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Introduction: Despite the benefits of smart ports development for productivity,
energy saving, and environmental improvement, an intelligent investment
strategy should consider potential adverse effects on marine ecosystems
during the construction and operation processes. To address this issue, this
study aims to examine the integration of green finance instruments with artificial
intelligence (Al)-driven intelligent decision-making (IDM), utilizing data on 15
major Chinese ports.

Methods: Employing machine learning (ML) models, alongside SHapley Additive
exPlanations (SHAP) analysis, the research quantifies the impact of green finance
on critical environmental metrics, including total organic carbon (TOC), carbon
fluxes, carbon burial rate, pollution load index (PLI), flow velocity, and erosion/
deposition rate (E/DR). First, ML models are employed to estimate these
indicators based on historical data. Subsequently, SHAP is utilized to interpret
the impact of financial instruments on ecological indicators. This enables the
identification of financial instruments that positively influence ecological
indicators in specific marine regions, thereby supporting IDM to prioritize
those instruments in the corresponding areas.

Results: Findings highlight green bonds as the most influential, with SHAP values
of 0.24-0.30 for carbon burial rate and 0.17-0.20 for PLI, particularly in advanced
ports like Shanghai and Ningbo-Zhoushan, while eXtreme gradient boosting
(XGBoost) achieves superior predictive accuracy.

Discussion: This study suggests that green bonds, green leasing, and green credit
should be prioritized. Policymakers should establish a dedicated framework for
green bonds and green leasing, specifically targeting ports with advanced smart
infrastructure (L3-L4). Green credit schemes should be promoted to support
infrastructure enhancement and renewable energy projects in L1-L2 ports.

intelligent decision system, smart port, green finance, marine ecosystem,
machinelearning, port environmental performance, SHAP value, China
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1 Introduction

Handling nearly one-third of global container throughput
(UNCTAD, 2023), Chinese sea ports play key nodes in economic
growth but pose significant threats to marine ecosystems, especially in
sensitive areas like the Bohai Sea and Yangtze River Delta, where
pollution, habitat loss, and greenhouse gas emissions are growing
concerns (Yu et al, 2021). To tackle this, green finance tools like
green bonds and blue bonds have poured over $10 billion into
sustainable port projects in 2023, with initiatives like shore power
systems at the Port of Shanghai slashing emissions by up to 90%
(ADB, 2023). Concurrently, intelligent decision-making (IDM)
developed based on advanced technologies like artificial intelligence
(AI) and Internet of Things (IoT) has become a transformative
approach to optimize port operations and environmental outcomes.
We deploy this approach because it allows for the effective utilization of
IDM’s strengths. First, it leverages the predictive accuracy of machine
learning (ML) algorithms, which are particularly robust when handling
complex distributions such as ecological indicators and financial
instruments. Second, it benefits from the interpretability offered by
SHapley Additive exPlanations (SHAP). Third, it helps detect and
mitigate biases. Finally, the integration of ML and SHAP within IDM
can help correct errors commonly associated with traditional decision-
making methods. As a result, prioritizing specific financial instruments
in particular regions becomes more reliable. Despite these advantages,
utilizing IDM to explore how green finance can facilitate sustainable
smart port development has not been fully examined.

Recent studies on smart ports are gaining traction among
researchers as their potential to optimize port performance,
sustainability, and resilience (Ta et al., 2025). Sustainability is
measured across three dimensions: economic benefits, environmental
improvements, and social impacts (Bui-Duy et al., 2023). Most studies
tend to address two dimensions, economic and environmental aspects,
of a decision (Le and Xuan-Thi-Thu, 2024). Li et al. (2023)
systematically argued for how data-driven decision-making might
improve port operations. In vibrant international trade regions like
East Asian and the Pacific (Le and Xuan-Thi-Thu, 2024), the adoption
of smart port technologies has been accelerated by regional policies
promoting digital transformation. The IoT, Al, and blockchain are
game-changers with the support of policy instruments. IDM supported
by AI algorithms is believed to be effective in solving supply chain
disruptions and port operations (Le, 2025; Minh et al., 2024). It allows
port authorities to make educated decisions about resource
management, traffic optimization, and environmental compliance.
Digitization in port activities can significantly improve the
sustainability of maritime shipping, especially in areas with modern
technological infrastructure (Luo et al, 2023). This was further
confirmed by Tabish and Chaur-Luh (2024), who proposed that
intelligent design in maritime landscapes could optimize internal
pathways, thus mitigating energy consumption and emissions. A
prototype IDM system was designed to foster both horizontal and
vertical collaboration among freight stakeholders within port logistics
(Irannezhad et al., 2020). Studies argue that China’s coastal waters are
critical for biodiversity and fisheries but are heavily impacted by port
operations (Chen et al.,, 2020). Puig and Darbra (2024) indicated that
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insufficient monitoring of marine ecosystems points to critical gaps
that need more focus and resources for effective environmental
protection. Winogradow and Pempkowiak (2014) emphasized the
important role of organic carbon burial rates in mediating the role
of marine ecosystems within the global CO, cycle. Building on this,
they provided an estimate of organic carbon burial in the sediments of
the Baltic Sea. Zhang et al. (2023) Marine sediment samples were
obtained from the coastal region of Bohai Bay to assess the influence of
exogenous inputs on both the content and speciation of carbon.

In response, some port authorities have launched revitalization of
mangroves and artificial reef programs to improve the underwater
ecosystem. Such approaches could lead to encouraging results.
However, the effectiveness of these programs depends on investment
allocation and requires collaborative governance. Yin et al. (2020)
indicated that regulatory barriers and high implementation costs are
primary challenges for China’s diverse port landscape. To overcome
these barriers, green finance instruments have become crucial in
promoting sustainable port development in China, a leading maritime
shipping hub. Instruments, including green bonds, blue bonds, and
sustainability-linked loans, are utilized to support environmentally
friendly port projects (Thompson, 2022). In China, blue bonds have
been issued to fund initiatives such as the electrification of port
equipment and the development of offshore wind farms to power
ports, including Ningbo-Zhoushan (Wang et al., 2025). For example,
China’s Ministry of Finance has supported blue bond issuances to
retrofit ports with low-carbon technologies, reducing greenhouse gas
emissions and marine pollution (Rebelo, 2020). Green bonds and
sustainability-linked loans are also integral to China’s port
sustainability efforts, aligning with Environmental, Social, and
Governance (ESG) frameworks. Tan et al. (2023) addressed that
green financing had enabled Chinese ports to invest in shore power
systems, low-sulfur fuel infrastructure, and waste management facilities.
Green bonds supported the Port of Shanghai in installing shore power
systems to achieve the emissions reduction target significantly (Mohite
and Mathew, 2025). However, challenges involve high initial
expenditures and the need for defined measurements to evaluate the
environmental impact of funded initiatives. The China Banking and
Insurance Regulatory Commission has introduced taxonomy-based
approaches to ensure financial institutions prioritize sustainable
investments in port infrastructure, but inconsistencies in regional
regulations pose implementation challenges. Liu et al. (2025) reshaped
the smart port concept for Tianjin Port through the lens of population
ecology theory. The integration of green finance with IDM enhances its
efficacy (Kai et al,, 2024). There exists a research gap on how green
financing for smart ports affects environmental aspects (Li et al., 2023).

To our knowledge, despite promising achievements in smart port
development, there exist some research gaps, as indicated in Table 1.
There is a lack of comprehensive studies on integrating IDM with green
finance instruments tailored to Chinese ports. While past studies have
emphasized the function of science and technology in sustainable
marine operations, research on scaling these innovations across
diverse financial regulatory environments for smart ports is still
lacking. They have not incorporated as comprehensive a set of critical
ecological indicators as those presented in this paper, nor have they
employed such a diverse array of green finance instruments. Therefore,

frontiersin.org


https://doi.org/10.3389/fmars.2025.1656454
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

92UBIDS dULIB Ul SI913UOI

¢0

640" UISISNUO.Y

TABLE 1 Summary of relevant studies and research gaps.

Studies Methods Variables Regions/countries Smart port relations
1 (Lucrezi, 2022) Regression analysis Wildlife reduction, toxic algal growth, and mucilage Conero Riviera/Italy No
ti i f fi ial, technological, and envi tal . .
2 (Mohite and Mathew, 2025) Survey/positivist approach/quantitative method Questionnaires of financia a;ce::: ogical, and environmen Mumbai Port/India Yes
R tewater, pri d dary treated wastewater,
3 (Shaban et al., 2024) 3D CNN (convolutional neural network) aw 'was ewater, primary and secondary treatec wastewater Shenzhen/China No
tertiary treated wastewater, and dewatered sludge samples
4 (Shao, 2020) Panel threshold model Industrial wastewater discharged directly into the sea 11 coastal regions/China No
5 (Su and Gasparatos, 2023) Survey/questionnaires/analytical hierarchy process Knowledge/awareness/support/willingness to pay Large Xiamen Bay/China No
Choice behaviors of vessels with power receiving facilities on
6 Tan et al., 2023 S titati thod Chi Y
(Taneta ) urvey/quantitative metho shore power berths and traditional berths mna es
Blue bonds, hical , envi tal i ts, and
7 (Thompson, 2022) Secondary interviews e bonds, geographica sc?pe environmental mpacts, an 14 countries/regions No
financial returns
Ent ight method, led dinati del, K-
8 (Wang et al,, 2025) THropy weig me' oc» coupred coor 1r.1a o mo' ¢ Marine low-carbon economy, carbon reduction China’s coastal provinces No
means clustering, and grey correlation analysis
9 (Wang et al,, 2018) Chemical experiments and analysis Sediment cores and components South China Sea No
Wi ds d
10 ( mogra- oW an Chemical experiments and analysis Organic carbon burial rates Baltic Sea No
Pempkowiak, 2014)
Payback, t subsidy rates, I benefits,... .
11 (Yin et al., 2020) In-depth interviews, quantitative analysis aypack governmen S_u . Y raes, annuat benelts Port of Shanghai/China Normal port
relationships data
Frequency of storm surge occurrences, direct economic losses
i t , pollutant disch: f wastewater, 3
12 (Yu et al., 2021) Statistical method r.or'n Storm surge p'o' utan ,ISC arges of was ew'a e sewage' Bohai Sea/China Normal port
drilling mud, and drilling cuttings from oftshore oil and gas, oil
spill accidents, numbers of vessels, berths, and ports.
13 (Zhang et al., 2023) Chemical experiments and analysis Carbon content in sediments, Bohai Bay/China No
14 Our study Actual recorded data/IDM (ML + SHAP-based) Six marine ecosystem indicators/six green financial instruments 15 major ports/China Yes
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the interaction effects of green finance on marine ecosystem health are
limited. Furthermore, the integration of advanced and accurate ML
techniques with SHAP represents a notable methodological distinction.
In this study, we aim to bridge these research gaps by firstly applying
ML algorithms to predict six marine ecosystem indicators, including
total organic carbon (TOC), carbon fluxes, pollution load index (PLI),
carbon burial rate, flow velocity, and erosion/deposition rate (E/DR)
using six financial instruments. These instruments include green bonds,
green credit, green leasing, green insurance, emissions trading system
(ETS), and credit guarantee funds. The next phase of IDM is deploying
SHAP to quantify the impacts of financial tools on these indicators.
Based on the forecasting results and quantitative interpretability, we
identify which financial instruments are more effective and should be
prioritized to simultaneously achieve smart port development goals
while minimizing negative impacts on the surrounding ecosystem. This
study addresses three core questions: (1) What is the predictive accuracy
of the model for marine ecological indicators surrounding smart ports
when incorporating green finance variables? (2) How much do green
finance instruments affect and interact with environmental indicators?
(3) Which instruments should be prioritized for specific port groups
according to their smartness level?

The significance of this research lies in its potential to reconcile
economic imperatives with ecological preservation in one of the world’s
most critical maritime networks. Green finance has proven effective in
funding projects like mangrove restoration in Xiamen (Su and
Gasparatos, 2023) and ballast water treatment systems in Qingdao,
which mitigate marine pollution and enhance biodiversity (Nie et al,
2023). Meanwhile, IDM, leveraging Al algorithms, enables real-time
monitoring and predictive analytics, as seen in Shenzhen’s smart sensor
systems for water quality management (Shaban et al, 2024). Yet,
challenges persist, including the lack of standardized metrics to
evaluate the ecological benefits of green finance and the uneven
adoption of smart technologies across ports, with advanced hubs
outperforming smaller ports in leveraging green investments. By
employing ML models and SHAP analysis, this study quantifies the
contributions of green finance and IDM to key environmental metrics
across 15 major Chinese ports. This study addresses these challenges by
providing a quantitative assessment of how green finance can mitigate
marine ecosystem degradation.

The paper is structured to provide a comprehensive exploration of
these issues. Section 2 outlines the methodologies, including data
acquisition, preprocessing, and the application of ML models with
SHAP analysis to evaluate environmental outcomes. Section 3 presents
the results, highlighting the synergistic impacts of green finance and
IDM across ports. Section 4 discusses recommendations and policy
implications. Section 5 summarizes key findings, contributions,
limitations, and future research directions.

2 Data acquisition and methodologies
2.1 Data preprocessing

The dataset is compiled from multiple sources. Marine ecosystem
indicators are sourced from environmental monitoring systems
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maintained by the Ministry of Ecology and Environment (2024)
and port-specific environmental reports published by the China Ports
and Harbours Association (2024). Variables include TOC, carbon
fluxes, PLI, carbon burial rate, flow velocity, and E/DR. Sediment
cores were collected by vessel from depths ranging between 700 and
1,400 meters in seabed areas surrounding selected ports (within a
1,000-2,000 m radius). Sampling was conducted at a frequency of
once every 10-14 days. After pore water extraction, the samples were
sealed in sterile bags onboard, then freeze-dried and manually ground
into powder using an agate mortar in an onshore laboratory for
elemental and isotopic analysis. TOC content was measured using a
Heraeus CHN-O rapid elemental analyzer at geochemical institutes
located in the same city. Sedimentation rates were analyzed using
radiometric dating techniques (*'°Pb) to determine sediment
accumulation rates. Subsequently, the organic carbon content in
the sediments was measured using a TOC analyzer, and the carbon
burial rate was calculated using Equation 1:

Carbon Burial Rate = TOC x Density of sediment x Sedimentation rate x 10
1

Sediment cores were analyzed in combination with radiometric
dating (*'°Pb) to determine the rate of change in sediment
thickness, calculated using Equation 2:

Ah

E/DR = )

where Ah is the change in sediment thickness (mm), and At is
the time interval (days).

Carbon fluxes, PLI, and flow velocity data were obtained from the
databases of the Ministry of Ecology and Environment and the
Ministry of Natural Resources. Flow velocity is measured daily,
while carbon fluxes and PLI are analyzed using the ICP-MS
(Inductively Coupled Plasma Mass Spectrometry) method with a
sampling frequency of once every 1-2 weeks. Green finance data are
generated from financial reports issued by the Ministry of Finance,
the reports and database from the China Banking and Insurance
Regulatory Commission (CBIRC), the People’s Bank of China
(PBoC), and the Asian Development Bank. The credit instruments
include transactions carried out by port authorities and construction
contractors, as well as energy and equipment suppliers for the port.
These instruments encompass bond issuance, financial leasing, loans,
carbon credit offset trading, insurance purchases, and credit
guarantees. The recording frequency is based on the occurrence of
transactions by all relevant units, subsidiaries, and branches involved.
Figures 1 and 2 display the descriptive statistics and density
distribution of environmental and financial variables.

Additionally, port-specific and technological adoption are extracted
from the annual reports of ports in China and literature (Mohite and
Mathew, 2025; Huang et al., 2023). The temporal extent of the
ecosystem datasets is from January 2022 to December 2024, collected
through in situ measurements conducted at ports and surrounding
water areas. The period during the COVID-19 pandemic is excluded
due to limited and incomplete data. The resulting dataset comprises
over 4,637 observations. Table 2 summarizes the levels of smartness and
the application of smart technologies across major seaports in China.
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To ensure compatibility with ML algorithms, this study deploys the
following preprocessing procedures before designing models for IDM.
Missing values were addressed using k-nearest neighbors (KNN)
imputation (Yadav and Ahamad, 2019; Bui-Minh et al., 2025). The
choice of kshould balance capturing local patterns in the data with
avoiding overfitting or excessive noise. A small k focuses on the closest
neighbor which is useful for capturing local patterns, but it risks
overfitting to noise or outliers, increasing variance. A bigger k may
potentially miss local variations and introduce bias toward the global
mean or majority patterns. Therefore, with the size of our dataset, we
select the value of k at an intermediate level (k = 10) to mitigate the
impact of outliers while maintaining the local data structure. Then,
numerical features were normalized to the [0, 1] range using min-max
scaling. Outliers are detected and processed using Z-score and
Mabhalanobis distance (Yaro et al., 2024; Mayrhofer and Filzmoser,
2023). The preprocessed dataset was partitioned into 80% training and
20% testing sets, with 10-fold cross-validation used to optimize the
model’s hyperparameters.

2.2 Interpretability-based ML model for
IDM

2.2.1 Predictive ML models

In this study, the authors design three ML models, including
Random Forest (RF), Support Vector Regression (SVR), and XGBoost,
to predict key environmental indicators. We select these model

candidates because of their respective strengths in addressing the
complexities of the dataset, which features nonlinear relationships,

30
25
20

15

Density

10

A ﬂ i

Values

FIGURE 1
Descriptive statistics and density distribution of environmental variables.
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high dimensionality, and potential interactions between variables. RF
can mitigate overfitting by averaging predictions from multiple
decision trees. Therefore, it is suitable for handling heterogeneous
data using financial, ports, and environmental variables. Also, it
performs robustly in the presence of outliers or noisy observations.
SVR also perform well in regression tasks for tabular multiple-sized
datasets, because it employs kernel functions to map data into higher-
dimensional spaces, capturing complicated nonlinear patterns without
forming a specific functional form. XGBoost is selected for its gradient
boosting framework that optimizes predictive accuracy through
iterative error correction and regularization techniques, offering
superior scalability and efficiency in processing large datasets with
multicollinear features, thus aligning well with the study’s goal of
integrating real-time monitoring data. The mathematical justifications
and detailed mechanisms of these models can be found in Appendices
A1-A3. To validate the predictive ML model, we use metrics including
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), and adjusted R*. RMSE and MAE
quantify the error magnitude; MAPE measures relative errors for scale-
independent comparison and cross-indicator assessments; and
adjusted R* measures the goodness-of-fit for models.

2.2.2 SHAP analysis and performance metrics

To enhance the interpretability of the ML models, SHAP is
employed to quantify the contribution of each feature to the
predictions of six environmental indicators. Accordingly, it provides
insights into how predictors interact with port smartness levels to
influence environmental outcomes (see Appendix A4). For robustness
check, the SHAP explanations is evaluated by using the following

**TOC (%)**
Min: 2.20

Max: 2.59
Mean: 2.39

Std Dev: 0.12
Skewness: 0.11
Kurtosis: -1.28

**Carbon Burial Rate (kg/ha/day)**
Min: 1.05

Max: 1.35
Mean: 1.20

Std Dev: 0.09
Skewness: 0.06
Kurtosis: -1.30
**Carbon Fluxes (ton/day)**
Min: 0.13

Max: 0.17
Mean: 0.15

Std Dev: 0.01
Skewness: -0.17
Kurtosis: -1.18
*PLIw

Min: 0.95

Max: 1.25
Mean: 1.10

Std Dev: 0.09
Skewness: -0.09
Kurtosis: -1.18

**Flow Velocity (m/s)**
Min: 0.38

Max: 0.52
Mean: 0.45

Std Dev: 0.04
Skewness: -0.06
Kurtosis: -1.30
**E/DR (mm/day)**
Min: 0.10

Max: 0.18
Mean: 0.14

Std Dev: 0.02
Skewness: -0.07
Kurtosis: -1.24
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FIGURE 2

Unit: Million USD
**green bonds**
Mean: 144.76
= Std Dev: 39.67
Skewness: 4.74
Kurtosis: 23.48
**green credit**
Mean: 31520.10
e Std Dev: 5483.49
Skewness: 3.09
Kurtosis: 12.62
**green insurance**
Mean: 6968.21
== Std Dev: 2476.19
Skewness: 5.23
Kurtosis: 27.82
HETS**
Mean: 77.53
= Std Dev: 17.38
Skewness: 3.77
Kurtosis: 16.80

**green leasing**
Mean: 9.69
== Std Dev: 1.00
Skewness: -0.20
Kurtosis: 0.70
**credit insurance funds**
Mean: 4.12
== Std Dev: 0.45
Skewness: -0.51
Kurtosis: 0.09

Descriptive statistics and density distribution of financial variables (standardized).

metrics. The Explanation Error (EE), which measures the discrepancy
between the model’s predicted output and the SHAP-based explanation,
ensures the accuracy of the attribution process. A low EE (close to zero)
indicates that SHAP accurately attributes the model’s output to
individual features, ensuring reliable interpretations. The Feature
Importance Ranking (FIR) orders predictors based on their average
SHAP values to highlight their relative influence on the outcome. The
Interaction Effect Strength (IES) quantifies the magnitude of pairwise
interactions. The stability of these rankings is assessed using the Kendall
rank correlation coefficient 7. A high 7 (close to 1) indicates stable feature
importance rankings, ensuring that SHAP reliably identifies key drivers
for the environmental indicators. High interaction strength values
indicate significant synergistic effects. Finally, the Coverage of
Interaction Effects (CIE), which assesses the proportion of the model’s
prediction explained by these interaction effects, provides an evaluation
of the interdependencies among variables. This metric ensures that
SHAP captures complex feature interactions critical for understanding
sustainable port dynamics. Details on these metrics can be found in
Appendix B. Figure 3 presents a schematic representation of the
integration between the XGBoost (due to its higher predictive
accuracy compared to RF and SVR, as shown in Section 3) and SHAP.

3 Result analysis

3.1 Model performance evaluation across
environmental indicators

The performance evaluation of the predictive models, RF, SVR,

and XGBoost, for the key environmental output variables is
presented in Figure 4. These heatmaps display the comparative
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metrics utilizing the adjusted R% MAE, MAPE, and RMSE. For all
indicators, XGBoost outperforms other ML model candidates,
achieving the highest adjusted R* values and the lowest MAE,
MAPE, and RMSE. Additionally, its predictive performance
achieves higher accuracy. None of the models exhibits signs of
overfitting. For TOC, Xiamen exhibits the highest MAE (11.4) and
RMSE (12.6). For carbon burial rate, the adjusted R? reaches 0.95
(Shanghai) and MAE is minimal, while MAPE ranges from 4.3%
(Shenzhen) to 6.2% (Qingdao) and RMSE from 6.3 (Ningbo-
Zhoushan) to 12.6 (Hong Kong). RF and SVR show competitive
adjusted R? values (0.93 at Shanghai for RF), but their MAE (9.3 at
Hong Kong for RF) and RMSE (12.1 at Hong Kong for RF) are
consistently higher, indicating less robustness in modeling carbon

sequestration processes.

3.2 SHAP-based analysis across key
outputs

The mean absolute SHAP values quantifying the contribution of
various green finance tools to the prediction of key environmental
output variables are presented in Figure 5. The SHAP values provide
insights into the relative importance and impact of each financial
instrument on environmental outcomes, facilitating IDM for
sustainable port development. Among the suite of green finance
mechanisms, green bonds (SHAP: 0.15-0.30) and green credit
(0.12-0.26) demonstrate the strongest influence on improving
critical environmental indicators, including TOC, carbon burial
rates, carbon fluxes, PLI, flow velocity, and E/DR, across 15 leading
Chinese ports. The most pronounced impacts are observed in
Shanghai (0.18-0.30) and Ningbo-Zhoushan (0.26-0.27). Green
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TABLE 2 Levels of smartness and smart technology applications in Chinese seaports.

Port name Level of smartness

Smart technologies in

Smart technologies in

construction operations

Shanghai (Yangshan) L4

Robots, automated cranes, autonomous

Digital twin, BIM, automated terminal
Igital twin automated termina trucks (L4), 5G, Al 10T, renewable

design
energy
Automated terminal operations, IoT,
Shenzhen L3 BIM, digital planning 5G, digital management systems (PCS,
TMS)
. Partial automation, IoT, traffic
Hong Kong L3 BIM, environmental sensors
management systems, clean energy
. . . 5G, remote control, automated cranes,
Ningbo-Zhoushan L3 Digital twin, smart planning L .
Al digital twin
. L Robots, [oT, automated terminals,
BIM, environmental monitoring
Guangzhou L3 renewable energy, smart management
systems
systems
Automated bridge cranes, rail cranes,
Qingdao L3 BIM, automated design 8 )
Al IoT, smart security systems
5G, Al autonomous trucks, automated
Tianjin L3 BIM, IoT sensors in construction terminals, real-time environmental
monitoring
. . . . Partial automation, IoT, digital
Dalian L2 Digital planning, environmental sensors
management systems
. . L Partial automation, IoT, 5G, traffic
Xiamen L2 BIM, construction monitoring systems
management systems
Automated cranes, IoT, smart
Tangshan L2 BIM, digital construction technologies
management systems
IoT, digital management systems,
Yingkou L2 Digital planning 8 . 8 K Y
partial automation
Partial automation, IoT, traffic
Rizhao L2 BIM, environmental sensors
management systems
10T, partial automation, digital
Lianyungang L2 Digital planning P g
management systems
. . L IoT, automated cranes, smart
Yantai L2 BIM, construction monitoring systems
management systems
Digital management systems, basic
Qinhuangdao L1 Basic digital planning 8 & 4

automation

L1: Digitization of individual activities in the port; L2: Integrated systems in a port community; L3: Logistics chain integrated with hinterland; L4: Connected ports in the global logistics chain

(Asian Development Bank, 2020).

insurance (0.07-0.17) and ETS (0.06-0.16) contribute supportive
functions by mitigating risk and encouraging lower emissions.
Credit guarantee funds (0.03-0.14) and green leasing (0.03-0.12)
have little influence, especially in ports with underdeveloped
infrastructure like Rizhao, Yantai, Yingkou, and Lianyungang (0.03-
0.09). These variations highlight the relevance of local contextual
factors, with Shanghai’s excellent performance being driven by
investment in advanced technology infrastructure, whilst ports like
Yingkou underperform due to limits in smart system implementation.

Green bonds and green credit exhibit the highest SHAP values,
suggest an essential function of driving environmental improvements
through investments in renewable energy (Li et al., 2024; Ran et al,
2024), pollution control, and smart technologies, with peak values at
Shanghai across all metrics (TOC: 0.27, carbon burial rate: 0.30,
carbon fluxes: 0.28, PLL 0.20, flow velocity: 0.19, E/DR: 0.18),

Frontiers in Marine Science

reflecting its advanced smart port infrastructure and substantial
green financing. Ports with lower smartness levels (L1-L2) show
reduced SHAP values, suggesting a correlation between technological
advancement and financial instrument efficacy. The lower
contributions of credit guarantee funds and green leasing highlight
the need for targeted policy support to enhance their impact. These
findings are consistent with the literature (Kai et al., 2024), which
emphasizes the use of green finance and IDM to accomplish
sustainable port development in China.

The parallel coordinates plots for the performance of RF, SVR,
and XGBoost models, as depicted in Figure 6, provide a normalized
visualization of predictive accuracy across key environmental
metrics, based on adjusted R%, MAPE, MAE, and RMSE inverted
for consistency. XGBoost performs the highest normalized
performance scores, approaching 1.0 across all evaluation metrics.
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FIGURE 5

Mean Absolute SHAP Values for PLT

Mean absolute SHAP values for ecosystem indicators (The higher the value, the greater the influence of the feature on the model's predictions).

This reflects its superior ability to model complex, nonlinear
relationships while minimizing prediction errors, as evidenced by
the tight clustering of red lines near the upper boundary. RF and
SVR have lower and more variable scores, ranging between 0.2 and
0.6, for MAPE and RMSE, indicating greater relative error and
reduced robustness, particularly when predicting carbon fluxes and
E/DR. XGBoost’s strong performance in modified R* and inverted
error metrics demonstrates its ability to model diverse, port-specific
environmental information. Meanwhile, the heterogeneity found in
RF and SVR implies a greater sensitivity to data quality and
hyperparameter setups, indicating the need for more optimization
to improve generalizability across varied ecological situations.

3.3 Dependence analysis across
environmental metrics

The SHAP analysis delineated in Figure 7 evaluates the relative
contributions and intricate interaction effects of green finance
instruments on the prediction of critical environmental output
variables. The SHAP Summary Plots offer a global perspective on
feature importance, employing a kernel density estimation to visualize
the distribution of SHAP values, which quantify the marginal
contribution of each feature to the model’s output. Green bonds
emerge as the most influential predictor across multiple metrics,
exhibiting the broadest SHAP value distributions (from -0.04 to
0.04 for TOC and carbon burial rate), indicative of their substantial
role in modulating environmental outcomes through large-scale

Frontiers in Marine Science

investments in low-carbon infrastructure and carbon sequestration
technologies. Green credit follows with a moderate impact,
characterized by a narrower SHAP value spread (-0.02 to 0.02),
while other instruments such as ETS, green insurance, credit
guarantee funds, and green leasing display progressively tighter
clusters around zero, suggesting their marginal influence in the
predictive framework, likely due to limited deployment or indirect
effects on the modeled variables.

The corresponding SHAP dependence plots provide a granular,
instance-level analysis by illustrating how SHAP values vary as a
function of feature values, incorporating auto-detected interaction
effects to capture nonlinear dependencies and contextual influences.
For TOC (%) and carbon burial rate, a stable positive SHAP value
trajectory, ranging from approximately 0.02 to 0.04 across the
feature value spectrum, is potentially linked to port-specific
technological adoption rates, enhancing this effect, suggesting a
robust correlation with increased carbon sequestration efficiency in
sediment layers. It also indicates a consistent positive impact on
marine carbon sink enhancement, though the effect plateaus at
higher investment levels, hinting at diminishing marginal returns.
This is a common phenomenon, meaning that once investment
reaches a certain threshold, the positive environmental impact per
additional unit of investment will no longer be as significant as
before and will progressively diminish (Simoes and Marques, 2010).
In the case of carbon fluxes, the SHAP dependence plot for green
bonds exhibits a more dynamic range (-25 to 75), with a
pronounced positive trend as green bonds values increase,
reflecting a nonlinear relationship potentially driven by the
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FIGURE 6
(A-F) Parallel coordinates plot performance (normalized).

deployment of emission reduction technologies and renewable
energy systems, though the wide scatter suggests variability across
ports with differing operational scales.

For the PLI, the SHAP dependence plot for green bonds indicates a
declining trend, with SHAP values shifting from near 0.0 to
approximately -0.5 as green bond values rise from 0 to 100, implying
a saturation effect where additional investments may not proportionally
reduce pollution loads. In contrast, the flow velocity analysis highlights
green leasing as a significant driver, with SHAP values decreasing from
0.3 to -0.3 as leasing values increase, suggesting that beyond a certain
threshold, leasing-based investments may not further optimize
hydrodynamic conditions, potentially due to diminishing returns in
smart port automation or flow management systems. For E/DR, the
SHAP dependence plot for green leasing shows a positive gradient, with
SHAP values escalating from -0.2 to 0.6 across the leasing value range,
underscoring its efficacy in stabilizing sediment dynamics through
targeted investments in erosion control infrastructure, with notable
impacts observed in sediment-heavy ports of Shanghai and Dalian. The
differential impact across metrics underscores the need for a stratified
policy approach, optimizing the allocation of green bonds for carbon-
related outcomes and green leasing for sediment management.

Table 3 assesses the regional heterogeneity and prediction
reliability of major environmental parameters. The mean TOC value
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MAE (inverteo) RMSE (inverted) MAPE (%) (Inverted) MAE (inverted) RMSE (nverted)

of 2.40% demonstrates a relatively stable organic carbon distribution,
with Shanghai (Yangshan) achieving the maximum (2.60%) due to its
advanced carbon capture infrastructure, and Hong Kong registering
the minimum (2.20%). Carbon burial rate averages 1.20, with Ningbo-
Zhoushan peaking at 1.35 due to strong sediment management
practices and Yantai troughing at 1.05, indicating lower carbon sink
efficiency in less industrialized settings. Carbon fluxes, with a mean of
150.5 kg/day, reveal significant variability driven by port activity levels,
where Guangzhou’s maximum correlates with high trade volumes.
The PLI, averaging 1.10, approximates a unity pollution threshold,
with Shenzhen’s maximum (1.25) reflecting effective pollution
mitigation strategies. E/DR, exhibiting the highest variability with a
mean of 0.14 mm/day, highlights geomorphological sensitivity, with
Dalian’s maximum (0.18 mm/day) linked to active sediment
management. It also exhibits the highest coefficient of variation
(CV) of 21.43%, while other environmental indicators have CV
values below 10, indicating that the forecasted outputs are relatively
stable and not highly dispersed. This indicates a relatively good level of
reliability in the results. However, for this particular indicator,
policymakers should take into account regional disparities when
implementing green financial instruments.

Table 4 presents Pearson correlation coefficients that highlight
the linear relationships between green finance instruments and
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FIGURE 7
(A-L) SHAP summary plot and SHAP dependence across indicators.

environmental outcomes. Green bonds show the strongest positive
correlations, with 0.65 for TOC, 0.72 for carbon burial rate, and 0.58
for carbon fluxes, indicating a strong link to carbon sequestration at
major ports. A moderate negative correlation with PLI (-0.45)
suggests pollution reduction effects, while weaker correlations with
flow velocity (0.35) and E/DR (-0.30) imply limited hydrodynamic
influence. Green credit follows a similar trend, with slightly lower
correlations, reinforcing its impact on carbon-related metrics but
showing narrower influence on pollution and sediment dynamics.
Green insurance and credit guarantee funds display weaker
correlations across all indicators, underscoring their more limited
role in environmental outcomes. Green leasing, with the lowest
correlations, shows a weak negative PLI correlation (-0.25) and
minimal effects on flow velocity (0.20) and E/DR (-0.15). The ETS
exhibits a moderate negative PLI correlation (-0.38) and weak
influences on flow velocity (0.30) and E/DR (-0.22), reflecting its
targeted impact on emission regulation. The robustness checks are
outlined in Table 5 using a 10-fold cross-validation with reported
standard errors (). The performance of XGBoost is also better than
RF and SVR. The tighter standard errors and higher adjusted R*
values for XGBoost across all metrics highlight its enhanced
predictive and statistical power, likely attributable to its adaptive
learning rate and tree-based ensemble structure, though the elevated
MAPE variability (£ 20 to +46) suggests potential sensitivity to
outliers, warranting further data preprocessing or model tuning for
optimal ecological forecasting accuracy.

Figure 8 illustrates the validation outcomes across different folds.
The low degree of variation indicates that the model performs stably
and is not overly sensitive to data partitioning. It can be observed that
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the interaction effects of financial instruments increase following
higher levels of smart port development (see Figure 9). Green
bonds and green leasing exhibit the strongest interaction effects. At
level L4, green leasing shows a particularly rapid increase, as indicated
by the steep slope from L3 to L4. Although ETS has the lowest
interaction effect overall, it demonstrates a notable upward trend
from L2 to L4, suggesting that in the long term, it could become a
financial mechanism worth considering in port development,
especially during the advanced stages of smart port implementation.

4 Recommendations and policy
implications

Based on the findings of the IDM framework, we propose the
following policy implications. Firstly, the SHAP analysis shows
green bonds as the most influential predictor for TOC, carbon
burial rate, and PLIL Port authorities should allocate green bond
funding to high-impact projects like shore power systems and
ballast water treatment to mitigate marine pollution. A dedicated
green bond framework should be established, targeting ports with
advanced smart infrastructure (L3-L4) to maximize carbon
sequestration and pollution reduction. Second, green credit has a
strong link with carbon-related outcomes and significant SHAP
values. Financial institutions could develop green financing
programs to support and scale up renewable energy projects
(Bui-Duy et al., 2023), such as solar-powered cranes and offshore
wind farms. Incentives such as interest rate subsidies for green
credit loans can encourage smaller ports (Rizhao, Yingkou) to use

frontiersin.org


https://doi.org/10.3389/fmars.2025.1656454
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Ling and Le

TABLE 3 Spatial variability of predicted output variables.

Coefficient of

10.3389/fmars.2025.1656454

Port with max  Port with min

Output variable Mgar] Sta'?d?rd
prediction deviation
TOC (%) 2.40 0.15
Carbon burial rate (kg/ha/day) 1.20 0.10
Carbon fluxes (kg/day) 150.5 12.5
PLI 1.10 0.08
Flow velocity (m/s) 0.45 0.05
E/DR (mm/day) 0.14 0.03

renewable energy, addressing the reduced efficacy of green finance
in L1-L2 ports. Thirdly, the study notes the use of blue bonds for
marine-based projects like coastal restoration. Given the high
variability in E/DR (CV: 21.43%), blue bonds should be
prioritized for ecosystem restoration projects, such as mangrove
restoration and artificial reefs. The Ministry of Finance should issue
standardized blue bond guidelines, ensuring funds are directed to
ports with high ecological vulnerability, like those in the Bohai Sea,
to enhance marine biodiversity. Also, port authorities should deploy
AT tools to monitor the real-time environmental impact of financed
projects. For instance, smart sensors can be paired with green
finance to track PLI and ensure compliance with sustainability
goals, enhancing accountability and effectiveness. Finally, ports with
lower smartness (L1-L2) have lower SHAP values for green finance
instruments (green bonds: 0.03-0.04 for E/DR). To close this gap,
specific funding models, such as micro-green loans or public-
private partnerships, should be devised to help smaller ports
deploy smart technologies. These models can fund IoT sensors
and automated systems, enabling ports like Lianyungang to
improve environmental performance.

Additionally, the IDM results highlight the dominant influence
of green bonds, green leasing, and green credit on environmental
outcomes, which brings a strategic framework for sustainable smart
port development in China. National legislation should mandate
that at least 20% of port development budgets be channeled through
green finance instruments, with a focus on green bonds to fund
transformative projects. Those centralized projects supported by
Al-driven models should be designed to allocate funds based on
port-specific environmental priorities, thereby boosting carbon
sequestration and pollution reduction by an estimated 15-20% in
advanced L3-14 ports while enhancing scalability in smaller L1-L2
ports. Addressing the high upfront costs of smart infrastructure
requires the introduction of tax exemptions for green bond
issuances targeting low-carbon initiatives, alongside interest rate
subsidies of 1-2% for green credit loans to support projects. Also,
the national green finance fund should prioritize covering 30-50%
of initial costs for smart technology adoption, potentially increasing
green finance uptake by 25% and reducing PLI by 10-15%. To
address transboundary ecosystem issues in areas such as the Yellow
Sea, there should be funds for conservation initiatives with an
emphasis on projects such as artificial reef development in Dalian
and Qingdao using Al-enabled monitoring tools to lower cross-
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variation (%) value value
6.25 2.20-2.60 Shanghai (Yangshan) Hong Kong
8.33 1.05-1.35 Ningbo-Zhoushan Yantai
831 130.0-170.0 Guangzhou Qinhuangdao
7.27 0.95-1.25 Shenzhen Lianyungang
11.11 0.38-0.52 Tianjin Yingkou
2143 0.10-0.18 Dalian Rizhao

border pollution by 15-20% and achieve hydrodynamic indicators.
Lastly, in order to offset the lower effectiveness of green finance in
smaller ports such as Rizhao and Lianyungang, a public-private
partnership model ought to catalyze private investment by risk-
mitigating instruments such as credit guarantee funds in tandem
with matching funds in order to increase the usage of smart
technology by 30%, enhance environmental performance by 10%
and reduce regional imbalances.

Based on the sensitivity analyses presented in Figure 10, the
following policy implications can be proposed to arrange financial
tools. Policymakers should prioritize a 25-30% increase in green bond
allocations in the short term, which could boost carbon burial rate,
TOC, and carbon fluxes by 38%, 28%, and 22%, respectively. The
moderate impact on flow velocity and E/DR necessitates integrating
green bonds with sediment control projects, ensuring a holistic
environmental strategy backed by cost-benefit analyses showing a
return on investment within 3-5 years. Also, the green leasing is
expected to increase by around 20%. This arrangement, in the short
term, can lead to a rise in TOC, carbon fluxes, and carbon burial rates
by approximately 13%, 9%, and 8%, respectively. These investments
are feasible, potentially offering a low-risk entry point to green
technology adoption. The synergy between green bonds and green
leasing justifies a dual-financing policy. The focus on incremental
increases mitigates financial strain on port authorities, while the
emphasis on advanced ports maximizes immediate impact. Regular
reviews, mandated quarterly, will adjust allocations based on SHAP-
driven impact assessments, ensuring alignment with carbon neutrality
goals and fostering a resilient, eco-friendly maritime sector. However,
the analysis also indicates that increased investments might
temporarily exacerbate pollution and sediment instability. Policy
response should involve a phased increase to monitor these adverse
effects. To limit the negative variation of PLI and E/DR, equipping
advanced water treatment systems with IoT monitoring for real-time
adjustments, and integrating sediment stabilization projects should
be considered.

From a technical perspective, the model can be readily scaled up
and applied in other advanced economies where datasets are relatively
complete and where smart port systems are well-equipped with data
acquisition, measurement, and monitoring capabilities. This would
facilitate more effective decision-making in allocating financial
resources toward green objectives. In several European countries, the
results may differ from those observed in China, with a tendency to
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TABLE 4 Pearson correlation between input and output variables.

10.3389/fmars.2025.1656454

Input variable TOC (%) Carbon burial rate  Carbon fluxes PLI Flow velocity E/DR
Green bonds 0.65 0.72 0.58 -0.45 0.35 -0.30
Green credit 0.60 0.68 0.55 -0.40 0.32 -0.28

Green insurance 0.50 0.55 0.48 -0.35 0.28 -0.25
Credit guarantee funds 0.45 0.50 0.42 -0.30 0.25 -0.20
Green leasing 0.40 0.45 0.38 -0.25 0.20 -0.15
ETS 0.55 0.60 0.50 -0.38 0.30 -0.22

prioritize ETS, given the continent’s early and widespread adoption of
ETS mechanisms. Conversely, in countries with strong seaport
infrastructure but limited smart port maturity, where data, as well as
financial and environmental monitoring systems, remain fragmented
and lack standardization, the application of this research would be
considerably challenging. Therefore, wastefulness in the allocation of
financial instruments is difficult to avoid. In such cases, the IDM
technique can be adjusted to serve as an intermediary step, a guiding
framework for port authorities and local governments to place greater
emphasis on enhancing the deployment of equipment for monitoring,
measurement, and data acquisition. This would help establish the
necessary and sufficient conditions for applying advanced techniques
aimed at reducing resource allocation inefficiencies and improving the
port area’s ecological environment.

TABLE 5 Cross-validated performance metrics of ML models.

5 Conclusions

This study provides a comprehensive analysis of IDM and green
finance instruments in advancing sustainable smart port
development in China, with a focus on their impact on marine
ecosystem conservation. The IDM framework utilizes ML models to
predict environmental indicators based on financial variables and
the SHAP technique to quantify the interactive effects between
explanatory and response variables. The most important results
illustrate the prominent role of green finance, particularly green
bonds, green leasing, and green credit, in generating positive
environmental effects across 15 major Chinese ports. The SHAP
analysis indicates that green bonds are the leading factor of
influence, with numbers oscillating between 0.24-0.30 for carbon

Output variable Model RMSE (+0) MAE (+0) MAPE (+0) Adjusted R?

RE 020 (2) 0.15 (1) 521 (33) 0.86
Toc SVR 022 (2) 0.17 (2) 5.89 (40) 0.83

(%)
XGBoost** 0.17 (1) 0.13 (1) 452 (20) 0.90
RE 0.10 (1) 0.08 (1) 6.10 (43) 0.85

Carbon burial rate
(kg b g™ SVR 0.12 (1) 0.09 (1) 6.82 (57) 0.82
XGBoost* 0.08 (1) 0.06 (1) 501 (31) 0.89
RE 16.90 (50) 12,50 (40) 7.30 (50) 0.84
Carbon fluxes SVR 18.40 (60) 13.80 (50) 8.10 (60) 0.81
(kg day™)
XGBoost** 14.80 (40) 10.90 (30) 6.24 (46) 0.88
RE 0.07 (1) 0.05 (1) 480 (30) 0.87
PLI SVR 0.08 (1) 0.06 (1) 5.41 (40) 0.84
XGBoost* 0.06 (1) 0.04 (1) 413 (28) 091
RE 0.05 (1) 0.04 (1) 5.50 (35) 0.86
Flow velocity SVR 0.06 (1) 0.05 (1) 6.22 (40) 0.83
(ms™)

XGBoost** 0.04 (1) 0.03 (1) 479 (20) 0.90
RE 0.08 (1) 0.06 (1) 6.00 (45) 0.85
E/DR (mm day™) SVR 0.09 (1) 0.07 (1) 6.72 (50) 0.82
XGBoost* 0.07 (1) 0.05 (1) 5.10 (37) 0.89

Standard errors () are from 10-fold cross-validation.
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*and ™" denote significance (p < 0.05 and p < 0.01, respectively) for XGBoost vs. RF/SVR.
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FIGURE 8
Validation metrics for marine ecosystem indicators by fold.

burial rate and 0.17-0.20 for PLI, thus showing their efficiency in
not only increasing carbon storage but also in decreasing water
pollution, especially in the most developed ports like Shanghai and
Ningbo-Zhoushan. Green credit is next in sequence, with very tight
correlations (0.60 for TOC, 0.68 for carbon burial rate), and it
fosters the use of renewable energy and the fight against pollution.
The XGBoost model outperforms RF and SVR; it gets adjusted R*

Frontiers in Marine Science

14

numbers of 0.88-0.91 for environmental indicators such as TOC,
carbon fluxes, and flow velocity, being the most reliable to detect
intricate, non-linear relationships and instruct the distribution of
resources. Spatial variability analysis highlights glaring differences
in environmental outcomes, with Shanghai leading in TOC (2.60%)
and Ningbo-Zhoushan topping the carbon burial rate (1.35 kg/ha/
day), while quite a few smaller ports like Qinhuangdao and Yingkou
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Interaction effects between financial instruments and port smartness level.

show poorer performance due to their fragmented smart
infrastructure. These results are significant as they attest to the
interplay of IDM, green finance, and sustainable port operations
that are well in accord with China’s carbon neutrality and peak
carbon targets.

The study makes three significant contributions to the literature.
First, it quantifies the impact of green finance instruments on
environmental outcomes using SHAP analysis, identifying green
bonds and green credit as primary drivers of carbon sequestration
and pollution reduction, thus providing a data-driven framework for
prioritizing financial tools in port sustainability. Second, it demonstrates
the superior predictive accuracy of XGBoost in modeling complex port-
specific environmental dynamics, offering a scalable approach for IDM
in smart port development. Third, it highlights regional disparities in
green finance efficacy, particularly the lower impact in L1-L2 ports
(SHAP values of 0.03-0.05 for E/DR in Rizhao), informing targeted
policy interventions to bridge these gaps.

Even though the study shows some good things, the research is
not without issues. In terms of research scope, this study focuses solely
on the analysis of marine environmental ecological indicators in the
surrounding areas, without considering air quality and its dispersion
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during the development of smart ports. This scope can be expanded in
future studies once comprehensive air quality data becomes available.
Second, due to incomplete archival records of baseline sediment
indicators from the period before port construction, a thorough
assessment of the effectiveness of financial instruments in smart port
development may be subject to certain inaccuracies. Future research
can be based on this study’s suggestion to conduct systematic data
collection and storage in other regions or territories. From a
methodological perspective, the current process of data collection
and analysis remains time-consuming due to the reliance on
traditional approaches. Moreover, the frequency of measurements
and data acquisition has yet to achieve continuity. Equipping more
advanced sediment monitoring systems and data collection devices
that enable real-time recording of ecosystem changes multiple times
per day is crucial. Then it can further enhance the accuracy of the
model and provide a more robust basis for evidence-based policy
planning. Finally, future studies could offer a more comprehensive
analysis by conducting a comparative assessment of the effectiveness
of financial instruments between smart port areas and other civilian
zones within the same city, thereby further clarifying the rationale for
allocating these green financial instruments.
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(A, B) Sensitivity analysis of the change in two dominant tools on the reduction of ecosystem pollution.
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