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to the marine ecosystem
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1Nanjing Audit University JinShen College, Jiangsu, Nanjing, China, 2Department of Environment,
Vietnam Maritime University, Hai Phong, Vietnam
Introduction: Despite the benefits of smart ports development for productivity,

energy saving, and environmental improvement, an intelligent investment

strategy should consider potential adverse effects on marine ecosystems

during the construction and operation processes. To address this issue, this

study aims to examine the integration of green finance instruments with artificial

intelligence (AI)-driven intelligent decision-making (IDM), utilizing data on 15

major Chinese ports.

Methods: Employing machine learning (ML) models, alongside SHapley Additive

exPlanations (SHAP) analysis, the research quantifies the impact of green finance

on critical environmental metrics, including total organic carbon (TOC), carbon

fluxes, carbon burial rate, pollution load index (PLI), flow velocity, and erosion/

deposition rate (E/DR). First, ML models are employed to estimate these

indicators based on historical data. Subsequently, SHAP is utilized to interpret

the impact of financial instruments on ecological indicators. This enables the

identification of financial instruments that positively influence ecological

indicators in specific marine regions, thereby supporting IDM to prioritize

those instruments in the corresponding areas.

Results: Findings highlight green bonds as the most influential, with SHAP values

of 0.24-0.30 for carbon burial rate and 0.17-0.20 for PLI, particularly in advanced

ports like Shanghai and Ningbo-Zhoushan, while eXtreme gradient boosting

(XGBoost) achieves superior predictive accuracy.

Discussion: This study suggests that green bonds, green leasing, and green credit

should be prioritized. Policymakers should establish a dedicated framework for

green bonds and green leasing, specifically targeting ports with advanced smart

infrastructure (L3-L4). Green credit schemes should be promoted to support

infrastructure enhancement and renewable energy projects in L1-L2 ports.
KEYWORDS

intelligent decision system, smart port, green finance, marine ecosystem,
machinelearning, port environmental performance, SHAP value, China
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1 Introduction

Handling nearly one-third of global container throughput

(UNCTAD, 2023), Chinese sea ports play key nodes in economic

growth but pose significant threats to marine ecosystems, especially in

sensitive areas like the Bohai Sea and Yangtze River Delta, where

pollution, habitat loss, and greenhouse gas emissions are growing

concerns (Yu et al., 2021). To tackle this, green finance tools like

green bonds and blue bonds have poured over $10 billion into

sustainable port projects in 2023, with initiatives like shore power

systems at the Port of Shanghai slashing emissions by up to 90%

(ADB, 2023). Concurrently, intelligent decision-making (IDM)

developed based on advanced technologies like artificial intelligence

(AI) and Internet of Things (IoT) has become a transformative

approach to optimize port operations and environmental outcomes.

We deploy this approach because it allows for the effective utilization of

IDM’s strengths. First, it leverages the predictive accuracy of machine

learning (ML) algorithms, which are particularly robust when handling

complex distributions such as ecological indicators and financial

instruments. Second, it benefits from the interpretability offered by

SHapley Additive exPlanations (SHAP). Third, it helps detect and

mitigate biases. Finally, the integration of ML and SHAP within IDM

can help correct errors commonly associated with traditional decision-

making methods. As a result, prioritizing specific financial instruments

in particular regions becomes more reliable. Despite these advantages,

utilizing IDM to explore how green finance can facilitate sustainable

smart port development has not been fully examined.

Recent studies on smart ports are gaining traction among

researchers as their potential to optimize port performance,

sustainability, and resilience (Ta et al., 2025). Sustainability is

measured across three dimensions: economic benefits, environmental

improvements, and social impacts (Bui-Duy et al., 2023). Most studies

tend to address two dimensions, economic and environmental aspects,

of a decision (Le and Xuan-Thi-Thu, 2024). Li et al. (2023)

systematically argued for how data-driven decision-making might

improve port operations. In vibrant international trade regions like

East Asian and the Pacific (Le and Xuan-Thi-Thu, 2024), the adoption

of smart port technologies has been accelerated by regional policies

promoting digital transformation. The IoT, AI, and blockchain are

game-changers with the support of policy instruments. IDM supported

by AI algorithms is believed to be effective in solving supply chain

disruptions and port operations (Le, 2025; Minh et al., 2024). It allows

port authorities to make educated decisions about resource

management, traffic optimization, and environmental compliance.

Digitization in port activities can significantly improve the

sustainability of maritime shipping, especially in areas with modern

technological infrastructure (Luo et al., 2023). This was further

confirmed by Tabish and Chaur-Luh (2024), who proposed that

intelligent design in maritime landscapes could optimize internal

pathways, thus mitigating energy consumption and emissions. A

prototype IDM system was designed to foster both horizontal and

vertical collaboration among freight stakeholders within port logistics

(Irannezhad et al., 2020). Studies argue that China’s coastal waters are

critical for biodiversity and fisheries but are heavily impacted by port

operations (Chen et al., 2020). Puig and Darbra (2024) indicated that
Frontiers in Marine Science 02
insufficient monitoring of marine ecosystems points to critical gaps

that need more focus and resources for effective environmental

protection. Winogradow and Pempkowiak (2014) emphasized the

important role of organic carbon burial rates in mediating the role

of marine ecosystems within the global CO2 cycle. Building on this,

they provided an estimate of organic carbon burial in the sediments of

the Baltic Sea. Zhang et al. (2023) Marine sediment samples were

obtained from the coastal region of Bohai Bay to assess the influence of

exogenous inputs on both the content and speciation of carbon.

In response, some port authorities have launched revitalization of

mangroves and artificial reef programs to improve the underwater

ecosystem. Such approaches could lead to encouraging results.

However, the effectiveness of these programs depends on investment

allocation and requires collaborative governance. Yin et al. (2020)

indicated that regulatory barriers and high implementation costs are

primary challenges for China’s diverse port landscape. To overcome

these barriers, green finance instruments have become crucial in

promoting sustainable port development in China, a leading maritime

shipping hub. Instruments, including green bonds, blue bonds, and

sustainability-linked loans, are utilized to support environmentally

friendly port projects (Thompson, 2022). In China, blue bonds have

been issued to fund initiatives such as the electrification of port

equipment and the development of offshore wind farms to power

ports, including Ningbo-Zhoushan (Wang et al., 2025). For example,

China’s Ministry of Finance has supported blue bond issuances to

retrofit ports with low-carbon technologies, reducing greenhouse gas

emissions and marine pollution (Rebelo, 2020). Green bonds and

sustainability-linked loans are also integral to China’s port

sustainability efforts, aligning with Environmental, Social, and

Governance (ESG) frameworks. Tan et al. (2023) addressed that

green financing had enabled Chinese ports to invest in shore power

systems, low-sulfur fuel infrastructure, and waste management facilities.

Green bonds supported the Port of Shanghai in installing shore power

systems to achieve the emissions reduction target significantly (Mohite

and Mathew, 2025). However, challenges involve high initial

expenditures and the need for defined measurements to evaluate the

environmental impact of funded initiatives. The China Banking and

Insurance Regulatory Commission has introduced taxonomy-based

approaches to ensure financial institutions prioritize sustainable

investments in port infrastructure, but inconsistencies in regional

regulations pose implementation challenges. Liu et al. (2025) reshaped

the smart port concept for Tianjin Port through the lens of population

ecology theory. The integration of green finance with IDM enhances its

efficacy (Kai et al., 2024). There exists a research gap on how green

financing for smart ports affects environmental aspects (Li et al., 2023).

To our knowledge, despite promising achievements in smart port

development, there exist some research gaps, as indicated in Table 1.

There is a lack of comprehensive studies on integrating IDMwith green

finance instruments tailored to Chinese ports. While past studies have

emphasized the function of science and technology in sustainable

marine operations, research on scaling these innovations across

diverse financial regulatory environments for smart ports is still

lacking. They have not incorporated as comprehensive a set of critical

ecological indicators as those presented in this paper, nor have they

employed such a diverse array of green finance instruments. Therefore,
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TABLE 1 Summary of relevant studies and research gaps.

No Studies Methods Variables Regions/countries Smart port relations

reduction, toxic algal growth, and mucilage Conero Riviera/Italy No

es of financial, technological, and environmental
aspects

Mumbai Port/India Yes

ater, primary and secondary treated wastewater,
ted wastewater, and dewatered sludge samples

Shenzhen/China No

l wastewater discharged directly into the sea 11 coastal regions/China No

edge/awareness/support/willingness to pay Large Xiamen Bay/China No

iors of vessels with power receiving facilities on
re power berths and traditional berths

China Yes

geographical scope, environmental impacts, and
financial returns

14 countries/regions No

e low-carbon economy, carbon reduction China’s coastal provinces No

Sediment cores and components South China Sea No

Organic carbon burial rates Baltic Sea No

government subsidy rates, annual benefits,…
relationships data

Port of Shanghai/China Normal port

storm surge occurrences, direct economic losses
urge, pollutant discharges of wastewater, sewage,
and drilling cuttings from offshore oil and gas, oil
dents, numbers of vessels, berths, and ports.

Bohai Sea/China Normal port

Carbon content in sediments, Bohai Bay/China No

system indicators/six green financial instruments 15 major ports/China Yes
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the interaction effects of green finance on marine ecosystem health are

limited. Furthermore, the integration of advanced and accurate ML

techniques with SHAP represents a notable methodological distinction.

In this study, we aim to bridge these research gaps by firstly applying

ML algorithms to predict six marine ecosystem indicators, including

total organic carbon (TOC), carbon fluxes, pollution load index (PLI),

carbon burial rate, flow velocity, and erosion/deposition rate (E/DR)

using six financial instruments. These instruments include green bonds,

green credit, green leasing, green insurance, emissions trading system

(ETS), and credit guarantee funds. The next phase of IDM is deploying

SHAP to quantify the impacts of financial tools on these indicators.

Based on the forecasting results and quantitative interpretability, we

identify which financial instruments are more effective and should be

prioritized to simultaneously achieve smart port development goals

while minimizing negative impacts on the surrounding ecosystem. This

study addresses three core questions: (1)What is the predictive accuracy

of the model for marine ecological indicators surrounding smart ports

when incorporating green finance variables? (2) How much do green

finance instruments affect and interact with environmental indicators?

(3) Which instruments should be prioritized for specific port groups

according to their smartness level?

The significance of this research lies in its potential to reconcile

economic imperatives with ecological preservation in one of the world’s

most critical maritime networks. Green finance has proven effective in

funding projects like mangrove restoration in Xiamen (Su and

Gasparatos, 2023) and ballast water treatment systems in Qingdao,

which mitigate marine pollution and enhance biodiversity (Nie et al.,

2023). Meanwhile, IDM, leveraging AI algorithms, enables real-time

monitoring and predictive analytics, as seen in Shenzhen’s smart sensor

systems for water quality management (Shaban et al., 2024). Yet,

challenges persist, including the lack of standardized metrics to

evaluate the ecological benefits of green finance and the uneven

adoption of smart technologies across ports, with advanced hubs

outperforming smaller ports in leveraging green investments. By

employing ML models and SHAP analysis, this study quantifies the

contributions of green finance and IDM to key environmental metrics

across 15 major Chinese ports. This study addresses these challenges by

providing a quantitative assessment of how green finance can mitigate

marine ecosystem degradation.

The paper is structured to provide a comprehensive exploration of

these issues. Section 2 outlines the methodologies, including data

acquisition, preprocessing, and the application of ML models with

SHAP analysis to evaluate environmental outcomes. Section 3 presents

the results, highlighting the synergistic impacts of green finance and

IDM across ports. Section 4 discusses recommendations and policy

implications. Section 5 summarizes key findings, contributions,

limitations, and future research directions.
2 Data acquisition and methodologies

2.1 Data preprocessing

The dataset is compiled frommultiple sources. Marine ecosystem

indicators are sourced from environmental monitoring systems
Frontiers in Marine Science 04
maintained by the Ministry of Ecology and Environment (2024)

and port-specific environmental reports published by the China Ports

and Harbours Association (2024). Variables include TOC, carbon

fluxes, PLI, carbon burial rate, flow velocity, and E/DR. Sediment

cores were collected by vessel from depths ranging between 700 and

1,400 meters in seabed areas surrounding selected ports (within a

1,000–2,000 m radius). Sampling was conducted at a frequency of

once every 10–14 days. After pore water extraction, the samples were

sealed in sterile bags onboard, then freeze-dried andmanually ground

into powder using an agate mortar in an onshore laboratory for

elemental and isotopic analysis. TOC content was measured using a

Heraeus CHN-O rapid elemental analyzer at geochemical institutes

located in the same city. Sedimentation rates were analyzed using

radiometric dating techniques (210Pb) to determine sediment

accumulation rates. Subsequently, the organic carbon content in

the sediments was measured using a TOC analyzer, and the carbon

burial rate was calculated using Equation 1:

Carbon Burial Rate = TOC � Density of sediment � Sedimentation rate � 10

(1)

Sediment cores were analyzed in combination with radiometric

dating (210Pb) to determine the rate of change in sediment

thickness, calculated using Equation 2:

E=DR =
Dh
Dt

(2)

where Dh is the change in sediment thickness (mm), and Dt is
the time interval (days).

Carbon fluxes, PLI, and flow velocity data were obtained from the

databases of the Ministry of Ecology and Environment and the

Ministry of Natural Resources. Flow velocity is measured daily,

while carbon fluxes and PLI are analyzed using the ICP-MS

(Inductively Coupled Plasma Mass Spectrometry) method with a

sampling frequency of once every 1–2 weeks. Green finance data are

generated from financial reports issued by the Ministry of Finance,

the reports and database from the China Banking and Insurance

Regulatory Commission (CBIRC), the People’s Bank of China

(PBoC), and the Asian Development Bank. The credit instruments

include transactions carried out by port authorities and construction

contractors, as well as energy and equipment suppliers for the port.

These instruments encompass bond issuance, financial leasing, loans,

carbon credit offset trading, insurance purchases, and credit

guarantees. The recording frequency is based on the occurrence of

transactions by all relevant units, subsidiaries, and branches involved.

Figures 1 and 2 display the descriptive statistics and density

distribution of environmental and financial variables.

Additionally, port-specific and technological adoption are extracted

from the annual reports of ports in China and literature (Mohite and

Mathew, 2025; Huang et al., 2023). The temporal extent of the

ecosystem datasets is from January 2022 to December 2024, collected

through in situ measurements conducted at ports and surrounding

water areas. The period during the COVID-19 pandemic is excluded

due to limited and incomplete data. The resulting dataset comprises

over 4,637 observations. Table 2 summarizes the levels of smartness and

the application of smart technologies across major seaports in China.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1656454
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ling and Le 10.3389/fmars.2025.1656454
To ensure compatibility withML algorithms, this study deploys the

following preprocessing procedures before designing models for IDM.

Missing values were addressed using k-nearest neighbors (KNN)

imputation (Yadav and Ahamad, 2019; Bui-Minh et al., 2025). The

choice of kshould balance capturing local patterns in the data with

avoiding overfitting or excessive noise. A small k focuses on the closest

neighbor which is useful for capturing local patterns, but it risks

overfitting to noise or outliers, increasing variance. A bigger k may

potentially miss local variations and introduce bias toward the global

mean or majority patterns. Therefore, with the size of our dataset, we

select the value of k at an intermediate level (k = 10) to mitigate the

impact of outliers while maintaining the local data structure. Then,

numerical features were normalized to the [0, 1] range using min-max

scaling. Outliers are detected and processed using Z-score and

Mahalanobis distance (Yaro et al., 2024; Mayrhofer and Filzmoser,

2023). The preprocessed dataset was partitioned into 80% training and

20% testing sets, with 10-fold cross-validation used to optimize the

model’s hyperparameters.
2.2 Interpretability-based ML model for
IDM

2.2.1 Predictive ML models
In this study, the authors design three ML models, including

Random Forest (RF), Support Vector Regression (SVR), and XGBoost,

to predict key environmental indicators. We select these model

candidates because of their respective strengths in addressing the

complexities of the dataset, which features nonlinear relationships,
Frontiers in Marine Science 05
high dimensionality, and potential interactions between variables. RF

can mitigate overfitting by averaging predictions from multiple

decision trees. Therefore, it is suitable for handling heterogeneous

data using financial, ports, and environmental variables. Also, it

performs robustly in the presence of outliers or noisy observations.

SVR also perform well in regression tasks for tabular multiple-sized

datasets, because it employs kernel functions to map data into higher-

dimensional spaces, capturing complicated nonlinear patterns without

forming a specific functional form. XGBoost is selected for its gradient

boosting framework that optimizes predictive accuracy through

iterative error correction and regularization techniques, offering

superior scalability and efficiency in processing large datasets with

multicollinear features, thus aligning well with the study’s goal of

integrating real-time monitoring data. The mathematical justifications

and detailed mechanisms of these models can be found in Appendices

A1–A3. To validate the predictive ML model, we use metrics including

Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean

Absolute Percentage Error (MAPE), and adjusted R². RMSE and MAE

quantify the error magnitude; MAPEmeasures relative errors for scale-

independent comparison and cross-indicator assessments; and

adjusted R² measures the goodness-of-fit for models.

2.2.2 SHAP analysis and performance metrics
To enhance the interpretability of the ML models, SHAP is

employed to quantify the contribution of each feature to the

predictions of six environmental indicators. Accordingly, it provides

insights into how predictors interact with port smartness levels to

influence environmental outcomes (see Appendix A4). For robustness

check, the SHAP explanations is evaluated by using the following
FIGURE 1

Descriptive statistics and density distribution of environmental variables.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1656454
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ling and Le 10.3389/fmars.2025.1656454
metrics. The Explanation Error (EE), which measures the discrepancy

between themodel’s predicted output and the SHAP-based explanation,

ensures the accuracy of the attribution process. A low EE (close to zero)

indicates that SHAP accurately attributes the model’s output to

individual features, ensuring reliable interpretations. The Feature

Importance Ranking (FIR) orders predictors based on their average

SHAP values to highlight their relative influence on the outcome. The

Interaction Effect Strength (IES) quantifies the magnitude of pairwise

interactions. The stability of these rankings is assessed using the Kendall

rank correlation coefficient t. A high t (close to 1) indicates stable feature
importance rankings, ensuring that SHAP reliably identifies key drivers

for the environmental indicators. High interaction strength values

indicate significant synergistic effects. Finally, the Coverage of

Interaction Effects (CIE), which assesses the proportion of the model’s

prediction explained by these interaction effects, provides an evaluation

of the interdependencies among variables. This metric ensures that

SHAP captures complex feature interactions critical for understanding

sustainable port dynamics. Details on these metrics can be found in

Appendix B. Figure 3 presents a schematic representation of the

integration between the XGBoost (due to its higher predictive

accuracy compared to RF and SVR, as shown in Section 3) and SHAP.
3 Result analysis

3.1 Model performance evaluation across
environmental indicators

The performance evaluation of the predictive models, RF, SVR,

and XGBoost, for the key environmental output variables is

presented in Figure 4. These heatmaps display the comparative
Frontiers in Marine Science 06
metrics utilizing the adjusted R2, MAE, MAPE, and RMSE. For all

indicators, XGBoost outperforms other ML model candidates,

achieving the highest adjusted R2 values and the lowest MAE,

MAPE, and RMSE. Additionally, its predictive performance

achieves higher accuracy. None of the models exhibits signs of

overfitting. For TOC, Xiamen exhibits the highest MAE (11.4) and

RMSE (12.6). For carbon burial rate, the adjusted R2 reaches 0.95

(Shanghai) and MAE is minimal, while MAPE ranges from 4.3%

(Shenzhen) to 6.2% (Qingdao) and RMSE from 6.3 (Ningbo-

Zhoushan) to 12.6 (Hong Kong). RF and SVR show competitive

adjusted R2 values (0.93 at Shanghai for RF), but their MAE (9.3 at

Hong Kong for RF) and RMSE (12.1 at Hong Kong for RF) are

consistently higher, indicating less robustness in modeling carbon

sequestration processes.
3.2 SHAP-based analysis across key
outputs

The mean absolute SHAP values quantifying the contribution of

various green finance tools to the prediction of key environmental

output variables are presented in Figure 5. The SHAP values provide

insights into the relative importance and impact of each financial

instrument on environmental outcomes, facilitating IDM for

sustainable port development. Among the suite of green finance

mechanisms, green bonds (SHAP: 0.15–0.30) and green credit

(0.12–0.26) demonstrate the strongest influence on improving

critical environmental indicators, including TOC, carbon burial

rates, carbon fluxes, PLI, flow velocity, and E/DR, across 15 leading

Chinese ports. The most pronounced impacts are observed in

Shanghai (0.18–0.30) and Ningbo-Zhoushan (0.26–0.27). Green
FIGURE 2

Descriptive statistics and density distribution of financial variables (standardized).
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insurance (0.07–0.17) and ETS (0.06–0.16) contribute supportive

functions by mitigating risk and encouraging lower emissions.

Credit guarantee funds (0.03-0.14) and green leasing (0.03-0.12)

have little influence, especially in ports with underdeveloped

infrastructure like Rizhao, Yantai, Yingkou, and Lianyungang (0.03-

0.09). These variations highlight the relevance of local contextual

factors, with Shanghai’s excellent performance being driven by

investment in advanced technology infrastructure, whilst ports like

Yingkou underperform due to limits in smart system implementation.

Green bonds and green credit exhibit the highest SHAP values,

suggest an essential function of driving environmental improvements

through investments in renewable energy (Li et al., 2024; Ran et al.,

2024), pollution control, and smart technologies, with peak values at

Shanghai across all metrics (TOC: 0.27, carbon burial rate: 0.30,

carbon fluxes: 0.28, PLI: 0.20, flow velocity: 0.19, E/DR: 0.18),
Frontiers in Marine Science 07
reflecting its advanced smart port infrastructure and substantial

green financing. Ports with lower smartness levels (L1-L2) show

reduced SHAP values, suggesting a correlation between technological

advancement and financial instrument efficacy. The lower

contributions of credit guarantee funds and green leasing highlight

the need for targeted policy support to enhance their impact. These

findings are consistent with the literature (Kai et al., 2024), which

emphasizes the use of green finance and IDM to accomplish

sustainable port development in China.

The parallel coordinates plots for the performance of RF, SVR,

and XGBoost models, as depicted in Figure 6, provide a normalized

visualization of predictive accuracy across key environmental

metrics, based on adjusted R2, MAPE, MAE, and RMSE inverted

for consistency. XGBoost performs the highest normalized

performance scores, approaching 1.0 across all evaluation metrics.
TABLE 2 Levels of smartness and smart technology applications in Chinese seaports.

Port name Level of smartness
Smart technologies in

construction
Smart technologies in

operations

Shanghai (Yangshan) L4
Digital twin, BIM, automated terminal

design

Robots, automated cranes, autonomous
trucks (L4), 5G, AI, IoT, renewable

energy

Shenzhen L3 BIM, digital planning
Automated terminal operations, IoT,
5G, digital management systems (PCS,

TMS)

Hong Kong L3 BIM, environmental sensors
Partial automation, IoT, traffic

management systems, clean energy

Ningbo-Zhoushan L3 Digital twin, smart planning
5G, remote control, automated cranes,

AI, digital twin

Guangzhou L3
BIM, environmental monitoring

systems

Robots, IoT, automated terminals,
renewable energy, smart management

systems

Qingdao L3 BIM, automated design
Automated bridge cranes, rail cranes,

AI, IoT, smart security systems

Tianjin L3 BIM, IoT sensors in construction
5G, AI, autonomous trucks, automated
terminals, real-time environmental

monitoring

Dalian L2 Digital planning, environmental sensors
Partial automation, IoT, digital

management systems

Xiamen L2 BIM, construction monitoring systems
Partial automation, IoT, 5G, traffic

management systems

Tangshan L2 BIM, digital construction technologies
Automated cranes, IoT, smart

management systems

Yingkou L2 Digital planning
IoT, digital management systems,

partial automation

Rizhao L2 BIM, environmental sensors
Partial automation, IoT, traffic

management systems

Lianyungang L2 Digital planning
IoT, partial automation, digital

management systems

Yantai L2 BIM, construction monitoring systems
IoT, automated cranes, smart

management systems

Qinhuangdao L1 Basic digital planning
Digital management systems, basic

automation
L1: Digitization of individual activities in the port; L2: Integrated systems in a port community; L3: Logistics chain integrated with hinterland; L4: Connected ports in the global logistics chain
(Asian Development Bank, 2020).
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FIGURE 3

Workflow of environmental prediction and model interpretation using XGBoost and SHAP analysis.
FIGURE 4

Predictive performance of ML models.
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This reflects its superior ability to model complex, nonlinear

relationships while minimizing prediction errors, as evidenced by

the tight clustering of red lines near the upper boundary. RF and

SVR have lower and more variable scores, ranging between 0.2 and

0.6, for MAPE and RMSE, indicating greater relative error and

reduced robustness, particularly when predicting carbon fluxes and

E/DR. XGBoost’s strong performance in modified R² and inverted

error metrics demonstrates its ability to model diverse, port-specific

environmental information. Meanwhile, the heterogeneity found in

RF and SVR implies a greater sensitivity to data quality and

hyperparameter setups, indicating the need for more optimization

to improve generalizability across varied ecological situations.
3.3 Dependence analysis across
environmental metrics

The SHAP analysis delineated in Figure 7 evaluates the relative

contributions and intricate interaction effects of green finance

instruments on the prediction of critical environmental output

variables. The SHAP Summary Plots offer a global perspective on

feature importance, employing a kernel density estimation to visualize

the distribution of SHAP values, which quantify the marginal

contribution of each feature to the model’s output. Green bonds

emerge as the most influential predictor across multiple metrics,

exhibiting the broadest SHAP value distributions (from -0.04 to

0.04 for TOC and carbon burial rate), indicative of their substantial

role in modulating environmental outcomes through large-scale
Frontiers in Marine Science 09
investments in low-carbon infrastructure and carbon sequestration

technologies. Green credit follows with a moderate impact,

characterized by a narrower SHAP value spread (-0.02 to 0.02),

while other instruments such as ETS, green insurance, credit

guarantee funds, and green leasing display progressively tighter

clusters around zero, suggesting their marginal influence in the

predictive framework, likely due to limited deployment or indirect

effects on the modeled variables.

The corresponding SHAP dependence plots provide a granular,

instance-level analysis by illustrating how SHAP values vary as a

function of feature values, incorporating auto-detected interaction

effects to capture nonlinear dependencies and contextual influences.

For TOC (%) and carbon burial rate, a stable positive SHAP value

trajectory, ranging from approximately 0.02 to 0.04 across the

feature value spectrum, is potentially linked to port-specific

technological adoption rates, enhancing this effect, suggesting a

robust correlation with increased carbon sequestration efficiency in

sediment layers. It also indicates a consistent positive impact on

marine carbon sink enhancement, though the effect plateaus at

higher investment levels, hinting at diminishing marginal returns.

This is a common phenomenon, meaning that once investment

reaches a certain threshold, the positive environmental impact per

additional unit of investment will no longer be as significant as

before and will progressively diminish (Simões and Marques, 2010).

In the case of carbon fluxes, the SHAP dependence plot for green

bonds exhibits a more dynamic range (-25 to 75), with a

pronounced positive trend as green bonds values increase,

reflecting a nonlinear relationship potentially driven by the
FIGURE 5

Mean absolute SHAP values for ecosystem indicators (The higher the value, the greater the influence of the feature on the model’s predictions).
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deployment of emission reduction technologies and renewable

energy systems, though the wide scatter suggests variability across

ports with differing operational scales.

For the PLI, the SHAP dependence plot for green bonds indicates a

declining trend, with SHAP values shifting from near 0.0 to

approximately -0.5 as green bond values rise from 0 to 100, implying

a saturation effect where additional investments may not proportionally

reduce pollution loads. In contrast, the flow velocity analysis highlights

green leasing as a significant driver, with SHAP values decreasing from

0.3 to -0.3 as leasing values increase, suggesting that beyond a certain

threshold, leasing-based investments may not further optimize

hydrodynamic conditions, potentially due to diminishing returns in

smart port automation or flow management systems. For E/DR, the

SHAP dependence plot for green leasing shows a positive gradient, with

SHAP values escalating from -0.2 to 0.6 across the leasing value range,

underscoring its efficacy in stabilizing sediment dynamics through

targeted investments in erosion control infrastructure, with notable

impacts observed in sediment-heavy ports of Shanghai and Dalian. The

differential impact across metrics underscores the need for a stratified

policy approach, optimizing the allocation of green bonds for carbon-

related outcomes and green leasing for sediment management.

Table 3 assesses the regional heterogeneity and prediction

reliability of major environmental parameters. The mean TOC value
Frontiers in Marine Science 10
of 2.40% demonstrates a relatively stable organic carbon distribution,

with Shanghai (Yangshan) achieving the maximum (2.60%) due to its

advanced carbon capture infrastructure, and Hong Kong registering

the minimum (2.20%). Carbon burial rate averages 1.20, with Ningbo-

Zhoushan peaking at 1.35 due to strong sediment management

practices and Yantai troughing at 1.05, indicating lower carbon sink

efficiency in less industrialized settings. Carbon fluxes, with a mean of

150.5 kg/day, reveal significant variability driven by port activity levels,

where Guangzhou’s maximum correlates with high trade volumes.

The PLI, averaging 1.10, approximates a unity pollution threshold,

with Shenzhen’s maximum (1.25) reflecting effective pollution

mitigation strategies. E/DR, exhibiting the highest variability with a

mean of 0.14 mm/day, highlights geomorphological sensitivity, with

Dalian’s maximum (0.18 mm/day) linked to active sediment

management. It also exhibits the highest coefficient of variation

(CV) of 21.43%, while other environmental indicators have CV

values below 10, indicating that the forecasted outputs are relatively

stable and not highly dispersed. This indicates a relatively good level of

reliability in the results. However, for this particular indicator,

policymakers should take into account regional disparities when

implementing green financial instruments.

Table 4 presents Pearson correlation coefficients that highlight

the linear relationships between green finance instruments and
FIGURE 6

(A-F) Parallel coordinates plot performance (normalized).
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environmental outcomes. Green bonds show the strongest positive

correlations, with 0.65 for TOC, 0.72 for carbon burial rate, and 0.58

for carbon fluxes, indicating a strong link to carbon sequestration at

major ports. A moderate negative correlation with PLI (-0.45)

suggests pollution reduction effects, while weaker correlations with

flow velocity (0.35) and E/DR (-0.30) imply limited hydrodynamic

influence. Green credit follows a similar trend, with slightly lower

correlations, reinforcing its impact on carbon-related metrics but

showing narrower influence on pollution and sediment dynamics.

Green insurance and credit guarantee funds display weaker

correlations across all indicators, underscoring their more limited

role in environmental outcomes. Green leasing, with the lowest

correlations, shows a weak negative PLI correlation (-0.25) and

minimal effects on flow velocity (0.20) and E/DR (-0.15). The ETS

exhibits a moderate negative PLI correlation (-0.38) and weak

influences on flow velocity (0.30) and E/DR (-0.22), reflecting its

targeted impact on emission regulation. The robustness checks are

outlined in Table 5 using a 10-fold cross-validation with reported

standard errors (s). The performance of XGBoost is also better than

RF and SVR. The tighter standard errors and higher adjusted R2

values for XGBoost across all metrics highlight its enhanced

predictive and statistical power, likely attributable to its adaptive

learning rate and tree-based ensemble structure, though the elevated

MAPE variability (± 20 to ±46) suggests potential sensitivity to

outliers, warranting further data preprocessing or model tuning for

optimal ecological forecasting accuracy.

Figure 8 illustrates the validation outcomes across different folds.

The low degree of variation indicates that the model performs stably

and is not overly sensitive to data partitioning. It can be observed that
Frontiers in Marine Science 11
the interaction effects of financial instruments increase following

higher levels of smart port development (see Figure 9). Green

bonds and green leasing exhibit the strongest interaction effects. At

level L4, green leasing shows a particularly rapid increase, as indicated

by the steep slope from L3 to L4. Although ETS has the lowest

interaction effect overall, it demonstrates a notable upward trend

from L2 to L4, suggesting that in the long term, it could become a

financial mechanism worth considering in port development,

especially during the advanced stages of smart port implementation.
4 Recommendations and policy
implications

Based on the findings of the IDM framework, we propose the

following policy implications. Firstly, the SHAP analysis shows

green bonds as the most influential predictor for TOC, carbon

burial rate, and PLI. Port authorities should allocate green bond

funding to high-impact projects like shore power systems and

ballast water treatment to mitigate marine pollution. A dedicated

green bond framework should be established, targeting ports with

advanced smart infrastructure (L3–L4) to maximize carbon

sequestration and pollution reduction. Second, green credit has a

strong link with carbon-related outcomes and significant SHAP

values. Financial institutions could develop green financing

programs to support and scale up renewable energy projects

(Bui-Duy et al., 2023), such as solar-powered cranes and offshore

wind farms. Incentives such as interest rate subsidies for green

credit loans can encourage smaller ports (Rizhao, Yingkou) to use
FIGURE 7

(A-L) SHAP summary plot and SHAP dependence across indicators.
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renewable energy, addressing the reduced efficacy of green finance

in L1-L2 ports. Thirdly, the study notes the use of blue bonds for

marine-based projects like coastal restoration. Given the high

variability in E/DR (CV: 21.43%), blue bonds should be

prioritized for ecosystem restoration projects, such as mangrove

restoration and artificial reefs. The Ministry of Finance should issue

standardized blue bond guidelines, ensuring funds are directed to

ports with high ecological vulnerability, like those in the Bohai Sea,

to enhance marine biodiversity. Also, port authorities should deploy

AI tools to monitor the real-time environmental impact of financed

projects. For instance, smart sensors can be paired with green

finance to track PLI and ensure compliance with sustainability

goals, enhancing accountability and effectiveness. Finally, ports with

lower smartness (L1-L2) have lower SHAP values for green finance

instruments (green bonds: 0.03-0.04 for E/DR). To close this gap,

specific funding models, such as micro-green loans or public-

private partnerships, should be devised to help smaller ports

deploy smart technologies. These models can fund IoT sensors

and automated systems, enabling ports like Lianyungang to

improve environmental performance.

Additionally, the IDM results highlight the dominant influence

of green bonds, green leasing, and green credit on environmental

outcomes, which brings a strategic framework for sustainable smart

port development in China. National legislation should mandate

that at least 20% of port development budgets be channeled through

green finance instruments, with a focus on green bonds to fund

transformative projects. Those centralized projects supported by

AI-driven models should be designed to allocate funds based on

port-specific environmental priorities, thereby boosting carbon

sequestration and pollution reduction by an estimated 15–20% in

advanced L3–L4 ports while enhancing scalability in smaller L1–L2

ports. Addressing the high upfront costs of smart infrastructure

requires the introduction of tax exemptions for green bond

issuances targeting low-carbon initiatives, alongside interest rate

subsidies of 1–2% for green credit loans to support projects. Also,

the national green finance fund should prioritize covering 30–50%

of initial costs for smart technology adoption, potentially increasing

green finance uptake by 25% and reducing PLI by 10–15%. To

address transboundary ecosystem issues in areas such as the Yellow

Sea, there should be funds for conservation initiatives with an

emphasis on projects such as artificial reef development in Dalian

and Qingdao using AI-enabled monitoring tools to lower cross-
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border pollution by 15–20% and achieve hydrodynamic indicators.

Lastly, in order to offset the lower effectiveness of green finance in

smaller ports such as Rizhao and Lianyungang, a public-private

partnership model ought to catalyze private investment by risk-

mitigating instruments such as credit guarantee funds in tandem

with matching funds in order to increase the usage of smart

technology by 30%, enhance environmental performance by 10%

and reduce regional imbalances.

Based on the sensitivity analyses presented in Figure 10, the

following policy implications can be proposed to arrange financial

tools. Policymakers should prioritize a 25-30% increase in green bond

allocations in the short term, which could boost carbon burial rate,

TOC, and carbon fluxes by 38%, 28%, and 22%, respectively. The

moderate impact on flow velocity and E/DR necessitates integrating

green bonds with sediment control projects, ensuring a holistic

environmental strategy backed by cost-benefit analyses showing a

return on investment within 3–5 years. Also, the green leasing is

expected to increase by around 20%. This arrangement, in the short

term, can lead to a rise in TOC, carbon fluxes, and carbon burial rates

by approximately 13%, 9%, and 8%, respectively. These investments

are feasible, potentially offering a low-risk entry point to green

technology adoption. The synergy between green bonds and green

leasing justifies a dual-financing policy. The focus on incremental

increases mitigates financial strain on port authorities, while the

emphasis on advanced ports maximizes immediate impact. Regular

reviews, mandated quarterly, will adjust allocations based on SHAP-

driven impact assessments, ensuring alignment with carbon neutrality

goals and fostering a resilient, eco-friendly maritime sector. However,

the analysis also indicates that increased investments might

temporarily exacerbate pollution and sediment instability. Policy

response should involve a phased increase to monitor these adverse

effects. To limit the negative variation of PLI and E/DR, equipping

advanced water treatment systems with IoT monitoring for real-time

adjustments, and integrating sediment stabilization projects should

be considered.

From a technical perspective, the model can be readily scaled up

and applied in other advanced economies where datasets are relatively

complete and where smart port systems are well-equipped with data

acquisition, measurement, and monitoring capabilities. This would

facilitate more effective decision-making in allocating financial

resources toward green objectives. In several European countries, the

results may differ from those observed in China, with a tendency to
TABLE 3 Spatial variability of predicted output variables.

Output variable
Mean

prediction
Standard
deviation

Coefficient of
variation (%)

Range
Port with max

value
Port with min

value

TOC (%) 2.40 0.15 6.25 2.20–2.60 Shanghai (Yangshan) Hong Kong

Carbon burial rate (kg/ha/day) 1.20 0.10 8.33 1.05–1.35 Ningbo-Zhoushan Yantai

Carbon fluxes (kg/day) 150.5 12.5 8.31 130.0–170.0 Guangzhou Qinhuangdao

PLI 1.10 0.08 7.27 0.95–1.25 Shenzhen Lianyungang

Flow velocity (m/s) 0.45 0.05 11.11 0.38–0.52 Tianjin Yingkou

E/DR (mm/day) 0.14 0.03 21.43 0.10–0.18 Dalian Rizhao
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prioritize ETS, given the continent’s early and widespread adoption of

ETS mechanisms. Conversely, in countries with strong seaport

infrastructure but limited smart port maturity, where data, as well as

financial and environmental monitoring systems, remain fragmented

and lack standardization, the application of this research would be

considerably challenging. Therefore, wastefulness in the allocation of

financial instruments is difficult to avoid. In such cases, the IDM

technique can be adjusted to serve as an intermediary step, a guiding

framework for port authorities and local governments to place greater

emphasis on enhancing the deployment of equipment for monitoring,

measurement, and data acquisition. This would help establish the

necessary and sufficient conditions for applying advanced techniques

aimed at reducing resource allocation inefficiencies and improving the

port area’s ecological environment.
Frontiers in Marine Science 13
5 Conclusions

This study provides a comprehensive analysis of IDM and green

finance instruments in advancing sustainable smart port

development in China, with a focus on their impact on marine

ecosystem conservation. The IDM framework utilizes ML models to

predict environmental indicators based on financial variables and

the SHAP technique to quantify the interactive effects between

explanatory and response variables. The most important results

illustrate the prominent role of green finance, particularly green

bonds, green leasing, and green credit, in generating positive

environmental effects across 15 major Chinese ports. The SHAP

analysis indicates that green bonds are the leading factor of

influence, with numbers oscillating between 0.24–0.30 for carbon
TABLE 4 Pearson correlation between input and output variables.

Input variable TOC (%) Carbon burial rate Carbon fluxes PLI Flow velocity E/DR

Green bonds 0.65 0.72 0.58 -0.45 0.35 -0.30

Green credit 0.60 0.68 0.55 -0.40 0.32 -0.28

Green insurance 0.50 0.55 0.48 -0.35 0.28 -0.25

Credit guarantee funds 0.45 0.50 0.42 -0.30 0.25 -0.20

Green leasing 0.40 0.45 0.38 -0.25 0.20 -0.15

ETS 0.55 0.60 0.50 -0.38 0.30 -0.22
TABLE 5 Cross-validated performance metrics of ML models.

Output variable Model RMSE (±s) MAE (±s) MAPE (±s) Adjusted R2

TOC
(%)

RF 0.20 (2) 0.15 (1) 5.21 (33) 0.86

SVR 0.22 (2) 0.17 (2) 5.89 (40) 0.83

XGBoost** 0.17 (1) 0.13 (1) 4.52 (20) 0.90

Carbon burial rate
(kg ha−1 day−1)

RF 0.10 (1) 0.08 (1) 6.10 (43) 0.85

SVR 0.12 (1) 0.09 (1) 6.82 (57) 0.82

XGBoost* 0.08 (1) 0.06 (1) 5.01 (31) 0.89

Carbon fluxes
(kg day−1)

RF 16.90 (50) 12.50 (40) 7.30 (50) 0.84

SVR 18.40 (60) 13.80 (50) 8.10 (60) 0.81

XGBoost** 14.80 (40) 10.90 (30) 6.24 (46) 0.88

PLI

RF 0.07 (1) 0.05 (1) 4.80 (30) 0.87

SVR 0.08 (1) 0.06 (1) 5.41 (40) 0.84

XGBoost* 0.06 (1) 0.04 (1) 4.13 (28) 0.91

Flow velocity
(m s−1)

RF 0.05 (1) 0.04 (1) 5.50 (35) 0.86

SVR 0.06 (1) 0.05 (1) 6.22 (40) 0.83

XGBoost** 0.04 (1) 0.03 (1) 4.79 (20) 0.90

E/DR (mm day−1)

RF 0.08 (1) 0.06 (1) 6.00 (45) 0.85

SVR 0.09 (1) 0.07 (1) 6.72 (50) 0.82

XGBoost* 0.07 (1) 0.05 (1) 5.10 (37) 0.89
Standard errors (s) are from 10-fold cross-validation. ∗ and ∗∗ denote significance (p < 0.05 and p < 0.01, respectively) for XGBoost vs. RF/SVR.
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burial rate and 0.17–0.20 for PLI, thus showing their efficiency in

not only increasing carbon storage but also in decreasing water

pollution, especially in the most developed ports like Shanghai and

Ningbo-Zhoushan. Green credit is next in sequence, with very tight

correlations (0.60 for TOC, 0.68 for carbon burial rate), and it

fosters the use of renewable energy and the fight against pollution.

The XGBoost model outperforms RF and SVR; it gets adjusted R²
Frontiers in Marine Science 14
numbers of 0.88–0.91 for environmental indicators such as TOC,

carbon fluxes, and flow velocity, being the most reliable to detect

intricate, non-linear relationships and instruct the distribution of

resources. Spatial variability analysis highlights glaring differences

in environmental outcomes, with Shanghai leading in TOC (2.60%)

and Ningbo-Zhoushan topping the carbon burial rate (1.35 kg/ha/

day), while quite a few smaller ports like Qinhuangdao and Yingkou
FIGURE 8

Validation metrics for marine ecosystem indicators by fold.
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show poorer performance due to their fragmented smart

infrastructure. These results are significant as they attest to the

interplay of IDM, green finance, and sustainable port operations

that are well in accord with China’s carbon neutrality and peak

carbon targets.

The study makes three significant contributions to the literature.

First, it quantifies the impact of green finance instruments on

environmental outcomes using SHAP analysis, identifying green

bonds and green credit as primary drivers of carbon sequestration

and pollution reduction, thus providing a data-driven framework for

prioritizing financial tools in port sustainability. Second, it demonstrates

the superior predictive accuracy of XGBoost in modeling complex port-

specific environmental dynamics, offering a scalable approach for IDM

in smart port development. Third, it highlights regional disparities in

green finance efficacy, particularly the lower impact in L1–L2 ports

(SHAP values of 0.03–0.05 for E/DR in Rizhao), informing targeted

policy interventions to bridge these gaps.

Even though the study shows some good things, the research is

not without issues. In terms of research scope, this study focuses solely

on the analysis of marine environmental ecological indicators in the

surrounding areas, without considering air quality and its dispersion
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during the development of smart ports. This scope can be expanded in

future studies once comprehensive air quality data becomes available.

Second, due to incomplete archival records of baseline sediment

indicators from the period before port construction, a thorough

assessment of the effectiveness of financial instruments in smart port

development may be subject to certain inaccuracies. Future research

can be based on this study’s suggestion to conduct systematic data

collection and storage in other regions or territories. From a

methodological perspective, the current process of data collection

and analysis remains time-consuming due to the reliance on

traditional approaches. Moreover, the frequency of measurements

and data acquisition has yet to achieve continuity. Equipping more

advanced sediment monitoring systems and data collection devices

that enable real-time recording of ecosystem changes multiple times

per day is crucial. Then it can further enhance the accuracy of the

model and provide a more robust basis for evidence-based policy

planning. Finally, future studies could offer a more comprehensive

analysis by conducting a comparative assessment of the effectiveness

of financial instruments between smart port areas and other civilian

zones within the same city, thereby further clarifying the rationale for

allocating these green financial instruments.
FIGURE 10

(A, B) Sensitivity analysis of the change in two dominant tools on the reduction of ecosystem pollution.
FIGURE 9

Interaction effects between financial instruments and port smartness level.
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