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Marine coral sand-clay mixtures (MCCM) are widely used in marine engineering,

with their mechanical behavior strongly influenced by clay content. This study

investigates the effects of 3D-printed triaxial geogrid reinforcement on MCCM

through triaxial testing. Based on the experimental results, a dataset was

established, while a novel machine learning model named GP-BPNN was

proposed, integrating genetic algorithm (GA), particle swarm optimization

(PSO), and backpropagation neural network (BPNN). This model was applied

for the first time to predict the strength of MCCM. Results show that lower clay

content, more reinforcement layers, and higher confining pressure significantly

enhance the strength and cohesion of MCCM, with little effect on the internal

friction angle. The strength first decreases, then increases, and finally decreases

again with increasing water content. Particle breakage is influenced by clay

content and water content; moreover, fractal analysis reveals a linear relationship

between the breakage rate and the fractal dimension. SEM images reveal the

interaction between MCCM and the geogrid. Additional stress and matrix suction

analyses highlight the effects of reinforcement layers and water content on the

strength. These findings offer insight into triaxial geogrid-reinforced MCCM

behavior and provide guidance for marine engineering construction.
KEYWORDS

triaxial geogrid reinforcement, marine coral sand-clay mixture, 3D printing technology,
triaxial shear tests, particle breakage, machine learning
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1 Introduction

Marine coral sand is predominantly distributed in tropical and

subtropical marine regions near the equator, including the South

China Sea, the Coral Triangle, and the shallow continental

platforms of the Caribbean Sea (Qi et al., 2022; Shahnazari and

Rezvani, 2013). It originates from the long-term geological

accumulation of biogenic debris such as corals and shells, and as

a result, it exhibits distinctive physical properties such as high

porosity, irregular particle morphology, low particle strength, and

high calcium content (Chao et al., 2025; Ding et al., 2022a; Wu et al.,

2021b). These characteristics make marine coral sand a widely used

material in hydraulic reclamation and land fill projects (Ding et al.,

2022b; Wang et al., 2011). However, when common seabed

dredging operations such as mechanical grab dredging and

suction pipeline extraction are carried out, low-density marine

clay is readily entrained into the marine coral sand due to water-

induced turbulence (Prakasha and Chandrasekaran, 2005). In

addition, tidal flows and bottom currents promote the

fragmentation and dispersion of clay aggregates into the sand

matrix (Xu et al., 2020). As a result, the fill material used in

practice typically forms a marine coral sand–clay mixture

(MCCM) (Chen et al., 2024b). The presence of marine clay

further exacerbates the intrinsic drawbacks of marine coral sand,

such as its low strength and high compressibility, which in turn

results in a substantial reduction in the overall bearing capacity and

long-term stability of marine infrastructure founded on MCCM

(Chao et al., 2021; Lv et al., 2021; Peng et al., 2022; Wu et al., 2021a).

To mitigate these limitations, reinforcement with geosynthetic

materials has been explored as a viable solution (Abdelaal and

Solanki, 2022; Ahmadi and Chen, 2019; Bacas et al., 2011; King

et al., 2017; Rowe and Fan, 2021, 2022; Xu et al., 2023a), particularly

with the application of geogrids (Biabani and Indraratna, 2015).

Several studies have demonstrated that the incorporation of

geogrids can significantly enhance the mechanical performance of

MCCM, particularly in terms of strength, stiffness, and deformation

resistance (Derksen et al., 2021; Jiang et al., 2024; Xu et al., 2019).

More recently, triaxial geogrids, which offer multidirectional

confinement, have shown superior performance compared to

conventional uniaxial or biaxial geogrids (Baadiga and Balunaini,

2023; Chen et al., 2021; Poorahong et al., 2024). Consequently, the

pursuit of a comprehensive understanding of the mechanical

behavior of MCCM and the elucidation of the reinforcement

mechanisms of triaxial geogrids have become critical research

frontiers in the field of marine geotechnical engineering.

Extensive research on the reinforcement of MCCM has

produced valuable insights; however, most existing studies focus

primarily on the reinforcement of pure marine coral sand (Ding

et al., 2022b; Wang et al., 2023; Xu et al., 2023b). Among them,

geogrids have been identified as an effective reinforcement material

(Kermani et al., 2018; Luo et al., 2024; Zhang et al., 2025). Ding et al.

(2022b) conducted triaxial consolidated drained tests with

customized geogrids to examine the effects of confining pressure

and reinforcement layers on the strength of marine coral sand. The

results revealed that geogrid reinforcement significantly improved
Frontiers in Marine Science 02
both strength and deformation characteristics. Luo et al. (2023)

applied geogrid reinforcement to improve the bearing capacity of

marine structures, particularly slopes made from marine coral sand.

The study found that geogrids significantly increased shear strength

and improved the failure mechanism of the slopes. Chen et al.

(2024a) conducted large-scale drained consolidated triaxial

compression tests to investigate the effects of confining pressure,

moisture content, and geogrid reinforcement on the mechanical

and deformation behaviors of marine coral sand. The study found

that geogrid reinforcement significantly enhanced the shear

strength and mitigated volumetric dilation, while particle

breakage increased with higher confining pressures. Some

researchers have conducted cyclic triaxial shear tests on geogrid-

reinforced marine coral sand and demonstrated that geogrid

reinforcement can significantly enhance its liquefaction resistance

(Gao et al., 2024; Zhou et al., 2024). These studies provide

preliminary references for reinforcing marine coral sand.

However, in practical applications, the fill materials used are

typically MCCM, and research on reinforcing MCCM with

triaxial geogrids remains limited.

InMCCM, the diversity of marine biogenic debris results in highly

variable shapes of marine coral sand particles (Akosah et al., 2025; Jin

et al., 2022; Wu et al., 2023; Yang et al., 2024). These variations

necessitate matching specific geogrid sizes to achieve optimal

reinforcement performance (Cheng et al., 2022; Hasheminezhad

et al., 2025; Oliveira and Falorca, 2025; Venkateswarlu et al., 2023a).

The complexity and high cost of conventional manufacturing

methods make it difficult to produce geogrids with precise

geometries (Fowmes et al., 2017). Industrial 3D printing technology

offers a viable solution by enabling the customization of geogrids based

on the distinct characteristics of marine coral sand particles, thereby

enhancing their reinforcement effectiveness (Giroud et al., 2023; Liang

et al., 2024; Tavakoli et al., 2023; Venkateswarlu et al., 2023b). Stathas

et al. (2017) conducted laboratory experiments comparing the

mechanical performance of geogrids fabricated via 3D printing and

traditional methods. The results indicated that 3D-printed geogrids

are more suitable for scaled-down physical model tests of reinforced

soils. Fowmes et al. (2017) conducted the first research to explore the

application of 3D printing technology in the fabrication of

geosynthetics. In addition, various 3D printing methods used for

producing geosynthetics were compared and analyzed in terms of

their advantages and limitations. The study found that 3D printing

offers a viable solution to the challenges of achieving precision and

customization that are difficult to attain with traditional

manufacturing methods. Zhang et al. (2023) designed an intelligent

geogrid by integrating 3D printing technology with FBG sensor

elements, thus enabling real-time measurement and monitoring of

stress and strain during service. Previous studies confirmed the

applicability of 3D-printed geogrids and their rapid, precise

fabrication. However, most focus on single soil types, with limited

research on MCCM. Thus, applying 3D printing is crucial for

optimizing geogrid design for MCCM reinforcement and guiding

marine engineering projects.

Predictive models based on physical test results are widely used

in geotechnical engineering to generalize and apply experimental
frontiersin.org
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findings (Chao and Fowmes, 2021; Chao et al., 2024c; Dong et al.,

2017). However, as noted above, the mechanical behavior of

MCCM is governed by multiple interacting factors such as clay

content, reinforcement method and moisture content, and its

internal structure and physical responses exhibit pronounced

non-linear characteristics (Chao et al., 2024b; Rowe and Fan,

2021). The intricate interplay among variables makes it difficult

for conventional statistical methods to replicate the observed

responses accurately, yet faithfully modeling these influences is

crucial for a dependable evaluation of MCCM’s strength and

deformation behavior (Cavalcante and Mascarenhas, 2021; Chao

et al., 2024a). In recent years, machine learning methods have

attracted widespread interest among geotechnical researchers due to

their superior ability to handle high-dimensional, non-linear,

multivariate problems, and have been successfully applied to tasks

such as soil property prediction and foundation bearing capacity

analysis (Biabani and Indraratna, 2015; Chao and Fowmes, 2021,

2022; Chao et al., 2021). Moreover, most prior investigations have

relied on comparatively simple algorithms or on models with

suboptimal tuned hyperparameters (Chao et al., 2023a, 2022a, b),

so the potential of advanced ensemble techniques for modeling

complex soil behavior remains largely unexplored, and this gap

presents a significant hurdle to accurate prediction of MCCM’s

mechanical performance.

Generally, machine learning models that lack integrated

optimization algorithms suffer from low efficiency, slow

convergence, overfitting tendencies, and a high risk of entrapment

in local optima, which often causes convergence problems (Raja and

Shukla, 2020; Saghatforoush et al., 2016). More importantly,

manual determination of initial model parameters introduces

subjectivity and undermines prediction accuracy (Chao et al.,

2022a; Hasanipanah et al., 2018). Consequently, some researchers

have employed genetic algorithms (GA) and particle swarm

optimization (PSO) to tune the initial parameters of machine-

learning models for geotechnical material performance

assessment, demonstrating that these hybrid models converge

faster and deliver higher prediction accuracy (Ahmadi and Chen,

2019; Al Khalifah et al., 2020; Chao et al., 2022b). However, genetic

algorithms and particle swarm optimization still have inherent

limitations, such as a tendency to fall into local optima and

reliance on empirical parameter selection (Chao et al., 2023b; Liu

et al., 2015a; Wang and Shen, 2018). To address this issue, this study

proposes a new approach by introducing the GP optimization

algorithm, which combines the global search capability of GA

with the efficient convergence of PSO to enhance model stability

and prediction accuracy in evaluating the mechanical behavior

of MCCM.

This study investigates the mechanical behavior of MCCM

reinforced with 3D-printed triaxial geogrids. A series of triaxial

tests were conducted to evaluate the effects of clay content, number

of reinforcement layers, confining pressure, and moisture content

on the performance of geogrid-reinforced MCCM. In addition,

particle breakage characteristics were analyzed through sieve

analysis. The findings provide valuable insights for optimizing

geogrid products and advancing the application of 3D printing
Frontiers in Marine Science 03
technology in the reinforcement of MCCM and other geotechnical

materials. Based on 900 sets of triaxial test data, a machine learning

model was developed to predict the strength of MCCM under

various conditions, with a hybrid optimization approach that

integrates GA and PSO. Sensitivity analysis was also conducted to

identify key influencing variables, which facilitates practical

strength estimation of MCCM for geotechnical engineers with

limited machine learning experience. This approach forms a

closed loop from experimentation to optimization, which

significantly decreases the need for extensive repetitive physical

testing. This research provides experimental and theoretical support

for reinforced soil technologies to enhance the stability and safety of

marine engineering structures.
2 Physical test methodology

2.1 Materials

2.1.1 Marine coral sand and clay
The materials used in the test included marine coral sand and

kaolin clay. The marine coral sand was collected from the South

China Sea. After drying and screening, particles with a grain size

range of 0.074 mm to 2 mm were selected for testing. The kaolin clay

had a grain size of 10 mm. Figure 1. shows the marine coral sand and

kaolin clay used in the test, Additionally, Scanning Electron

Microscopy (SEM) images of the specimens were obtained.

Figure 2. presents the grain size distribution curve, and Table 1 lists

the key material properties. The marine coral sand had a coefficient of

uniformity (Cu) of 3.1 and a coefficient of curvature (Cc) of 1.2, which

reflects a well-graded particle distribution suitable for engineering

applications. The SEM images reveal that the marine coral sand

particles possess irregular shapes with rough and porous surfaces,

which can enhance mechanical interlocking and influence the

interaction with the kaolin clay matrix. These microstructural

features are critical in understanding the strength and deformation

behavior of the coral sand–clay mixture used in the tests.

2.1.2 3D printed triaxial geogrid
A triaxial geogrid was fabricated using 3D printing technology of

Stereolithography Apparatus (SLA), as shown in Figure 3. The rib

width and rib thickness are 1.5 mm and 2 mm, respectively. The

apertures are equilateral triangles with a side length of 2 mm.

Considering the boundary effect during sample preparation, the

diameter of the triaxial geogrid was set to 39.1 mm. Detailed

parameters of the triaxial geogrid are listed in Table 2. Figure 4.

presents the 3D surface topography of the polymer surfaces obtained

via Transmission Electron Microscopy (TEM). This technique

enables precise quantification of surface roughness. The Rs

parameter denotes the ratio between the actual surface area and its

projected area (Frost et al., 2012). 3D surface scans conducted before

and after triaxial testing revealed an increase in surface roughness of

the multilayer polymer specimens from 1.08 to 1.52. The rise in

roughness was primarily attributed to irregular scratches formed by

the embedded marine coral sand particles, as illustrated in Figure 4.
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2.2 Testing program

In the actual environment of the South China Sea islands and

reefs, most surface and near-surface marine coral sand remains in an
Frontiers in Marine Science 04
unsaturated state over long periods, resulting in extremely low

strength (Chao et al., 2024a). These areas represent potential

reinforcement zones for geogrid applications (Chao et al., 2024b).

An accurate understanding of their mechanical properties and the
FIGURE 1

Marine coral sand and kaolin clay with SEM images.
FIGURE 2

Grain size grading curve of marine coral sand.
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development of an effective reinforcement mechanism are critical for

ensuring the safety and stability of island construction. To investigate

the fundamental mechanical behavior, deformation characteristics,

and particle breakage patterns of MCCM with varying clay contents

reinforced by triaxial geogrids, a series of unconsolidated undrained

(UU) triaxial tests were conducted, as summarized in Table 3. The

tests considered the effects of clay content, number of geogrid layers,

initial water content, and confining pressure. Given the crushable

nature of marine coral sand particles, post-test particle size sieving

analyses were also performed to quantitatively evaluate particle

breakage characteristics under different conditions.
2.3 Testing step

The experiments were conducted using a static-dynamic triaxial

testing system manufactured by VJ Tech, UK, as shown in Figure 5.

For each specimen, the mass of each layer was pre-calculated based

on the target water content, followed by precise weighing and

moisture adjustment. The prepared MCCM, after being uniformly

mixed and tamped, was placed into the mold layer by layer and

compacted to the designated height. The volume of the geogrid was

taken into account and deducted during sample preparation to

avoid affecting the specimen’s density. The layout and placement of

the geogrid reinforcement are illustrated in Figure 5. Upon
Frontiers in Marine Science 05
completion of sample preparation, triaxial compression tests were

carried out, with each test terminated when the axial strain reached

15%. After testing, the MCCM specimens were washed, oven-dried,

and sieved to obtain the particle size distribution curve of the

marine coral sand after shear.
3 Establishment of machine learning
algorithms and datasets

This study employs one machine learning algorithm, namely

BPNN (Back Propagation Neural Network). To optimize the

algorithm, GA, PSO, and GP are applied. Among the various

advantages of using these algorithms, three key benefits can

be highlighted.
1. These algorithms were all developed through a

standardized procedure (Kardani et al., 2020).

2. These algorithms have been widely applied in solving

marine engineering problems (Samui, 2012; Zhou

et al., 2017).

3. These algorithms are capable of accurately fitting the

complex nonlinear relationships among numerous

influencing factors (Liu et al., 2015b).
3.1 BPNN

BPNN is an artificial neural network based on the

backpropagation algorithm (Hecht-Nielsen, 1992). It receives data
TABLE 1 Basic physical parameters of marine coral sand.

GS
D50/
mm

Cu Cc emin emax

2.81 1 3.1 1.2 0.99 1.49
FIGURE 3

3D printing of geogrid model and entity.
TABLE 2 Physical and mechanical properties of the geogrid.

Standard
Tensile
modulus

Tensile
strength

Elongation
at break

Flexural
modulus

Impact
strength

Distortion
temperature

ASTM 2,598Mpa 58Mpa 11% 2,755Mpa 30J/m 65°C
frontiersin.org

https://doi.org/10.3389/fmars.2025.1660611
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Shi et al. 10.3389/fmars.2025.1660611
from input parameters through the input layer, transmits them to

the hidden layer, and then performs weighted and nonlinear

transformations of the input signals using network weights and

activation functions, ultimately generating the output. The BPNN

model used in this study consists of five input layers (clay content,

number of reinforcement layers, confining pressure, moisture

content and strain) and one output layer (stress), as shown in

Figure 6. The model adopts the Log-Log Sigmoid function as the

activation function and uses the newff function to create a

backpropagation neural network, optimizing the initial weights

and thresholds.
3.2 GA and PSO

Genetic Algorithm (GA) is an optimization algorithm that

simulates the process of natural evolution, searching for optimal

solutions through operations such as selection, crossover, and

mutation (Lambora et al., 2019). In GA, an initial population is
Frontiers in Marine Science 06
first generated through random initialization, and each individual is

evaluated using a fitness function. Based on fitness values, superior

individuals are selected for reproduction, and new individuals are

generated through crossover and mutation operations. The

selection, crossover, and mutation processes are repeated until a

termination condition is met, such as reaching the maximum

number of iterations or obtaining a satisfactory solution. Genetic

algorithms are widely used in optimization and search problems,

particularly demonstrating strong search capabilities and

adaptability in complex problem spaces and scenarios where

traditional methods fail.

Particle Swarm Optimization (PSO) is another heuristic

population-based optimization algorithm inspired by the

collective behavior of organisms such as bird flocks or fish

schools (Wang et al., 2018). In PSO, each candidate solution is

treated as a particle that moves through the search space, with its

direction and velocity influenced by both its own best historical

position and the global best position found by the swarm. Particles

adjust their positions based on update rules for their current
FIGURE 4

3D surface profile of the geogrid surfaces (a) before the experiment (b) after the experiment.
TABLE 3 Experimental scheme.

Number Clay content
Confining pressure

(kPa)
Geogrid layers Water content

T1 30 50, 100, 150, 200 0, 1, 2 0

T2 50 50, 100, 150, 200 0, 1, 2 0

T3 70 50, 100, 150, 200 0, 1, 2 0

T4 70 50, 100, 150, 200 1 9

T5 70 50, 100, 150, 200 1 15

T6 70 50, 100, 150, 200 1 18

T7 70 50, 100, 150, 200 1 21

T8 70 50, 100, 150, 200 1 27

T9 70 50, 100, 150, 200 1 36
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position and velocity to search for the optimal solution. The key

advantages of PSO include its simplicity, ease of implementation,

independence from gradient information, global search capability,

and fast convergence. It is widely used in function optimization,

neural network training, and various other optimization problems.
Frontiers in Marine Science 07
3.3 GP

GP (GA+PSO) is a hybrid intelligent optimization algorithm

that combines the advantages of both Genetic Algorithm (GA) and

Particle Swarm Optimization (PSO). The algorithm leverages GA’s
FIGURE 5

Triaxial geogrid reinforcement position diagram and static-dynamic triaxial testing system.
E 6FIGUR

BPNN model.
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global search capability and population diversity to generate new

solutions through selection, crossover, and mutation operations,

while incorporating PSO’s particle velocity and position update

mechanisms to accelerate convergence and enhance local search

ability. In GP, the population is first initialized, and GA is used for

global exploration, followed by PSO for fine-tuned search to

improve the quality of the solutions. This algorithm demonstrates

stronger search efficiency and robustness in complex multi-

dimensional optimization problems, helping to improve
Frontiers in Marine Science 08
prediction accuracy and reliability for guiding practical

marine engineering.
3.4 Dataset creation

In this study, the creation of the dataset forms the foundation

for training the machine learning algorithms. To train and validate

the performance of BPNN, GA-BPNN, PSO-BPNN, and GP-
FIGURE 7

Data distributions for the database (a) Clay content (%) (b) Number of reinforcement layers (c) Confining pressure (kPa) (d) Moisture content (%) (e)
Strain (%).
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BPNN, a dataset with 5 input parameters and 1 output parameter

was constructed, as shown in Figure 7.

A database consisting of 900 datasets was established, primarily

containing four input parameters: clay content, number of

reinforcement layers, confining pressure, moisture content, and

strain. To evaluate the model’s generalization ability, the dataset

was divided into two parts: the training set and the test set. The

training set was used to train the model, while the test set was used

for the final evaluation of the model’s performance. By reasonably

dividing the dataset into 80% for training and 20% for testing, the

model’s generalization ability and performance in practical

applications were more accurately assessed.
4 Results and analysis

4.1 Analysis of the sample failure patterns

After each test, the pressure chamber was dismantled, and the

typical post-test morphologies of specimens with different

reinforcement layers were documented, as shown in Figure 8.

Overall, the Marine coral sand–Clay Mixture (MCCM) specimens

exhibited no clearly defined shear planes but showed noticeable

bulging behaviour. The unreinforced specimen experienced the

most significant lateral bulging. With one reinforcement layer,

bulging was reduced and primarily concentrated above and below

the geogrid, where the triaxial geogrid acted like a restraining “belt.”

When two reinforcement layers were used, the bulging was further
Frontiers in Marine Science 09
minimized and more uniformly distributed along the specimen’s

height, with the geogrids functioning as dual “belts” that enhanced

confinement. This behaviour aligns with observations reported by

previous researchers (Ding et al., 2022b). These observations

suggest that adding more triaxial geogrid reinforcement layers

effectively improves lateral stability by reducing bulging in

MCCM specimens.
4.2 Deviatoric stress-strain relationship

Based on the experimental data, the deviator stress–strain

curves for the groups in Table 3 were obtained. Figures 9 display

the deviator stress–strain curves of dried MCCM with different clay

contents, and it can be observed that, with increasing confining

pressure and number of reinforcement layers as well as decreasing

clay content, the peak stress increases accordingly and the

hardening tendency becomes more pronounced. In particular, for

the sample with 30% clay content, under a confining pressure of 200

kPa and with two reinforcement layers, the maximum stress at a

strain of 15% reaches as high as 5300.15 kPa. Moreover, Figure 10.

clearly shows that the strength of the MCCM exhibits a trend of

decreasing, then increasing, and finally decreasing again with

increasing moisture content. Some researchers propose that the

strength of marine coral sand decreases with increasing moisture

content, while others suggest that clay has an optimum moisture

content. This study posits that at low moisture contents, the clay

absorbs water to form weakly bound water that enhances
frontiersin.o
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interparticle cohesion; However, with further increases in moisture

content, the swelling of the absorbed clay weakens the cementation

between particles, resulting in a gradual loss of cohesion;

consequently, the strength of the MCCM is reduced. A detailed

discussion on cohesion will be presented in Section 4.3.
Frontiers in Marine Science 10
4.3 Strength impact analysis

To better investigate the influence of clay content, confining

pressure, number of reinforcement layers, and moisture content on

the strength behaviour of MCCM, a strength change ratio (Rs) is
FIGURE 9

Deviator stress-strain curve (a) 30% clay content (T1) (b) 50% clay content (T2) (c) 70% clay content (T3) (d) 9% water content (T4) (e) 15% water
content (T5) (f) 18% water content (T6) (g) 21% water content (T7) (h) 27% water content (T9) (i) 36% water content (T10).
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introduced for quantitative analysis (Luo et al., 2023, 2024). In

addition, following the approach adopted by many researchers, the

Mohr–Coulomb failure criterion is employed to calculate the

cohesion c and internal friction angle j of MCCM (Jie et al., 2015).

The strength enhancement ratios Rs under different

reinforcement layer configurations are illustrated in Figure 11.

The maximum improvement, an increase of 264.53%, was

observed with two layers of reinforcement at a clay content of

50%. This indicates that the inclusion of triaxial geogrids can

significantly enhance the strength of MCCM. As the number of

reinforcement layers increases, the strength enhancement ratio also

increases. However, with increasing confining pressure, the overall

enhancement effect tends to diminish. These results suggest that

triaxial geogrid reinforcement is particularly effective in shallow

reinforcement applications.

As shown in Figure 12, the strength of the MCCM exhibits a

negative correlation with clay content; higher clay contents

correspond to lower shear strength. In particular, Figure 11A

shows that the strength reduction is most pronounced at clay

contents of 30% and 50%, with a maximum decrease of 63.94%.

This can be attributed to the inherently low strength of clay, and

potentially to the fact that, with increasing clay content, the clay

tends to encapsulate the marine coral sand particles, disrupting the

sand skeleton structure. This transition shifts the mechanical

behavior of the mixture from a sand-dominated frictional

strength to a clay-dominated weak plastic response, which results

in a marked reduction in shear strength.
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Furthermore, a significant strength degradation is observed

under low confining pressures. This is likely due to the inability

of low external pressure to maintain inter-particle contact. Under

high confining pressures, the marine coral sand particles are forced

into close contact, enhancing interlocking and frictional resistance.

Even when coated by clay, the applied pressure helps to preserve a

certain degree of skeleton integrity. In contrast, at low confining

pressures, insufficient constraint allows relative movement or

rotation of clay-coated sand particles, leading to rapid

degradation of the structural framework. Consequently, the

strength of the MCCM becomes increasingly dependent on the

weak cohesive properties of the clay matrix, which are substantially

lower than the frictional strength of sand. This pronounced strength

reduction will be further discussed in detail in Section 5.1.

The variation in MCCM strength with changing moisture

content is presented in Figure 13. Unlike pure marine coral sand,

the strength of MCCM does not exhibit a continuous decline with

increasing moisture content. Notably, a strength recovery is

observed at a moisture content of 18%. A strength-based analysis

alone cannot fully account for the observed trend in MCCM

strength as moisture content increases. To elucidate this behavior,

a further analysis of the cohesion and internal friction angle is

carried out in the following discussion.

Calculations of cohesion c and internal friction angle j indicate

that both parameters in MCCM are significantly higher than those in

pure marine coral sand, as shown in Figure 14. This can be attributed

to the high cementation characteristics of clay, which enhance inter-
FIGURE 10

MCCM peak stress: confining pressure and moisture content effects.
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particle bonding within the MCCM and consequently increase

cohesion. In addition, clay fills the voids between marine coral sand

particles, which leads to higher compactness and stronger mechanical

interlocking, contributing to an increase in the internal friction angle.

This phenomenon will be further investigated in Section 5.1 through

SEM imaging, which reveals that clay tends to coat marine coral sand

particles, forming more complex shear planes and increasing shear

resistance, thereby resulting in a higher internal friction angle.

The strength variation pattern of MCCM with moisture content, as

discussed in Section 3.2, can be explained by Figure 15. The cohesion

decreases initially with increasing moisture content, then increases, and

finally decreases again. Notably, at a moisture content of 18%, the

cohesion is nearly equivalent to that under dry conditions. The variation

trend of the internal friction angle is also similar to that of cohesion.

These results highlight that moisture content is a critical factor

influencing the strength of MCCM. In practical engineering

applications, it is recommended to control the moisture content

between 15%-21% to ensure the strength and stability of marine

engineering constructions whereMCCM is used as the primarymaterial.
Frontiers in Marine Science 12
4.4 Particle breakage analysis

Based on sieve tests conducted on the particles before and after

tests T1–T9, Figures 16a-c demonstrate that, under dry conditions,

a greater number of reinforcement layers and higher confining

pressure lead to an increased degree of particle breakage. In

contrast, Figure 16d shows that moisture content has no

significant effect on particle breakage. A magnified view of the

local curves reveals that the particle breakage zone is concentrated

between 0.6 and 1 mm. This study suggests that the particle

gradation curves are essentially coincident, indicating that the

underlying mechanisms cannot be discerned clearly from these

curves alone.

For a quantitative evaluation of the extent of particle

fragmentation, Hardin (1985) introduced the concept of the

relative breakage rate, Br, as depicted in Figure 17. This method

has since been widely used to evaluate the amount of breakage in

marine coral sand (Chen et al., 2023; Ding et al., 2022a). The

calculation formula as shown in Equation 1:
FIGURE 11

Strength enhancement ratio (a) 70% clay content; (b) 50% clay content; (c) 30% clay content.
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Br = Bt=Bp (1)

Here, Br indicates the cumulative breakage and Bp represents

the potential for breakage. This approach determines Br by

integrating the corresponding areas under the particle size

distribution curves before and after testing.

The calculations shown in Figure 18 indicate that an increase in the

number of reinforcement layers has a significant impact on particle

breakage. As the number of reinforcement layers increases, the relative

breakage rate of MCCM clearly rises, reaching a maximum of 20.7195%

for the case with two layers of reinforcement at a clay content of 70%.

Analysis reveals that clay content is positively correlated with the relative

breakage rate. This phenomenon is attributed to the fact that marine

coral sand particles are encapsulated and isolated by clay; when load is

transmitted through the clay, local stress concentrations occur at the

contact points between sand particles, thereby enhancing particle

breakage. Additionally, the trend of the relative breakage rate with

moisture content is analogous to the variation in MCCM strength with
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moisture content, with the highest relative breakage rate of 18.18725%

occurring at a moisture content of 18%.

To further quantify the extent of particle breakage, a fractal

model is utilized to characterize the fragmentation behavior. Tyler

and Wheatcraft (1992) introduced a fractal model for particle size

distribution curves, establishing the relationship between

cumulative soil particle mass and particle size. The corresponding

formula is as follows:

M(d < di)
MT

=
di

dmax

� �a
=

di
dmax

� �(3−D)

(2)

In this equation, d represents the selected particle size;M (d< di)

denotes the cumulative mass of particles with diameters smaller

than di; MT is the total mass of the particles; di is the diameter

corresponding to the ith sieve layer, with dmax being the maximum

particle size for marine coral sand. The slope, a, of the particle size
distribution curve at particle diameter di is defined as a = 3−D,
FIGURE 12

Strength decay ratio (a) 30%-50% clay content; (b) 50%-70% clay content; (c) 30%-70% clay content.(a) Strength decay rate at 30%-50% clay
content (b) Strength decay rate at 50%-70% clay content (c) Strength decay rate at 30%-70% clay content.
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where D is the fractal dimension of the particle material. Apply

logarithms to both sides of Equation 2 to obtain Equation 3:

lg (
M(d < di)

MT
) = (3 − D) lg (

di
dmax

) (3)

Based on Equation 3, the slope (k) of the linear fit between lg[M

(d< di)/MT] and lg(di/dmax) is equal to 3 – D, where D is the fractal

dimension. Thus, D can be determined from the slope of the log-log

plot, with higher values of D indicating more significant particle

fragmentation. This formulation is used to characterize the fractal

behaviour of reinforced marine coral sand during triaxial

compression tests.

After calculations, Tables 4 and 5 were obtained. The analysis

reveals that the variation trends of the fractal dimension and the

particle breakage rate are similar, indicating that the fractal

dimension exhibits the same regularity as particle breakage. With

an increase in the number of reinforcement layers, confining

pressure, and clay content, the fractal dimension increases.

Additionally, under an 18% moisture content, the fractal

dimension is higher than under other conditions, although the

difference is not very pronounced. In summary, the variation in the

fractal dimension can quantitatively describe the degree of particle

breakage. The number of reinforcement layers, the magnitude of
Frontiers in Marine Science 14
confining pressure, and clay content are the primary factors

affecting changes in the fractal dimension, while moisture content

has a relatively minor influence.
4.5 Machine learning predicting
performance

Figure 19. shows the prediction results of the machine learning

model constructed to evaluate 900 training and testing datasets.

From the overall trend, the predicted values (red hollow circles)

of all models generally align with the actual values (black hollow

diamonds), indicating that each model can effectively fit the training

data and capture the nonlinear relationship between input features

and the target output. In terms of error performance, there are

significant differences among the models. The GP(GA-PSO-BPNN)

model (Figure 19d) shows the smallest deviation from the actual

values, demonstrating strong fitting capability. In contrast, the

BPNN (Figure 19a) exhibits larger prediction errors for some

high-peak samples, suggesting that its shallow network structure

is insufficient to capture the complex patterns in the data. GA-

BPNN (Figure 19b) and PSO-BPNN (Figure 19c) improve the

performance of the conventional BPNN through optimization
FIGURE 13

The strength with moisture content under different confining pressures.
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FIGURE 14

Cohesion c and internal friction angle j in the dry state.
FIGURE 15

Changes in cohesion c and internal friction angle j at varying moisture contents. (a) Cohesion c variation trend (b) Internal friction angle j variation
trend.
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algorithms, showing better alignment with the actual values, though

slight overfitting is still observed in some samples. Overall,

Figure 19 shows that the GP model outperforms other models on

the training set, demonstrating superior learning and

generalization capabilities.

Figure 20. presents the fitting performance of each model,

providing a further assessment of how well the training data is

matched. The GP model shows the best performance in the fitting

plots, with the fitting curve closely aligning with the true values. It

achieves an R value of 0.9993, which indicates that GP can

effectively capture patterns in the training data and perform

accurate fitting. In contrast, BPNN (Figure 20a) exhibits poorer

fitting performance, especially in regions with higher peaks, where

there is a noticeable deviation between the fitting curve and actual

measurements. The lower R value suggests that the depth of the

BPNN network is insufficient to handle the complex nonlinear

features in the data, which limits its ability to learn intricate patterns

effectively. GA-BPNN and PSO-BPNN improve the fitting
Frontiers in Marine Science 16
performance through optimization algorithms, but signs of

overfitting are still observed at certain data points.

Specifically, the GP model achieved the highest prediction

accuracy, with the lowest RMSE values of 5.72097 and 2.48537 for

the test and training sets, respectively, and the lowest MAPE values of

7.45347% and 2.24681%, respectively. In terms of correlation, the GP

model yielded an R value of 0.9993 on the test set, which is close to 1,

indicating a very high correlation between the predicted results and

the measured values. In contrast, although the GA-BPNN model

benefited from optimization via the genetic algorithm and showed

improved prediction accuracy, it still lagged behind the CNN model.

The GA-BPNN achieved RMSE values of 8.1878 and 4.0397 for the

test and training sets, respectively, with corresponding MAPE values

of 10.1739% and 5.5479%, and an R value of 0.98509, highlighting its

limitations in capturing the underlying patterns of the data. The PSO-

BPNN model performed relatively poorly, with larger prediction

errors and a more scattered distribution of data points, suggesting

that the particle swarm optimization did not effectively enhance the
FIGURE 16

Particle grading curves before and after the experiment (a) 30% clay content (b) 50% clay content (c) 70% clay content (d) Different water contents.
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prediction capability of the BPNN. PSO-BPNN recorded RMSE

values of 8.65794 and 5.60674 for the test and training sets,

respectively, MAPE values of 16.0140% and 9.51099%, and an R

value of 0.99411. BPNN model had the lowest prediction accuracy,

with RMSE values of 13.0744 and 5.81524 for the test and training

sets, respectively, and MAPE values of 21.7309% and 15.2679%. Its R

value was 0.97887, and its data points deviated significantly from the

fitting line, which indicates that it failed to effectively capture the
Frontiers in Marine Science 17
underlying data patterns. This underperformance is mainly due to the

simplicity of its model structure, which limits its ability to describe

complex data features.

Overall, the GP model outperformed GA-BPNN, PSO-BPNN,

and BPNN in evaluating both the training and test datasets. In

particular, the GP model demonstrated higher accuracy and

efficiency in prediction, along with the best fitting performance

and predictive reliability on the test dataset.
FIGURE 17

Relative breakage rate Br diagram.
FIGURE 18

The relative breakage rates (Br) (a) Clay content; (b) Water content.
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4.6 Sensitivity analysis

Interpretable descriptions of machine learning models are

essential for achieving a comprehensive understanding and

promoting their widespread application. Feature importance

analysis helps to demystify the “black-box” nature of these

models, providing insights into their predictive behavior and

revealing valuable information (Yang et al., 2025). In recent years,

a widely adopted interpretability technique is the Shapley Additive

Explanations (SHAP) method, introduced by Lundberg and Lee

(2017). SHAP leverages principles from game theory to evaluate all

possible combinations of input features, analyze their interactions,

and compute the SHAP value for each prediction. This value

quantifies each feature’s contribution to the model output and

ranks them in descending order of importance. A positive SHAP
Frontiers in Marine Science 18
value indicates that the feature contributes to increasing the

prediction, while a negative value reflects a decreasing effect.

Figure 21. illustrates the five most influential features affecting

the output of the GP model, and their impacts are briefly analyzed

in this study. In the pie chart, the average SHAP value for each

feature is indicated, where higher SHAP values represent a stronger

influence on the model’s predictions. Additionally, the bees warm

plot on the left provides a more detailed view of how the key

features affect the model output. Here, the horizontal axis represents

the SHAP value, while the vertical axis indicates the feature value.

When a data point has a high SHAP value and a high feature value,

it implies a positive correlation—higher values of this feature

significantly increase the prediction output. Conversely, negative

SHAP values indicate a negative correlation between the feature and

the prediction result.
TABLE 4 Fractal dimension D under different clay content, reinforcement layers, and confining pressure.

Clay content (%) Confining pressure (kPa)

D

Number of reinforcement layers

0 1 2

30

50 2.04515 2.02015 2.09695

100 2.03713 2.02977 2.0414

150 2.07708 2.01591 2.14604

200 2.07355 2.03395 2.1204

50

50 2.0147 2.02296 2.13806

100 2.05937 2.03096 2.05354

150 2.03422 2.0532 2.11644

200 2.05337 2.04354 2.21236

70

50 2.01107 2.07663 2.1757

100 2.03817 2.03384 2.08762

150 2.02213 1.98637 2.21802

200 2.08778 2.14163 2.23875
TABLE 5 Fractal dimension D under different moisture content and confining pressure.

Moisture content (%)

D

Confining pressure(kPa)

50 100 150 200

9 2.03982 1.99429 2.01953 2.02786

15 2.03033 2.01276 1.99452 2.09083

18 2.02256 2.05679 2.03817 2.03402

21 2.02113 2.05252 2.03988 2.05201

27 2.06233 1.99422 2.0077 1.99799

36 2.06724 2.08329 2.07158 2.03919
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It can be observed that water content has the greatest impact on

strain, with a relative importance of 31.1%, followed by clay content

at 27.1%. In contrast, the number of reinforcement layers has the

least influence, accounting for only 7.5%.

According to the SHAP value analysis, moisture content is the

most influential factor affecting the model’s predictive output,

with a relative importance of 31.1%. This result can be interpreted

from several perspectives. First, moisture content directly

influences the contact mechanism between soil particles and the

distribution of pore water pressure, serving as a key factor in

controlling soil strength and deformation characteristics. As

analyzed in Section 4.3, an increase in moisture content

enhances the lubrication between soil particles, reduces

frictional resistance, and consequently weakens the overall shear

strength of the soil. This reduction in stress transfer capacity

significantly affects the trend of stress development. Clay content

is also a critical factor, accounting for 27.1% of the relative

importance, second only to moisture content. This is because

clay plays a significant role in the formation of soil structure and

the distribution of water within the matrix. A higher clay content

typically implies stronger cohesion and more pronounced plastic
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behavior, which are key to the accumulation and dissipation of

stress in the MCCM during the shearing process. Therefore, to

ensure the stability and reliability of marine engineering structures

constructed with MCCM as the primary material, it is essential to

implement optimized measures tailored to the influence of

different factors.
5 Discussion on mechanism of action

5.1 Geogrid–MCCM interface and
interaction

Figure 22. presents scanning electron microscope (SEM) images

that elucidate the complex interfacial interaction mechanisms

between marine coral sand–clay mixtures (MCCM) and geogrid

reinforcement. The MCCM is characterized by a combination of

highly porous, angular marine coral sand particles and plate-like,

adhesive clay minerals. This unique composition leads to the

formation of a more intricate and mechanically effective

interlocking interface with the geogrid.
FIGURE 19

Prediction results on the data from the test datasets (a) BPNN test dataset (b) GA-BPNN test dataset (c) PSO-BPNN test dataset (d) GA-PSO-BPNN
test dataset.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1660611
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Shi et al. 10.3389/fmars.2025.1660611
FIGURE 20

The R value for the algorithms on testing datasets (a)Fitting plots of BPNN for training and testing datasets (b) Fitting plots of GA-BPNN for training
and testing datasets (c) Fitting plots of PSO-BPNN for training and testing datasets (d) Fitting plots of GA-PSO-BPNN for training and testing datasets
E 21FIGUR

Feature importance analysis plot.
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As shown in Figure 22, fine clay particles infiltrate the voids

between marine coral sand grains, forming a denser skeletal

structure. This “filling and coating” effect not only reduces the

overall porosity of the mixture but also significantly increases the

effective bonding area between the MCCM and the geogrid.

Particularly at the geogrid surface, clay particles exhibit strong

adhesion, enhancing interfacial contact.
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Moreover, the angular nature of the marine coral sand particles

strengthens the mechanical interlock with the geogrid. SEM images

reveal that some sand particles are embedded along the edges of the

geogrid apertures, forming localized “locking” structures that

contribute to higher interfacial shear strength. The plasticity of the

clay further stabilizes these interlocked zones, allowing effective stress

transfer and improved resistance to slippage under loading conditions.
E 22FIGUR

Scanning electron microscope (SEM) images of marine coral sand–clay mixtures.
FIGURE 23

Equivalent additional confining pressure.
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In summary, the micro-interaction mechanisms at the geogrid–

MCCM interface include:
Fron
1. Clay filling and coating of marine coral sand pores;

2. Adhesive bonding between clay and the geogrid;

3. Mechanical interlocking between angular sand particles

and the geogrid structure.
These synergistic effects collectively enhance the interfacial

strength and overall stability of the reinforced MCCM system,

providing a solid microstructural basis for its application in

marine soft soil reinforcement and island and reef engineering.
5.2 Equivalent additional stress effect

Confining pressure has a significant influence on the strength of

marine coral sand, with higher confining pressures leading to a

marked increase in strength and an apparent enhancement in

cohesion, as illustrated in Figure 14. In previous studies on

reinforced soils, some researchers have modeled this effect as an

equivalent additional confining pressure (Ds3) (Guangxin et al.,

1994). Assuming the internal friction angle remains constant, the

additional confining pressure can be calculated as follows:

Ds3 = 2Dctan(45∘ −
j
2
) (4)

Where Dc represents the increment of apparent cohesion, and j
denotes the internal friction angle of the soil. By substituting the

data from Figure 14. into Equation 4 and taking the average values.

the results are shown in Figure 23. Analysis indicates that the

equivalent confining pressure increases with the number of layers of

triaxial geogrid reinforcement. This further confirms the reinforcing
tiers in Marine Science 22
mechanism by which triaxial geogrids enhance the strength

of MCCM.
5.3 Microscopic analysis of particle–water
interactions in MCCM

The irregular shape and high porosity of marine coral sand have

a potential impact on the micro-scale particle–water interactions

under unsaturated conditions, leading to changes in its properties.

Marine coral sand near islands and coastlines remains in an

unsaturated state for extended periods due to the wetting–drying

cycles caused by climatic conditions. The intriguing phenomena of

MCCM under different water contents observed in Section 4.2, even

after the analyses in Sections 4.3 and 4.4, still leave room for further

discussion. For instance, from the perspective of matric suction, it is

evident that matric suction contributes significantly to the strength,

a component often referred to as adsorptive strength (Wang

et al., 2021).

In this section, the filter paper method is used to determine the

suction values of marine coral sand, clay, and MCCM under

different water contents. The tests are conducted using Double

Ring brand quantitative filter paper and follow the parallel method

(Li et al., 2022). As shown in Equations 5, 6:

lg s = 5:493 − 0:0767wf ,wf⩽47% (5)

lg s = 2:470 − 0:0120wf ,wf⩾47% (6)

where s is the matric suction (kPa), and wx is the water content

of the filter paper (%).

The calculation shows that the matric suction of marine coral

sand is nearly zero and thus does not significantly contribute to the

strength. The temporary increase in MCCM strength observed at a
FIGURE 24

Characteristics of matric suction variation in clay.
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water content of 15%–18% is primarily attributed to the matric

suction of the clay. As shown in Figure 24, clay exhibits higher

matric suction at low water contents. Therefore, changes in water

content affect the mechanical behavior of reinforced MCCMmainly

by influencing the properties of the clay component.
6 Conclusion

This study investigates the strength and deformation behaviour

of marine coral sand–clay mixtures (MCCM) under the influence of

varying clay content, number of reinforcement layers, water

content, and confining pressure. A series of triaxial tests were

conducted to examine the deviator stress–strain relationship,

failure patterns, particle breakage, strength characteristics, and

matric suction of MCCM reinforced with 3D-printed triaxial

geogrids. These experimental results were further analysed with a

GP-optimized machine learning algorithm. The study preliminarily

reveals the fundamental mechanical properties and reinforcement

mechanisms of geogrid-reinforced MCCM, and the main

conclusions are as follows:
Fron
1. With decreasing clay content, increasing reinforcement

layers, and higher confining pressure, MCCM strength

increases notably, with cohesion significantly enhanced

and internal friction angle slightly affected. Overall

mechanical and deformation performance of reinforced

MCCM is greatly improved.

2. With increasing water content, MCCM strength first decreases,

then rises, and finally decreases again. This trendmainly results

from the weakening of marine coral sand at higher water

content, while slight strength gains at lowwater content are due

to matric suction in the clay. Apparent cohesion and internal

friction angle vary similarly.

3. The clay content and the water content are the main factors

influencing particle breakage of marine coral sand within

the MCCM. This conclusion is also supported by the

analysis of relative breakage rate and fractal dimension.

4. The GP-BPNN algorithm significantly outperforms GA-

BPNN and PSO-BPNN, making it more suitable for

machine learning-based strength prediction of reinforced

MCCM. Sensitivity analysis further reveals that clay

content and water content have the greatest influence on

the strength of MCCM.

5. SEM observations showmarine coral sand particles have varied

shapes, rough surfaces, and many pores. Clay fills the gaps,

creating a complex surface that increases friction and interfacial

resistance with the triaxial geogrid, enhancing MCCM–geogrid

interaction. Analysis indicates equivalent additional confining

pressure rises with more geogrid reinforcement layers.
Through a series of experimental investigations and mechanical

analyses, this study provides valuable insights into the mechanical

behaviour and deformation characteristics of 3D-printed triaxial

geogrid-reinforced MCCM.
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