. The Br values for all conditions (T1-T10) were calculated,
Frontiers in Marine Science 12
as shown in Figure 16. The analysis indicates that the increase in

reinforcement and confining pressure has a significant impact on

particle breakage. As both confining pressure and the number of

reinforcement layers increase, the relative breakage rate of MCCM

significantly increases, with the maximum value of 3.84% occurring
FIGURE 9

Parametric analysis diagram.
FIGURE 10

The failure modes of specimens with different numbers of reinforcement layers.
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under two reinforcement layers and 50 kPa confining pressure.

However, the effect of different polymer layer types on the particle

breakage of marine coral sand is minimal. The general trend is that

as the height of the asperities on the rough polymer layer surface

increases and the spacing between them decreases, the particle

breakage rate increases, but this effect is not pronounced.
Frontiers in Marine Science 13
In summary, particle breakage occurs in MCCM under all

conditions, and the degree of particle breakage significantly

increases with the increase in confining pressure and

reinforcement layers. However, the change in the roughness of

the rough polymer layer surface has a minimal effect on particle

breakage. Therefore, particle breakage alone cannot accurately
FIGURE 11

Deviator stress-strain curve: (a) T1; (b) T2; (c) T3; (d) T4; (e) T5; (f) T6; (g) T7; (h) T8; (i) T9; (j) T10.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1653741
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Shi et al. 10.3389/fmars.2025.1653741
describe the pattern of MCCM strength variation. Its characteristics

will be further detailed in the subsequent fractal dimension analysis

and in Section 4.5 through machine learning.

To better quantify the state of particle breakage, the fractal

model is used to characterize the particle breakage behaviour. Tyler

and Wheatcraft (1992) introduced a fractal model for particle size

distribution curves, representing the relationship between the

cumulative mass of soil particles and particle size. The calculation

formula is as follows:

M d < dið Þ
MT

=
di

dmax

� �a
=

di
dmax

� � 3−Dð Þ
(3)

Where d represents the size of the selected particle; M(d<di)

represents the cumulative mass of particles with a diameter less than

di;MT is the total mass of particles; di is the diameter of the ith layer

of sieve, and the maximum particle size of marine coral sand is dmax;

the slope a of the particle size distribution curve at the particle

diameter di is given by a=3−D, where D is the fractal dimension of

the particle material.
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Taking the logarithm of both sides of (Equation 3) yields

(Equation 4):

lg
M d < dið Þ

MT

� �
= 3 − Dð Þ lg di

dmax

� �
(4)

Based on equation (12), the slope k of the linear relationship

between lg[M(d<di)/MT] and lg(di/dmax) is 3−D. Therefore, the

fractal dimension D can be determined by calculating the slope of

the curve on a log-log plot. A larger fractal dimension indicates a

greater extent of particle fragmentation. The above equation is

employed to describe the fractal behaviour of reinforced marine

coral sand during triaxial compression tests. By examining the

fractal dimension, we can conduct an in-depth study of the fractal

breakage behaviour during the experimental process. Due to the

relatively low confining pressure and other external loads, as well as

the weakening effect of clay in this experiment, the breakage of

marine coral sand particles was limited. Consequently, the particle

size distribution curve does not reach the ultimate limit state of

particle breakage. The final fractal dimension does not fall within
FIGURE 12

Strength enhancement ratio (a) 10kPa;(b) 30kPa;(c) 50kPa.
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the range specified by Equations 3 and 4. Therefore, the particle

breakage characteristics of marine coral sand can only be

quantitatively described by the specific variation patterns of the

fractal dimension under different working conditions.

The particle sieving data from different experimental conditions

were substituted into Equation 4, and the fractal dimension fitting

curves, along with the fractal dimensions and fitting coefficients,

were obtained through software, as shown in Figure 17 and Tables 7

and 8. Although the fractal behaviour is weak, the development of

particle breakage can still be described by the gradually increasing

fractal dimension. Upon analysis, it was found that the variation of

the fractal dimension follows the same trend as the particle breakage

rate. As the confining pressure and the number of reinforcement

layers increase, the fractal dimension also increases. The effect of

different rough polymer layer types on the fractal dimension is

minimal. As the height of the asperities on the rough polymer layer

surface increases and the spacing between them decreases, the

fractal dimension also increases, but the increase is very small.
4.5 Machine learning predicting
performance

The predictive performance of the machine learning model,

trained and evaluated on 2,436 samples, is illustrated in Figures 18

and 19. All training sets are shown in Figures 18a, c, e, g; all test sets

are shown in Figures 18b, d, f, h.

Overall, the predicted outputs (represented by red hollow

circles) generated by each model exhibit a generally good

agreement with the actual values (black hollow diamonds),

suggesting that all models are capable of capturing the underlying

nonlinear relationships between the input features and the target

variable to a certain extent. This alignment indicates their

effectiveness in fitting the training data. However, noticeable

discrepancies in prediction accuracy exist among the models,
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highlighting differences in their learning capabilities. Among the

models evaluated, the LDA-BPNN model (Figure 18h)

demonstrates the highest predictive accuracy, with its outputs

showing minimal deviation from the observed values. This

suggests that the LDA-BPNN model not only achieves precise

fitting but also maintains a strong capacity to model complex

interactions in the data. In contrast, the standard BPNN model

(Figure 18b) exhibits larger prediction errors, especially in samples

with high peak values. These deviations imply that the shallow

architecture of the BPNN lacks the representational power required

to fully capture intricate data patterns, leading to underfitting in

more complex regions of the dataset. Improvements are observed in
TABLE 6 Strength parameters of different test cases.

Number
0 layer 1 layer 2 layers

c(kPa) j(°) c(kPa) j(°) c(kPa) j(°)

T1 3.11 44.92 – – – –

T2
T3

– – 4.49 48.08 4.00 51.07

– – 5.26 48.00 3.80 51.61

T4 – – 6.05 48.62 4.35 53.47

T5 – – 4.09 48.21 3.54 50.67

T6 – – 3.88 48.07 4.05 52.01

T7 – – 3.69 48.30 4.07 53.00

T8 – – 4.57 47.25 1.71 51.36

T9 – – 4.05 47.39 2.68 51.35

T10 – – 3.90 47.74 2.86 52.76

Average value 3.11 44.92 4.44 47.96 3.45 51.92
FIGURE 13

Cohesion c and internal friction angle j.
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the GA-BPNN (Figure 18d) and PSO-BPNN (Figure 18f) models,

both of which integrate optimization techniques—Genetic

Algorithm and Particle Swarm Optimization, respectively—to

enhance the baseline BPNN. These hybrid models yield

predictions that more closely follow the actual trends, indicating

better parameter tuning and improved model robustness.

Nonetheless, signs of mild overfitting are apparent in certain
Frontiers in Marine Science 16
samples, particularly in regions with relatively high data variance,

which suggests the need for further regularization or cross-

validation to enhance generalization.

In summary, the LDA-BPNN model consistently outperforms the

other approaches across both training and testing datasets. Its strong

fitting accuracy, combined with stable generalization to unseen data,

underscores its effectiveness in modeling the complex relationships
FIGURE 14

Particle grading curves before and after the experiment (a) 0layer;(b) 10kPa;(c) 30kPa;(d) 50kPa.
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present in the input space, making it the most robust and reliable

choice among the models evaluated in this study.

As illustrated in Figure 19, the LDA-BPNN model consistently

outperforms the other three machine learning models when evaluated

on the testing dataset. Specifically, LDA-BPNN model achieves the

highest prediction accuracy, recording the lowest RMSE values of

1.54356 for the testing set and 1.23474 for the training set. Additionally,
Frontiers in Marine Science 17
it yields the minimumMAPE values—5.45134% for the testing set and

7.22231% for the training set—demonstrating strong generalization

capability. The model also achieves the highest correlation coefficient

(R) of 0.99753 on the test data, indicating a very strong linear

relationship between the predicted and actual values.

In comparison, although the GA-BPNN model benefits from

genetic algorithm optimization and shows improved performance over

the base model, it still lags behind LDA-BPNN. The GA-BPNN model

reports RMSE values of 1.5397 and 1.879 for the test and training sets,

respectively, and MAPE values of 5.9479% and 10.4841%. Its test set R

value of 0.98417 suggests a moderately strong correlation, but the model

exhibits limitations in fully capturing the underlying data patterns.

The PSO-BPNN model performs relatively poorly, with larger

prediction errors and more dispersed residuals. This indicates that

the integration of particle swarm optimization does not significantly

enhance the predictive power of the base BPNN. For this model, the
FIGURE 15

Relative breakage rate Br diagram.
FIGURE 16

The relative breakage rates(Br) (a) 1 layer;(b) 2 layers.
TABLE 7 The fractal dimension curves D&R2 under
unreinforced conditions.

Confining pressure (kPa) D R2

10 -5.517 0.9601

30 -4.513 0.9781

50 -3.415 0.9853
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RMSE values for the test and training sets are 3.60674 and 3.85794,

respectively, while the corresponding MAPE values are 9.451% and

11.014%. The test set correlation coefficient (R) is 0.98312,

reflecting reduced predictive consistency.

The original BPNN model exhibits the weakest performance

among all four models. It produces the highest RMSE values of

3.81524 and 3.9744, and MAPE values of 9.2679% and 12.7309% for
Frontiers in Marine Science 18
the test and training datasets, respectively. With an R value of

0.97365, coupled with a noticeable deviation between predicted

points and the regression line, the results suggest that the shallow

architecture of BPNN lacks the capacity to effectively represent the

complex, nonlinear interactions in the dataset.

In summary, the LDA-BPNN model demonstrates superior

performance in both training and testing phases compared to
FIGURE 17

The fractal dimension curves under different conditions. (a) 10kPa 1layer (b) 10kPa 2layer (c) 30kPa 1layer (d) 30kPa 2layer (e) 50kPa 1layer (f) 50kPa
2layer.
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GA-BPNN, PSO-BPNN, and BPNN. It offers higher predictive

accuracy, stronger generalization, and more robust model stability

—especially on unseen data. Even under similar optimization

strategies, the LDA-BPNN approach delivers significantly better

predictive capabilities than the other models.
4.6 Sensitivity analysis

Understanding the internal mechanisms of machine learning

models is essential for enhancing model transparency,

interpretability, and practical trustworthiness. A key component

of this understanding lies in analyzing feature importance, which

helps to reveal how different input variables influence the model’s
Frontiers in Marine Science 19
predictions and provides valuable insights into the decision-making

process (Yang et al., 2025). Among the various interpretability

techniques available, the Shapley Additive Explanations (SHAP)

method has emerged as one of the most effective and widely

adopted tools. Rooted in cooperative game theory, SHAP

systematically considers all possible combinations of input

features to evaluate how each one contributes to a given

prediction. For each individual prediction, SHAP assigns a

numerical value—referred to as the SHAP value—to every input

feature. This value quantifies the marginal contribution of that

feature to the model’s output. A positive SHAP value indicates that

the feature increases the predicted output, while a negative value

suggests a reducing effect (Lundberg and Lee, 2017). By aggregating

SHAP values across multiple samples, researchers and practitioners
TABLE 8 The fractal dimension curves D&R2 under reinforced conditions.

Confining pressure (kPa) Asperity spacing (mm) Asperity height (mm)
D R2

1 layer 2 layer 1 layer 2 layer

10

10 1 -4.478 -4.262 0.9722 0.9749

10 2 -4.437 -4.177 0.9720 0.9752

10 3 -4.347 -4.058 0.9728 0.9763

15 1 -4.687 -4.305 0.9697 0.9753

15 2 -4.582 -4.261 0.9711 0.9756

15 3 -4.433 -4.137 0.9719 0.9755

20 1 -4.994 -4.442 0.9651 0.9747

20 2 -4.803 -4.349 0.9675 0.9743

20 3 -4.630 -4.264 0.9702 0.9738

30

10 1 -4.270 -4.155 0.9742 0.9738

10 2 -4.119 -3.931 0.9746 0.9767

10 3 -4.082 -3.839 0.9760 0.9779

15 1 -4.345 -4.274 0.9753 0.9748

15 2 -4.263 -4.071 0.9741 0.9765

15 3 -4.180 -4.005 0.9748 0.9759

20 1 -4.184 -4.351 0.9730 0.9759

20 2 -4.341 -4.181 0.9745 0.9766

20 3 -4.208 -4.144 0.9764 0.9754

50

10 1 -3.306 -3.164 0.9851 0.9808

10 2 -3.284 -3.136 0.9856 0.9794

10 3 -3.225 -3.084 0.9855 0.9785

15 1 -3.340 -3.174 0.9873 0.9817

15 2 -3.291 -3.183 0.9871 0.9804

15 3 -3.179 -3.158 0.9878 0.9794

20 1 -3.391 -3.226 0.9873 0.9845

20 2 -3.341 -3.205 0.9875 0.9836

20 3 -3.326 -3.186 0.9879 0.9831
fro
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can identify which features have the most influence on the model

across the entire dataset, as well as understand local variations in

individual predictions. This level of interpretability is particularly

valuable for complex models such as neural networks or ensemble

methods, where traditional coefficient-based explanations fall short.

SHAP thus not only supports technical validation and model
Frontiers in Marine Science 20
refinement, but also helps promote the responsible and informed

deployment of machine learning in real-world applications.

Figure 20 presents the five most influential features affecting the

output of the LDA-BPNN model and provides a quantitative

assessment of their individual contributions. The pie chart illustrates

the mean SHAP values for each feature, where a higher SHAP value
FIGURE 18

Prediction results of training set and test set on test data. (a) BPNN training dataset (b) BPNN test dataset (c) GA training dataset (d) GA test dataset
(e) PSO training dataset (f) PSO test dataset (g) LDA training dataset (h) LDA test dataset.
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indicates a greater contribution to the model’s prediction. On the left,

the swarm plot offers a more detailed visualization of feature effects: the

x-axis represents SHAP values, indicating the direction and magnitude

of each feature’s impact on the prediction, while the y-axis corresponds

to the feature values. A high SHAP value combined with a high feature

value typically suggests a positive correlation—larger feature values lead

to increased predicted outputs. Conversely, negative SHAP values

imply a suppressive influence on the model’s output within certain

value ranges. Among all the features, Asperity spacing emerges as the

most dominant factor, contributing 32.7% to the overall prediction.

This highlights its critical role in governing the stress-strain behavior of

MCCM, likely due to its influence on shear resistance at the contact

interface—wider spacing enhances interfacial friction, thereby

improving the composite strength. Asperity height ranks second in

importance, with a contribution of 27.5%. Its impact is attributed to

enhanced mechanical interlocking; greater asperity heights intensify

particle interlock, promoting energy dissipation and increasing shear

resistance during deformation.

In contrast, strain itself shows the lowest average SHAP value at

only 7.5%, suggesting it has limited direct influence on the model

output. This may indicate that strain is more a response variable
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dependent on other input features rather than a primary predictor.

The SHAP-based interpretability analysis clearly identifies Asperity

spacing as the leading determinant in the model’s predictive

performance. This finding underscores the importance of

carefully controlling and optimizing asperity spacing in the

engineering design of MCCM-based materials. Likewise, the

substantial influence of Asperity height signifies its role in

enhancing interfacial mechanical behavior.

In summary, the results reveal considerable variation in the

contributions of different features to the prediction accuracy.

Therefore, targeted optimization strategies should prioritize high-

impact parameters—particularly asperity spacing and height—to

ensure the structural stability, safety, and durability of marine

infrastructure constructed with MCCM under complex

environmental conditions.
4.7 Empirical formulas

Previous modeling results demonstrate that the developed

LDA-BPNN model is capable of accurately predicting the
FIGURE 19

Fitting lines of different models.
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strength of MCCM. Nevertheless, the inherent complexity of

machine learning models can pose practical challenges,

particularly for engineers and practitioners lacking expertise in

artificial intelligence. To enhance usability and facilitate broader

application, this section introduces an analytical empirical

expression that replicates the predictive behavior of the LDA-

BPNN model. This formulation provides a straightforward and

efficient means for estimating MCCM strength. The BPNN

employed follows a standard feedforward architecture with a
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single hidden layer. Its output can be represented by a

mathematical expression derived from the trained connection

weights and node biases, as shown below (Goh et al., 2005):

Yn = fsig b0 +o
h

k=1

wk · fsig bk +o
m

i=1
wikXi

 ! !
(5)

The normalized predicted output Yn, ranging from -1 to 1, is

calculated based on the normalized input variables Xi, which
FIGURE 20

Feature importance analysis plot. (a) All of the sample (b) A single sample.
TABLE 9 Connected weights and biases for the constructed LDA-BPNN algorithm.

Hidden layer
node number

Weight Bias

Input parameter Output
parameter

Hidden
layer

Output
layer

S H P L Y R

1 0.42 -0.44 0.21 0.44 -0.27 0.23 1.05

0.51

2 1.18 1.16 -0.14 1.03 0.15 -0.18 -0.72

3 0.91 -1.32 1.05 -1.15 0.57 0.12 0.45

4 -1.12 0.34 -1.17 1.78 -0.93 0.03 0.84

5 1.24 1.45 0.92 -1.67 1.23 -0.01 1.09
frontiersin.org

https://doi.org/10.3389/fmars.2025.1653741
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Shi et al. 10.3389/fmars.2025.1653741
includes asperity spacing (mm),asperity height(mm), number of

reinforcement layers, confining pressure (kPa), and strain (%),

through the connection weights Wik between the ith input node

and the kth hidden node, hidden layer biases bk, weights Wk

connecting the hidden nodes to the output node, output layer

bias b0, and the hyperbolic tangent sigmoid transfer function fsig xð Þ
= ex−e−x

ex+e−x , where h and m denote the numbers of hidden nodes and

input variables, respectively.

The normalized output Yn can be converted into the actual

predicted strength t using the following denormalization formula

(Equation 6):
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t = 0:5 Yn + 1ð Þ tmax − tminð Þ + tmin (6)

Here, tmax and tmin represent the maximum and minimum

MCCM strength values in the dataset, respectively.

To facilitate engineering applications, the neural network

structure described above can be further expressed in the

following simplified form. As shown in Equations 7–9.

Yn = tanh C1ð Þ (7)

C1 = b0 +o
h

k=1

wk · tanh Akð Þ (8)
TABLE 10 30 sets of data selected for the experiment.

Asperity spacing Asperity height Confining pressure (kPa) Reinforced layers Strain (%)

0 0 10 0 5

30 0 8

50 0 12

10 1 10 1 1

2 30 2 3

3 50 1 5

10 1 50 2 7

2 10 1 9

3 30 2 12

10 1 30 1 10

2 50 2 8

3 10 1 4

15 1 10 1 1

2 30 2 3

3 50 1 5

15 1 50 2 7

2 10 1 9

3 30 2 12

15 1 30 1 10

2 50 2 8

3 10 1 4

20 1 10 1 1

2 30 2 3

3 50 1 5

20 1 50 2 7

2 10 1 9

3 30 2 12

20 1 30 1 10

2 50 2 8

3 10 1 4
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Ak = bk +o
m

i=1
wikXi (9)

All connection weights in the model (Wik, Wk) and bias

parameters (bk, b0) are automatically optimized during training

using the Differential Evolution algorithm. The complete set of

parameters, which can be directly applied in ocean engineering

calculations, is provided in Table 9.

This analytical empirical model offers strong interpretability and

enables rapid prediction of MCCM strength without relying on

machine learning platforms, making it well-suited for practical

engineering scenarios where model transparency and computational

efficiency are critical.
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The input variables S, H, P, L, and Y correspond to asperity

spacing, asperity height, confining pressure, number of reinforced

layers, and strain, respectively. The output variable R represents the

strength of the MCCM, as detailed in Table 9.
4.8 Experimental verifications

To assess the applicability and accuracy of the machine learning

model and the analytical formula, the proposed empirical model

was used to predict the strength of MCCM under various

conditions. A total of 30 representative test cases were selected, as

detailed in Table 10. Based on the specific experimental setups,

Equation 5 was employed to estimate the strength of MCCM under

different scenarios. The predicted results were then compared with

experimental data from previous studies, as illustrated in Figure 21.

This comparison served to evaluate the predictive performance and

practical value of the developed model across a range of conditions.

As illustrated in Figures 21, the developed empirical prediction

formula demonstrates excellent performance in estimating the

strength of marine coral sand–clay mixtures (MCCM) under

various conditions. The model yields a root mean square error

(RMSE) of 1.112, a mean absolute percentage error (MAPE) of

5.65%, and a coefficient of determination (R²) of 0.99681, indicating

exceptional predictive accuracy and robustness. These results

confirm the model’s capability in effectively capturing the

strength behavior of MCCM across different scenarios.

Compared withmore complexmachine learning-based approaches,

the proposed formula offers enhanced practicality and accessibility,

particularly for engineering professionals without backgrounds in

programming or algorithm development. Its transparent structure

and interpretable parameters make it a straightforward and efficient

alternative for rapid strength estimation. This approach not only

reduces technical barriers in modeling and analysis but also serves as

a reliable tool for engineering design, construction planning, and safety

evaluation. Overall, it holds significant promise for broader application

and dissemination in marine engineering practice.
5 Discussion of the interface
properties

Figure 22 presents scanning electron microscope (SEM) images

that reveal the complex interface interaction mechanism between

the marine coral sand-clay mixture (MCCM) and the polymer layer

reinforcement. MCCM consists of angular marine coral sand

particles with high porosity and flaky clay minerals. This unique

composition creates a more complex and mechanically robust

interlocking interface with the polymer layer. The rough polymer

layer primarily acts as a constraint through its asperities, which

limit the lateral movement of the marine coral sand. Additionally,

the polymer layer, with its membrane-like, non-perforated

structure, also restricts the longitudinal movement of the sand.
FIGURE 21

Performance evaluation of MCCM strength prediction based on
empirical equations (a) The predicted value and experiment data (b)
The R2 value.
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As shown in Figure 22, fine clay particles infiltrate the voids

between the marine coral sand particles, forming a denser skeletal

structure. This “filling and coating” effect not only reduces the

overall porosity of the mixture but also significantly increases the

effective bonding area between the MCCM and the polymer layer.

Especially on the surface of the polymer layer, clay particles exhibit

strong adhesion, further enhancing the interface contact. In
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summary, the microscopic interaction mechanisms at the

interface between the polymer layer and MCCM include:
1. Clay filling and coating the pores of the marine coral sand;

2. Adhesion between the clay and the polymer layer surface;

3. Mechanical interlocking between the angular sand particles

and the asperity structure.
FIGURE 22

The interface diagram and SEM image.
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These synergistic effects collectively enhance the interface

strength and overall stability of the reinforced MCCM system,

providing a solid microstructural foundation for its application in

the reinforcement of marine soft soils and island and

reef engineering.
6 Conclusion

This study investigates the mechanical behaviour of marine

coral sand-clay mixtures (MCCM) reinforced with 3D-printed

textured polymer layers through a series of laboratory tests,

including unconsolidated undrained triaxial compression tests,

particle size distribution analysis, and SEM observations. The

effects of asperity height (1-3 mm), spacing (10-30 mm), number

of reinforcement layers (1-2), and confining pressure (10-50 kPa)

on stress-strain response, strength, and particle breakage were

systematically evaluated. Based on the test results , a

comprehensive database was established, and an LDA-BPNN

model was developed to predict the strength of MCCM using key

variables such as asperity spacing, asperity height, confining

pressure, reinforcement layers, and strain. To assess model

performance, three benchmark models (BPNN, GA-BPNN, PSO-

BPNN) were developed for comparison. A sensitivity analysis was

conducted to quantify the influence of each input variable, and an

empirical formula was derived to support engineering applications

without requiring machine learning expertise. The main findings

are summarized as follows:
Fron
1. As reinforcement layers and confining pressure increase,

MCCM strength improves, with deviatoric stress-strain

curves shifting upward and hardening more pronounced.

Reinforced samples show a 15%–92% strength increase

over unreinforced ones, with maximum gains of 48.36%

for single-layer and 92.51% for double-layer reinforcement.

The reinforcing effect is minimal at low axial strains but

becomes more significant as strain increases.

2. The strength enhancement rate increases with the number

of reinforcement layers, asperity height, and reduced

asperity spacing. The highest rate, 92.51%, occurs at 10

kPa confining pressure with two reinforcement layers.

Reinforced samples show higher cohesion (up to 4.44

kPa) and internal friction angles (up to 51.92°) than

unreinforced ones.

3. Particle breakage in MCCM under triaxial compression is

minor, mainly occurring in the 2–2.5 mm range. Confining

pressure and reinforcement layers significantly influence

breakage, peaking at 3.84% under 50 kPa with two layers.

4. The study identifies asperity spacing, asperity height,

confining pressure, reinforcement layers, and strain as the
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primary factors influencing MCCM strength, with asperity

spacing and height showing the most significant

strengthening effects. The LDA-BPNN model demonstrated

superior predictive accuracy and generalization. Sensitivity

analysis confirmed asperity spacing as the most influential

parameter. Furthermore, the derived empirical formula offers

clear interpretability and practical utility, enabling reliable

strength predictions without the need for advanced machine

learning tools—an efficient solution for data-limited

engineering applications.

5. The interface characteristics of textured polymer layer-

reinforced MCCM are mainly governed by frictional

constraints within the asperities. SEM reveals diverse marine

coral sand shapes with porous, textured surfaces, increasing

friction and enhancing interaction with the polymer layer.
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