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Aquaponics is a soilless farming approach that integrates aquaculture with

hydroponics to produce food. In regions with limited arable land, aquaponics

can help address food insecurity challenges. Both fish and plants are produced

using aquaponic systems. The aquafeeds used to feed the fish in aquaponic

systems are also the main source of nutrition for the plants. Currently,

commercial aquafeeds such as fishmeal and fish oil are used in aquaponics,

but they do not completely meet the nutritional requirements of plants.

Additionally, commercial aquafeeds are expensive, and their production is

unsustainable. This review focuses on the suitability of microalgae as a

replacement for commercial aquafeeds and its role in meeting the nutritional

requirements of plants growing in aquaponic systems. Microalgae production is

sustainable and cost effective compared to commercial aquafeed production.

Many studies have been conducted on the impact of microalgae-based feed on

fish growth and its role as a biofertilizer and biostimulants for plant growth.

However, using microalgae as aquafeed for the development of both fish and

plants in aquaponic systems remains underexplored. This review aims to provide

insights into the dual role of microalgae in aquaponics—enhancing fish nutrition

while supplementing plant nutrient requirements. Although some micronutrient

gaps may persist, further optimisation could help make aquaponic systems more

efficient and sustainable.
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Introduction

Aquaponics is an innovative and sustainable food production

system that integrates recirculating aquaculture with hydroponics

(König et al., 2016; Okomoda et al., 2023). Aquaponic plants

perform comparably to hydroponic plants, despite lower nutrient

concentrations (Sreekumar et al., 2023). This system offers

numerous benefits, including water conservation, a reduced

environmental impact, and the simultaneous production of fish

and plants (Mishra et al., 2020). Aquaponics can be implemented in

various settings, ranging from urban to rural areas, and at different

scales, ranging from small-scale farms to industrial production

units (König et al., 2016). This system is particularly valuable for

addressing food security challenges as it can be utilised on non-

arable land and in areas with limited water resources (Shreejana

et al., 2022). Furthermore, as aquaponics is a closed-loop system

that includes both hydroponic and aquaculture systems, it presents

potential solutions for food production in the face of climate

change-related challenges such as global warming, desertification,

water scarcity, famine, and increased pests and diseases.

Aquaponics is an eco-friendly cultivation system that has gained

interest in various fields and industries including ecology,

agriculture, and fisheries (Hao et al., 2020). Several areas of

aquaponic systems need to be explored further to fully

understand their potential. These areas include nitrogen cycling,

nutrient recovery from fish waste, plant nutrition, plant pathogens,

pest control strategies, and sustainable aquafeed (Goddek et al.,

2019). This review focuses on microalgae as a sustainable alternative

to commercial aquafeeds in aquaponic systems. Additionally, this

review examines how microalgae can fulfil the nutritional

requirements of both plants and fish in aquaponic systems., In

aquaponic systems, residual fish feed and fish waste provide

nutrients for plant growth. Current aquaponic systems that use

commercial aquafeeds such as fish oil, fishmeal, and fish waste do

not completely meet the nutritional requirements for plant growth

(Eck et al., 2019; Yep and Zheng, 2019). Macronutrients such as

potassium, phosphorus, sulphur, and calcium, along with

micronutrients such as manganese, iron, zinc, copper, boron and

molybdenum, often accumulate in inadequate amounts or

disproportionate ratios in the water. Consequently, plants do not

receive sufficient nutrients for their growth (Delaide et al., 2017;

Suhl et al., 2016). Furthermore, commercial aquafeeds are expensive

and unsustainable. I The water footprint of commercial aquafeeds

was estimated to be between31–35 km3 in 2008, with the top five

species alone accounting for 18.2 km3. For example, fisheries that

provide commercial aquafeeds, such as fish oil and fishmeal,

emitted 4.6 million tons of carbon dioxide-equivalent greenhouse

gases in 2014 (Cashion et al., 2017). The carbon footprints of

extruded and pelleted grass carp aquafeeds were 1334 and 1071

kg CO2 eq/t, respectively, with raw material production being the

largest contributor. To overcome these challenges, sustainable

sourcing of raw materials and the utilisation of renewable energy

in aquafeed production can substantially reduce the environmental

impact (Wang et al., 2022). Additionally, exploring alternative

aquafeed sources, such as single-cell proteins and insects, can
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help address sustainability concerns (D’Abramo, 2021).

Microalgae have emerged as promising alternative aquafeed

ingredients because of their nutritional profile and sustainability

benefits. They contain essential amino acids, fatty acids, vitamins,

pigments, and bioactive compounds that enhance fish health,

survival, and product quality (Nagappan et al., 2021; Sagaram

et al., 2021). Compared to traditional feed sources, such as

fishmeal and soymeal, microalgae offer a more diverse set of fatty

acids, pigments, sterols, and vitamins (Dixit et al., 2022). Microalgae

production has a lower environmental footprint than terrestrial

crops in terms of water use and land requirements (Nagappan et al.,

2021; Mahata et al., 2022). Additionally, microalgae can positively

influence gut microbiota and immune responses in aquatic species

(Sagaram et al., 2021). Microalgae, small but powerful

photosynthetic organisms, are emerging as a sustainable solution

to a range of global challenges—from clean energy and

environmental protection to food security and human health.

Rich in nutrients and bioactive compounds, microalgae are being

explored for use in biofuels (Akhtar et al., 2023), functional foods

(Andrade-Bustamante et al., 2025), and health supplements (Ayub

et al., 2025), offer benefits like antioxidant, anti-inflammatory, and

heart-protective effects. Their ability to treat wastewater, capture

CO2, and support circular practices makes them valuable in

aquaculture (Dasari et al., 2025) and environmental cleanup,

including antibiotic pollution removal (Wani et al., 2024). They

use minimal land and water, making them eco-friendly alternatives

to traditional crops, and contribute significantly to achieving

climate goals and UN Sustainable Development Goals (Ahmad

and Ashraf, 2024). Despite challenges like high production costs,

regulatory hurdles, and taste issues in food applications, advances in

biotechnology, AI, and strain development are paving the way for

large-scale, sustainable use of microalgae across industries. This

review examines the potential of microalgae as sustainable

components of aquafeed formulations. It also provides valuable

insights into the utilisation of microalgae aquafeeds as replacements

for commercial aquafeeds such as fish oil and fishmeal. Microalgae

may provide complete nutrition for plant growth in aquaponic

systems, and its use will enhance the efficiency and sustainability of

these systems and contribute to global food security.
Aquaponics: an overview

Aquaponics is a climate-smart technology used for sustainable

food production (Nishanth et al., 2024). Aquaponic systems use less

than 90% of the water used in conventional fish and plant farming

which support sustainable food production and facilitate complete

biological processes between fish, plants, and microbes. Aquaponic

systems are composed of three main components that work

together: the growing bed (hydroponic unit) for plant growth,

biofilter for microbes to perform nitrification, and aquaculture

tank to rear fish. All three components must function in

coordination to support fish and plant growth. Fish waste is the

primary nutrient component for plant growth in aquaponics. Fish

waste acts as a primary nutrient source undergoing microbial
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nitrification to convert ammonia into plant-available nitrates. Based

on the designs of the hydroponic and aquaculture units, aquaponic

systems are classified into coupled and decoupled systems.

Common hydroponic designs include Nutrient Film Technique

(NFT), floating raft or deep-water culture, and media-based grow

beds. peat moss and perlite are used as plant growth media. Media-

based systems use substrates like peat moss and perlite and are ideal

for vegetables and fruits due to their capacity to support high root

density. NFT systems are typically used for smaller vegetables, while

floating raft systems are most common, allowing roots to freely

absorb nutrients. To maintain a stable environment, it is essential to

monitor water quality, pH, temperature, water-use efficiency, waste

management, and nutrient cycling (Goddek et al., 2019).

Nutrient cycling in an aquaponic system has many advantages

because it is a recirculating system combining hydroponics and

aquaculture. Because no effluent is discharged, it prevents

environmental pollution. Additionally, the nutrient-rich

aquaculture water can be reused as an organic fertiliser for plants

in the hydroponic units. Some studies have indicated that

aquaponics produces plant growth and yields comparable to or

even exceeding those of soil-grown plants (Yogev et al., 2016).

Nutrient cycling in aquaponic systems is influenced by multiple

factors such as the aquafeed type, fish species, fish density, plant

type, and microbial community. The main nutrient sources in

aquaponic systems are aquafeed and aquaculture water, which

contribute essential elements such as magnesium, calcium, and

sulphur (Delaide et al., 2017; Schmautz et al., 2016). The two main

types of aquafeed are plant-based and fishmeal-based feeds. After

being introduced into the system, aquafeed is partly consumed and

excreted by the fish, while some residual feed remains in the tank.

Fish excreta and uneaten feed dissolve in the water, releasing

nutrients that are absorbed by plants. To support optimal plant

growth, additional supplements like potassium and iron may be

introduced—without harming the fish (Schmautz et al., 2016).

Residual aquafeed, which accounts for less than 5%, and fish

excreta also contribute to carbon dioxide and ammonia

production, increasing the nutrient load of the water and

influencing plant development (Yogev et al., 2016). Water quality

and fish biomass are strongly influenced by aquafeed type,

highlighting the importance of selecting feed that meets the

nutritional needs of both fish and plants (Schmautz et al., 2016).

Microbial communities in aquaponic systems undergo many

biological processes that convert fish waste and residual aquafeed

into nutrient rich solutions for plant growth. One such process is

solubilisation carried out by bacteria that break down complex

organic compounds into ionic forms absorbable by plants.

Heterotrophic bacteria such as Pseudomonas sp., Flavobacterium

sp., Rhizobium sp., Aeromonas sp., and Sphingobacterium sp. are

involved in this solubilisation process. Additionally, some g-
proteobacteria can solubilise phytates making phosphorus

available to plants. The primary nitrogen source in aquaponic

systems is the proteins present in aquafeeds. However, fish utilise

only about30% of the nitrogen present in aquafeed, and the

remaining is excreted in the form of ammonia (Ru et al., 2017;

Wongkiew et al., 2017; Yavuzcan Yildiz et al., 2017). This ammonia
Frontiers in Marine Science 03
is oxidised to nitrite by ammonia-oxidising bacteria such as

Nitrosococcus, Nitrosospira, Nitrosomonas, Nitrosolobus, and

Nitrosovibrio, and subsequently converted to nitrate by nitrite-

oxidising bacteria such as Nitrobacter, Nitrococcus, Nitrospina,

and Nitrospira (Wongkiew et al., 2017). Understanding the

nutrient cycles is essential for the effective operation of aquaponic

systems, as plants require different nutrients at various growth

stages. Some of these nutrients can be supplemented either as foliar

application or by adding nutrients directly to the water.

Macronutrients, such as carbon, are supplied through the organic

compounds in the aquafeed then metabolised by both fish and

microbes, releasing carbon dioxide(CO2) as a byproduct. This CO2

is then absorbed by plants and used in photosynthesis via carbon

fixation. Plants uptake nitrogen as nitrate or ammonium ions

(Wongkiew et al., 2017), Phosphorus as orthophosphate (Resh,

2022), and potassium which is important for growth and

accumulates especially in fruit (Schmautz et al., 2016). Other

essential elements such as calcium, magnesium, and sulphur

typically present in tap water, while micronutrients like

manganese, iron, and zinc, are derived from aquafeed., Copper

and boron are also present in tap water (Delaide et al., 2017).

Overall, aquaponic systems foster a symbiotic relationship among

fish, plants, and microbes in a recirculating sustainable food

production process.
Nutrient imbalance and aquafeed
unsustainability in aquaponics

In aquaponic systems, nutrients are transferred from fish waste

to plants through biological processes; however, an imbalance often

exists between the nutrient content in fish waste and the nutrient

requirements for optimal plant growth. Factors such as fish tank

size, biofilter capacity, and system design influence the nutrient

availability Therefore, the nutrient composition of aquafeed, and

the specific requirements of each plant species must be carefully

considered (Resh, 2022). Monitoring nutrient availability is

challenging, as nutrients originate primarily from fish waste and

residual aquafeed. Processes such as fish waste removal, water

renewal, and denitrification contribute to nutrient loss in the

system. Research studies has shown that fish waste and residual

aquafeed contain 86% manganese, 22% copper, 89% magnesium,

24% iron, 16% calcium, 6% potassium, 6% nitrogen, and 18%

phosphorus. However, not all these nutrients are efficiently

utilised by plants, particularly macronutrients like potassium,

phosphorus, iron, manganese, and sulphur. Nitrogen released

from fish protein metabolism enters nitrogen cycle and is

transformed into usable forms usable by plants. Since aquafeed

and fish waste are the main nutrient sources their selection and

utilisation are crucial for supporting both fish and plant growth in

integrated aquaponic systems (Zhanga et al., 2021).

Some studies have shown that, minerals added as supplements

to aquafeed, can be utilised by plants in aquaponic systems. Soluble

minerals are not absorbed by fish may be taken up by plants,

enhancing nutrient recovery. However, the mineral requirements
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and metabolism in aquaculture species has not been extensively

investigated. The addition of anions and their accompanying

cations to aquafeed has been shown to improve nutrient

availability for plants (Ng and Koh, 2017). Plant-based minerals

in aquafeed may contain phosphorus in phytate form, which is not

readily metabolised by plants. The exogenous addition of enzymes

to aquafeed can help release phosphorus from improving

bioavailability. However, this approach has some limitations, such

as potential release of undesirable compounds that may affect fish

health. Further research is needed to evaluate the safe and effective

use of these enzymes. Moreover, adding supplements to aquafeed or

directly into hydroponic systems is expensive. To reduce this cost it

is essential to understand the amount of aquafeed required to meet

both fish and plant nutritional requirements. In aquaponic systems,

plant physiological processes such as photosynthesis, flowering,

defence, and seed germination are regulated in a circadian

rhythm pattern which ideally should work in coordination with

circadian rhythm patterns of fish. However, when commercial

aquafeed is used, this rhythm is not always well-coordinated and

plants nutritional requirements may not be fully met. Some

microalgae like Chlamydomonas reinhardtii has been widely

studied for its role in research on photosynthesis, metabolism,

and cilia function. Beyond its laboratory significance, it is

increasingly recognised for its biotechnological potential due to its

fast growth, metabolic flexibility, and low-cost cultivation. It has

been applied in biofuel production, nutraceutical development, and

wastewater treatment, where it contributes to contaminant removal

and resource recovery. Recent studies have also explored the

synergistic benefits of co-cultivating Chlamydomonas with

bacteria to enhance detoxification and bioproduction processes.

Although challenges such as genome editing remain, ongoing

technological progress continues to expand the industrial and

environmental applications of this versatile alga (Salomé and

Merchant, 2019; Scranton et al., 2015; Bellido-Pedraza et al., 2024;

Bellido-Pedraza, Torres and Llamas, 2024). In addition to its utility

in biofuels and bioremediation, microalgae are increasingly

explored as sustainable alternatives to commercial aquafeeds.

Moreover, commercial aquafeed production relies heavily on

wild fisheries, making it environmentally unsustainable. Some

studies have shown that plant-based alternatives like soybean

meal and corn gluten meal commonly used to replace fishmeal,

contain anti-nutritional factors that limit their effectiveness as

aquafeeds (Gerile and Pirhonen, 2017). Additionally, most plant-

based aquafeeds contain phosphorus in phytate form, which is

unavailable to plants, necessitating the supplementation of

nutrients like phosphorus and zinc in aquaponic systems.

Selecting appropriate aquafeed is critical, and supplements should

be added carefully to avoid harming both fish and plant health in

aquaponics. While plant-based aquafeeds are often promoted as

eco-friendly option, they are not fully sustainable due to their

negative ecological impacts such as destruction of plant

communities for feed production. Animal-based aquafeeds, such

as animal proteins sourced from slaughterhouses that are free from

anti-nutritional factors, can serve as viable fishmeal substitutes.

Additionally, insect-based feeds such as those derived from black
Frontiers in Marine Science 04
soldier flies, have emerged as promising alternatives due to their

high protein content, low land and water requirements, reduced

greenhouse gas emissions, and superior feed conversion efficiency.

However, further research is necessary to evaluate the quality,

efficacy, and safety of using insects as aquafeed in aquaponic

systems. Recently, the use of microalgae such as Arthrospira

platensis, Chlorella vulgaris, Schizochytrium sp., Nannochloropsis

sp., Dunaliella salina., Haematococcus pluvialis., and Isochrysis

galbana as a replacement for commercial aquafeeds has gained

increasing attention because microalgae can produce higher

biomass than plants. As shown in Figure 1, the global average

water footprint varies significantly among different aquafeed

ingredients, highlighting the need for more sustainable

alternatives such as microalgae (Pugazhendhi et al., 2020).

Microalgae exhibit remarkable adaptability and rapid growth

rates, which make them valuable for various applications. They can

thrive in extreme conditions, such as highly alkaline environments,

with growth rates of 1.10–1.30/d (Praveen et al., 2023). Thermally

tolerant mutant species of Nitzschia inconspicua microalgae have

shown 1.4- to 6.7-fold higher growth rates than wild types at

different temperatures. Adaptive laboratory evolution has been

used to enhance the growth rate, stress tolerance, and product

yield of microalgae (LaPanse, 2024). These fast-growing organisms

have diverse applications as functional foods and in biofuel

production, greenhouse gas mitigation, and wastewater treatment.

Their ability to efficiently remove carbon (70–80%) and other

nutrients (80–90%) from wastewater demonstrates their potential

in environmental remediation (Praveen et al., 2023). The high

adaptability and rapid growth rate of microalgae make them

promising candidates for sustainable biotechnology and industrial

innovation across various sectors. Their diverse nutritional

compositions makes them valuable in aquaculture, food and other

industries. The protein, carbohydrate, and lipid contents of

microalgae typically range from 18 to 52%, 18 to 46%, and 12 to

48%, respectively (Zhang et al., 2023; Tibbetts et al., 2017). Most

species also contain abundant essential amino acids with high

digestibility (>80%) (Tibbetts et al., 2017). Their fatty acid profiles

vary, with marine species being rich in monounsaturated fatty acids

and freshwater species being rich in polyunsaturated fatty acids.

Microalgae are also source of various vitamins, particularly B2 and

B3, and pigments such as chlorophyll-a and carotenoids (Zhang

et al., 2023). Cultivation conditions, including irradiance and

residence time, strongly influence the nutritional composition.

Species such as Isochrysis galbana, Dunaliella tertiolecta, and

Tetraselmis gracilis have shown promising nutritional profiles

(Zhang et al., 2023)that meet the United Nations Food and

Agriculture Organization nutritional requirements for adults and

children, highlighting their potential for food applications.
Impact of microalgae on fish growth

Microalgae have great potential as sustainable aquafeed

ingredients, offering high nutritional value and environmental

benefits. Microalgal species, such as Nannochloropsis salina and
frontiersin.org
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Dunaliella salina can accumulate substantial lipid and protein

contents while fixing carbon dioxide (CO2) (Chen et al., 2019).

While microalgae are often highlighted for their potential to lower

the carbon footprint of aquafeed production, current evidence

remains limited. Specifically, comprehensive life-cycle assessment

(LCA) studies comparing microalgae with conventional feed

ingredients such as fishmeal and fish oil are scarce. Further

system-level evaluations are needed to substantiate these

environmental claims. Nonetheless, the ability of microalgae to fix

CO2 and reduce reliance on fish stocks presents a promising

opportunity for developing more sustainable aquafeed strategies.

Microalgae are emerging as a sustainable and nutritious alternative

to traditional aquafeed ingredients such as fishmeal and fish oil

(Nagappan et al., 2021; Ma and Hu, 2024). They offer a high protein

content, essential amino acids, omega-3 fatty acids, and bioactive

compounds that enhance the growth, colouration, immunity, and

survival rates of aquatic species (Dineshbabu et al., 2019; Idenyi

et al., 2022). Microalgae play a crucial role in aquaculture by

supplying essential nutrients that support the health and growth

of fish and shellfish (Kapara, 2018). These microscopic organisms

are rich in amino acids, long-chain polyunsaturated fatty acids,

vitamins, proteins, and minerals, which are particularly important

for enhancing the larval survival, growth, and overall well-being of

aquatic species (Siddik et al., 2024). Microalgae are used as live feed

for various growth stages of molluscs, crustaceans, and some fish

species. Additionally, certain microalgae contain bioactive
Frontiers in Marine Science 05
compounds with antioxidant , anti- inflammatory, and

immunomodulatory properties that can improve immunity and

disease resistance in farmed aquatic animals (Abdel-Latif et al.,

2022). Although microalgae are typically cultivated in-house in

hatcheries, commercial concentrates are becoming more widely

used. However, the high cost of algal biomass limits its

widespread use in commercial aquafeeds (Siddik et al., 2024). Co-

cultivation of microalgae with nitrogen-fixing bacteria that release

ammonium can significantly reduce the costs of algal biomass.

Microalgae are sustainable sources of omega-3 fatty acids,

particularly docosahexaenoic acid (DHA) and eicosapentaenoic

acid (EPA), which are essential for human and animal nutrition

(Norzagaray-Valenzuela et al., 2017). These fatty acids provide

significant health benefits especially for cardiovascular health and

brain function in humans. Since fish oil is the traditional source of

these compounds concerns over depletion of global fish stocks has

led to an increased interest in alternative sources (Topuz, 2016).

Microalgae as primary producers of omega-3 fatty acids can be

cultivated at industrial scale and processed into various food

products and animal feeds (Norzagaray-Valenzuela et al., 2017).

Recent advancements in microalgal biotechnology, such as

metabolic engineering and selective breeding, have further

enhanced the potential of omega-3 fatty acid production in

autotrophic microalgae. As research progresses, microalgal oil is

expected to become a viable replacement for fish oil (Topuz,

2016).Among microalgae, Nannochloropsis spp., show strong
FIGURE 1

Global average water footprint of different aquafeed ingredients. Adapted from Nagappan et al., 2021, licensed CC-BY-4.0.
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potential as sustainable aquafeed ingredients, capable of replacing

fishmeal and fish oil. These species can accumulate high lipid (20–

46%) and protein (30–57%) contents while also efficiently fixing

carbon dioxide CO2 (Chen et al., 2020b). They also produce

valuable EPA and can be cost-effectively cultivated in solar-

powered open ponds (Li et al., 2020). Although Nannochloropsis

spp. have lower digestibility than Isochrysis sp. in rainbow trout,

they remain a promising fishmeal substitute (Sarker et al., 2020).

Additionally, Schizochytrium have shown high digestibility of

macronutrients, energy, and fatty acids, particularly DHA, in

rainbow trout at both 8°C and 15°C, further supporting its

potential as a fish oil substitute in aquafeeds (Bélanger et al.,

2021). In Nile tilapia diets, the complete replacement of fish oil

with Schizochytrium resulted in improved growth, increased feed

efficiency, and a higher DHA content in fillets (Sarker et al., 2016).

Schizochytrium supplemented diets have demonstrated higher

phosphorus digestibility and lower solid phosphorus discharge in

tilapia, indicating potential environmental benefits (Gamble et al.,

2021). The optimal inclusion level of Schizochytrium in fish feed

varies by species, ranging from 20 to 80% fish oil replacement, and

has been associated with improved growth, survival, and feed intake

across various fish species (Pratiwi and Zidni, 2023). In addition to

Schizochytrium, Tetraselmis spp. have also emerged as promising

microalgal ingredients in aquafeeds. For example dietary

supplements with Tetraselmis suecica has been shown to improve

growth performance, feed utilisation, and gene expression in Pacific

white shrimp (Litopenaeus vannamei) (Sharawy et al., 2020).

Furthermore, cultivation of Tetraselmis striata has been optimised

at both laboratory and pilot scales, yielding biomass rich in proteins,

lipids, carbohydrates, pigments and notable high EPA content

(Patrinou et al., 2023). Spirulina, a cyanobacterium also referred

to as blue-green algae, has gained attention as a potential aquafeed

ingredient due to its high nutritional value and sustainability (El-

Sheekh et al., 2023). It offers a promising alternative to fishmeal,

addressing the growing demand for aquaculture feed while reducing

environmental impacts (Nagappan et al., 2021). Spirulina is rich in

proteins, essential amino acids, fatty acids, vitamins, and minerals,

making it suitable for use by various aquatic species (Ragaza et al.,

2020). In addition, it enhances the innate immunity and disease

resistance of fish and shrimp (Rakocy, 2012). Different species of

microalgae, such as Nannochloropsis, Schizochytrium, and

Isochrysis, have been incorporated into fish diets. In some studies,

microalgae-based diets (e.g. Nannochloropsis spp. and

Nanochloropsis salina) resulted in comparable or slightly lower

weight gain than the reference diets but showed acceptable growth

rates and feed efficiency. Notable exceptions include defatted

Nannochloropsis oculata and Schizochytrium in juvenile Nile

tilapia, where the microalgae-based diet resulted in a higher

specific growth rate (SGR) and weight gain than the reference

diet. Schizochytrium spp. fed to Atlantic salmon and Pacific white

shrimp resulted in increased weight gain compared with the

reference diets, highlighting the high lipid content of microalgae

as an effective substitute for fish oil.

Schizochytrium resulted in a higher weight gain (426 g) than fish

oil (326 g) in Atlantic salmon (Salmo salar) (Wei et al., 2021).
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Defatted N. oculata and Schizochytrium sp. diets outperformed the

reference diet in terms of weight gain and SGR in juvenile Nile

tilapia (Oreochromis niloticus) (Ju et al., 2017). Diets with

microalgae such as Schizochytrium (Allen et al., 2019) have

demonstrated competitive growth performance in shrimp

(Litopenaeus vannamei). Microalgal diets generally maintain feed

conversion ratio (FCR) values that are similar to or slightly higher

than those of the reference diets. In some cases, a lower FCR (e.g.

Schizochytrium spp.) for Atlantic salmon indicates efficient feed

utilisation. Thus, microalgae show promise as sustainable feed

ingredients with growth performance comparable to that of

traditional feeds, especially for specific species. Variations in

performance suggest that diet formulations need to be species

specific and that some microalgae might not completely replace

conventional ingredients without compromising efficiency. Data

from previous studies support the viability of microalgae as a

sustainable alternative to traditional aquafeed, provided that they

are tailored to the nutritional needs of the target fish species in

aquaponic systems. Table 1 shows the list of microalgae and its

effect on fish growth.
Impact of microalgae on plant growth

Studies have shown that the integration of microalgae into

aquaponic systems can improve the physicochemical properties of

aquaculture water (Addy et al., 2017; Tejido-Nuñez, 2020). Residual

fish feed and fish excreta that accumulate in aquaculture water can

be used by microalgae to support its growth and biomass

production (Delrue et al., 2016). Microalgae cultivation in

aquaponics helps to improve water quality by decreasing the pH.

Microalgae interactions with bacteria could be the reason for the

conversion of fish waste into nutrients, thereby increasing water

quality. However, studies on the mechanism of fish waste-to-

nutrient conversion through interactions between algae and

bacteria are scarce. It has been hypothesised that microalgae

facilitate the proliferation of beneficial bacteria and reduce the

risk of pathogenic bacteria that could otherwise cause diseases in

fish and plants in aquaponic systems. A study evaluating the effects

of three microalgal species (Chlorella vulgaris, Scenedesmus spp.,

and Spirulina platensis), cultivated in an aquaponic system along

with Nile tilapia and garlic plants, showed growth similar to that of

the control in terms of plant biomass, leaf number, and shoot

length. Water quality parameters such as dissolved oxygen, pH,

temperature, ammonia, nitrate, and nitrite were maintained at ideal

levels for aquaponic systems (Addy et al., 2017; Tejido-Nuñez et al.,

2020; Chen et al., 2020a).

A previous study revealed that diverse populations of beneficial

microorganisms were significantly higher in fish tanks and biofilters

when microalgae were co-cultivated in an aquaponic system. This

was a positive outcome owing to the mutual interaction between

microalgae and bacteria, which could play an important role in

nutrient cycling. Studies have shown that microalgae play a crucial

role in atmospheric nitrogen recycling and soil fertility. They can fix

atmospheric nitrogen into bioavailable forms like ammonia,
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particularly through specialized cells called heterocysts in

cyanobacteria (Singh, 2021). Many studies have highlighted that

bacterial richness is higher in the presence of Chlorella vulgaris,

which helps in the removal of nitrogen and phosphorus. A stable

association between C. vulgaris and specific bacterial species such as

Flavobacterium sp., Terrimonas sp., Sphingobacterium sp.,

Rhizobium sp., and Hyphomonas sp. has been observed

(Ramanan et al., 2016; Han et al., 2019). In aquaponic systems,

compared with fish tanks, biofilters had a higher bacterial

population because they act as a growth substrate for microalgae

and bacteria that form biofilm known as a ‘phycosphere’. Diverse

beneficial bacterial species are attracted to this phycosphere, and

this algae–bacteria interaction plays a major role in regulating water

quality in aquatic environments. Nitrogen cycling in aquaponic

systems occurs because of the presence of the phyla Proteobacteria

and Bacteroidetes, which are indicators of the good health status of

the system (Schmautz et al., 2017; Wongkiew et al., 2018).

Bacteroidetes convert nitrates into various nitrogen compounds

that are essential for degrading complex organic matter (Wongkiew

et al., 2018). In one study, it was found that Bacteroidetes were more

abundant when microalgae were present. Bacteroidetes play a vital

role in nutrient cycling and support optimal plant growth in

aquaponics (Kasozi et al., 2021). In addition, fish fed microalgae

showed resistance to bacterial infection. In a previous study, Nile

tilapia fish fed Spirulina platensis in an aquaponic system showed

lower mortality than the control group. Some studies have shown

that microalgae such as Chlorella vulgaris can produce the

antibacterial compound “chlorellin”. Another study showed that

when Spirulina platensis was given as a feed supplement, the

antibacterial compound “phycocyanin” it produces decreased the

mortality of Nile tilapia. Nannochloropsis oculata, Schizochytrium

sp., and Spirulina sp., the microalgal mix used in Nile tilapia feed,

increased immunity against Vibrio and Staphylococcus bacterial

species and enhanced its antioxidant enzyme activity (Falaise

et al., 2016). Studies have indicated that purple sulphur bacteria

such as those from the genus Thiobaca play a key role in the sulphur

cycle and were observed to be more abundant in aquaponics water

treated with Chlorella vulgaris. Studies on iron-reducing bacterial

species belonging to the genus Geothrix have shown that they

oxidise organic compounds by reducing iron (III) to iron (III)

oxide, manganese (IV) oxide, and nitrate, thereby preventing the

production of environmentally harmful compounds in aquaponic

systems. Another study revealed that the bacterial genus Fusibacter

contributes to the reduction of elemental sulphur, or thiosulfate, to

sulphides during the sulphur cycle. Previous studies on the bacterial

genus Treponema showed that it plays a crucial role in scavenging

nutrients through fermentation processes (Buyuktimkin et al.,

2019). These biological processes are important for converting

fish waste into nutrient solutions in aquaponic systems. In

aquaponics, the co-cultivation of microalgae (e.g. C. vulgaris,

Scenedesmus sp., and Spirulina platensis) showed better

performance of the bacterial genera Thiobaca, Geothrix,

Fusibacter, and Treponema in terms of nutrient cycling. Further

studies on microalgae–bacteria interactions will provide insights

into the effects on fish growth and plant development in aquaponics
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(Schmautz et al., 2021; Kasozi et al., 2021; Bartelme et al., 2019).

Microalgae enhance plant growth by acting as biostimulant,

biofertilizers, and biopesticides. These properties are due to the

presence of bioactive compounds such as phenols, phytohormones,

amino acids, polysaccharides, and terpenoids (Lee and Ryu, 2021).

Although microalgae play an important role in nutrient uptake and

cycling, it’s the cyanobacteria often referred as blue green algae that

are responsible for nitrogen fixation. Microalgae can mobilize

nutrients like phosphate, potassium, and copper Win et al., 2018;

Gonçalves, 2021). Another essential micronutrient molybdenum

(MO) is a key cofactor for two enzymes: nitrogenase (in nitrogen-

fixing microbes like diazotrophs or cyanobacteria) and nitrate

reductase (in microalgae and plants). These enzymes are essential

for converting atmospheric nitrogen (N2) into ammonium and

nitrate (NO3⁻) into usable nitrogen forms, respectively. In

integrated aquaponics systems where microalgae or nitrogen-

fixing bacteria are involved, the presence of trace levels of Mo

ensures these microbes can effectively perform biological nitrogen

fixation and nitrate assimilation (Glass et al., 2012).

Microalgae, particularly cyanobacteria, have a specific

mechanism for fixing nitrogen. Cyanobacteria, such as Cyanothece

spp., Lyngbya spp., and Trichodesmium spp., colonise the leaves and

roots of plants, penetrate cell tissues, and colonise internally with

plant host specificity. Microalgae produce enzymes such as alkaline

phosphatases, 5’nucleotidases, phytases, and phosphodiesterases that

help to release bound phosphorus from organic sources such as

phytate. Some species such as Tetraselmis suecia, Nannochloropsis

gaditana, and Nanochloropsis oceania adopt a luxury uptake

mechanism to store excess or relocate phosphorus by remodelling

polar lipids (Cañavate et al., 2017). Microalgal species, such as

Spirulina platensis, Chlorella spp., Scenedesmus spp., Acutodesmus

spp., Calothrix elenkini, and Dunaliella spp (Ronga et al., 2019; Colla

and Rouphael, 2020), enhance crop production by improving

nutrient uptake, enhancing resistance to both abiotic and biotic

stress, and maintaining essential functions such as respiration,

photosynthesis, nucleic acid synthesis, and iron uptake (Lee and

Ryu, 2021; Kumar et al., 2022).

Microalgae synthesise phytohormones that play important roles

in shoot and root development, plant tissue differentiation, aging,

and defence against biotic and abiotic stressors. Studies on

microalgal species, such as Coenochloris spp., Chlorella spp.,

Scenedesmus spp., Chlorococcum spp., and Acutodesmus spp.,

have shown that they can synthesise auxin hormones, such as

indol-3-acetamide and indole 3-acetic acid, which play roles in

the formation and elongation of plant roots (Kapoore et al., 2021).

Microalgae that synthesise auxins form colonies with cyanobacteria,

which has been observed in wheat and rice plants (Hussain et al.,

2017). Recent studies have revealed that the green alga

Chlamydomonas reinhardtii can synthesize auxin (indole-3-acetic

acid, IAA) through an extracellular L-amino acid oxidase (LAO1)

under nitrogen-limited conditions (Calatrava et al., 2022). This

auxin production plays a role in algal-bacterial mutualism,

particularly with Methylobacterium species. Nannochloropsis spp.

synthesise cytokinin phytohormones that enhance resistance to

nitrogen and water stress in tomato plants. Studies on Chlorella
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vulgaris extracts containing gibberellic acid phytohormones suggest

that the extract could mitigate the harmful effects of heavy metals,

such as lead and cadmium, on plant growth. Microalgae belonging

to the genera Chlorella, Chlamydomonas, and Scenedesmus, and

cyanobacteria including Anabaena spp., Synechococcus spp.,

Calothrix spp., Nostoc spp., Cylindrospermum spp., and

Scytonema spp., have been reported to synthesise ethylene

phytohormones that regulate cell division, fruit ripening, aging,

and biotic and abiotic stress tolerance (Han et al., 2018). Microalgae

can synthesise signalling molecules, such as jasmonic acid,

polyamines, brassinosteroids, and salicylic acid, which are

associated with stress-tolerance mechanisms that enhance

enzymatic and non-enzymatic defence responses in plants

(Kapoore et al., 2021; Lee and Ryu, 2021). Some studies have

reported that Spirulina can produce polyamines which promote

the growth of lettuce seedlings (Mógor et al., 2018). Studies on

microalgae, such as Chlorella stigmatophora, Chlorella vulgaris,

Tetraselmis spp., Dunaliella salina, and Porphyridium cruentum,

have shown that microalgae can synthesise exopolysaccharides

(EPS) which stimulate plant growth and metabolism (Chanda

et al., 2019). El Arroussi et al. (2018) reported that EPS from

Dunaliella saline microalgal species enhanced salinity stress

tolerance in tomato plants. Studies on protein-rich extracts of

Spirulina platensis have revealed increased flower number,

freshness, and dry weight in Petunia x hybrida plants (Plaza et al.,

2018). Green algal extracts rich in amino acids enhanced the total

solid and organic contents of three hot pepper varieties (Zamljen

et al., 2021). Some microalgal species also synthesise phenolic

compounds and carotenoids, which support photoprotection and

defence responses in plants (Vidyashankar et al., 2017; Cezare-

Gomes et al., 2019; Del Mondo et al., 2021). Some microalgae

species are a good source of micronutrients, such as calcium,, iron,

zinc, a and magnesium (Sandgruber et al., 2021). Tetraselmis chuii is

rich in total calcium and phosphorus, Chlorella has high

phosphorus and iron contents, and Spirulina is rich in potassium.

Microalgae synthesize vitamins that act as plant growth promoting

factors. Vitamin C and nicotinic acid are abundant in Tetraselmis

suecia. Freshwater microalgae, such as Spirulina platensis and

Chlorella spp., are rich in vitamins such as niacin, riboflavin,

cyanocobalamin, and folic acid (Edelmann et al., 2019). Studies

have shown that plants like soybean, barley, and spinach absorb

vitamin B complex when microalgal biomass is applied as

biofertilizer. In addition to vitamins and minerals, microalgae

produce terpenoids, betaines, humic substances, and peptides that

function as biopesticides (Kapoore et al., 2021). Table 2 shows the

list of microalgae and its effect on plant growth.
Integration of microalgae in
aquaponics

Microalgae serve as excellent nutrient sources for aquatic

organisms, providing proteins, omega-3 fatty acids, vitamins, and
Frontiers in Marine Science 08
minerals. They also play crucial roles in water quality management,

larviculture, and Integrated Multi-Trophic Aquaculture (IMTA)

systems (Hashmi et al., 2023). Algaeponics is a recent innovation in

the field of aquaponics (Nair et al., 2025) and it is a novel extension

of conventional aquaponics that incorporates microalgae as an

integral biological component within the system. Unlike standard

aquaponics—where fish waste provides nutrients for higher

plants—algaeponics uses microalgae to recycle nutrients, improve

water quality, and serve as a supplementary or primary feed source

for fish (Zhang et al., 2022). Microalgae enhance aquaponic systems

by supporting nutrient removal, improving water quality, and

serving as feed for fish like tilapia (Edwards et al., 1981; Kinh

et al., 2024). Factors such as fish density, food-to-microorganism

ratio (F/M), and hydraulic retention time (HRT) influence algal

integration and system stability (Medina and Neis, 2007). While

species like Chlorella sp. aid in ammonia control and pH balance,

their growth may be limited in systems optimized for fish and plant

productivity (Addy et al., 2017). Microalgae can interact with

nitrogen fixing bacteria called diazotrophs that could possess

combined biotechnological applications in a sustainable

production system. In aquaponics systems, integrating microalgae

with nitrogen-fixing bacteria (diazotrophs) offers a promising,

sustainable way to enhance nutrient cycling, water quality, and

productivity. While microalgae contribute to carbon fixation,

oxygenation, and biomass production, diazotrophs help convert

atmospheric nitrogen into plant-available forms like ammonium.

Together, they can naturally supplement nitrogen when fish waste is

insufficient, reduce the need for synthetic inputs, and support plant

growth through biofertilization. Additionally, the protein-rich algal

biomass can be harvested and reused as fish feed, creating a closed-

loop system that improves efficiency, reduces operational costs, and

boosts environmental resilience (Llamas et al., 2023).

Microalgae added to aquaponic systems in the form of aquafeeds

is shown in Figure 2, as they can act as an essential food source for

fish, but in-depth research is necessary to determine their potential

benefits for plant growth in aquaponic systems. Microalgae can

effectively remediate aquaculture water acting as nutrient recyclers

while producing valuable biomass (Dourou et al., 2020; Han et al.,

2019). This integration reduces environmental impacts, improves

water quality, and provides a sustainable source of aquafeed (Han

et al., 2019). Upscaling the production of microalgae can lead to

improved resource efficiency and a reduced carbon footprint. Recent

advances in recirculating aquaculture systems (RAS) have focused on

incorporating microalgae to close the system loop, thereby enhancing

performance and deriving value from waste streams. Microalgae in

RAS facilitate oxygenation, carbon dioxide sequestration, and

nutrient recovery (Ende et al., 2024). Various cultivation systems,

harvesting technologies, and species selection strategies have been

explored to optimise microalgae-assisted aquaculture (Han et al.,

2019). Microalgal biomass production has a water footprint of 2857

L/kg when using freshwater. This footprint can be reduced

considerably by employing wastewater or seawater or recycling

growth media, with recycling potentially lowering the footprint by
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90% (Pugazhendhi et al., 2020). Compared with plant and insect

production, microalgae production has a lower water footprint. In

open cultivation systems, evaporation is a major contributor to water

loss, with evaporation rates reaching up to 2 cm/d in 20 cm deep

raceway ponds (Das et al., 2016). Cultivating microalgae using

wastewater for human consumption raises legitimate food safety

concerns. These concerns stem from the potential accumulation of

harmful substances, including heavy metals, pathogens, and

emerging contaminants (Markou et al., 2018; Álvarez-González

et al., 2023). While treatment processes such as anaerobic digestion

can significantly reduce biological and chemical risks, the persistence

of certain xenobiotics remains a challenge. Currently, the legal

frameworks in most regions—including the European Union—do

not support the use of such biomass in food products. However, some

studies indicate that treated microalgal biomass may be suitable for

non-food applications, such as fertilizers and aquafeed, although

elements like cadmium can still exceed allowable limits (Álvarez-

González et al., 2023). Continued research and clearer regulatory

guidance are essential as the industry evolves (de Oliveira and

Bragotto, 2022; Salehipour-Bavarsad et al., 2024).

Major challenges in microalgae cultivation is its biomass

productivity which is highly variable due to numerous cultivation
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factors such as light intensity and spectrum, nutrient availability,

temperature, and strain-specific physiological differences. Light is a

key determinant, with suboptimal intensity, poor spectral quality,

and inefficient distribution significantly reducing photosynthetic

efficiency, especially in dense cultures and closed photobioreactors

(Ooms et al., 2016; Nwoba et al., 2019). Nutrient limitations,

particularly of nitrogen and phosphorus, can both constrain

growth and stimulate desired metabolite accumulation, but must

be precisely managed to balance productivity and product quality

(Chu, 2017). Additionally, different microalgal strains respond

uniquely to environmental conditions, making strain selection

critical for consistent biomass yield and target compound

production (Štěrbová et al., 2023). Innovations such as spectral

conversion, temperature control strategies, genetically modified

strains, and advanced photobioreactor designs aim to mitigate

these inconsistencies and improve biomass uniformity and

scalability (Nwoba et al., 2019; Zhang et al., 2024).Freshwater is

often required to counteract evaporation and maintain salinity for

marine microalgae. However, certain halotolerant microalgal

strains (e.g. Dunaliella sp., Tetraselmis sp., and Picochlorum sp.)

can adapt to salinity changes, thereby reducing freshwater use and

lowering the overall water footprint (Das et al., 2019). Microalgae
FIGURE 2

Schematic representation of microalgae contributions to Sustainable Aquaponics: From Biomass Cultivation to Aquafeed.
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show potential as sustainable alternatives to fish-based aquafeed in

addressing the growing demand for high-quality proteins (Tham

et al., 2023; Yarnold et al., 2019). Integrating microalgae cultivation

with aquaculture, agriculture, aquaponics, and livestock farming

could create a circular bioeconomy based on recycling nutrients and

wastewater. This approach offers environmental benefits, resource

recovery, and potential socioeconomic improvements in rural areas.

However, challenges remain, including developing large-scale

production methods and addressing energy-intensive harvesting

and processing methods. Some studies have shown that freshwater

microalgae like spirulina might contain contaminants like

microcystins (MCs) which have raised increasing concern due to

their potential health risks. Spirulina, a cyanobacterial supplement

—has been examined for safety, especially in France where over 180

small-scale farms contribute to local production. A review of data

from 95 producers between 2013 and 2021, showed that MCs levels

generally remained within safe limits. These findings support the

relative safety of French spirulina and other microalgae while

emphasizing the importance of refining cultivation practices to

prevent contamination (Scoglio, 2018; Pinchart et al., 2023).

Further research on life cycle assessment and pilot-scale

demonstrations is needed to establish the feasibility and

sustainability (Figure 3) of integrating algae-based systems into

aquaculture, aquaponics, and related sectors (Vishwakarma

et al., 2022).
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Conclusion

Aquaponics holds immense potential to address global food and

nutrition security challenges by integrating fish and plant

production in a sustainable manner. However, one of the key

limitations of current systems lies in the inefficient conversion of

fish effluent into complete nutrient solutions for plant growth, often

necessitating external fertiliser inputs. Recent studies suggest that

microalgae could offer a promising solution to this bottleneck by

serving dual roles as functional aquafeed for fish and as

biostimulants or biofertilizers for plants. Certain species, such as

Spirulina and Chlorella, have demonstrated benefits in nutrient

recycling, water purification, and enhancement of fish health and

plant biomass. While some microalgae species needs to be

optimised for its application as aquafeed. Despite these promising

insights, the research on microalgae as sustainable aquafeed in

aquaponics system remains fragmented and limited in scope. Most

existing studies are either species-specific or focused on isolated

benefits rather than on integrated system-wide performance.

Additionally, the long-term stability, scalability, and economic

viability of incorporating microalgae in aquaponics remain

underexplored. Future research should aim to systematically

evaluate a broader range of microalgal species in aquaponic

settings, including their interactions with microbial communities,

effects on nutrient dynamics, and their contribution to overall
FIGURE 3

SWOT analysis of microalgae-based aquafeed in aquaponic systems.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1661042
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Manoharan et al. 10.3389/fmars.2025.1661042
TABLE 1 Effect of microalgae on fish growth.

Microalgae Fish species Effect Reference

Schizochytrium sp.
Nile tilapia
(Oreochromis niloticus)

Improved gut health Souza et al., 2020

Euglena sp. Atlantic salmon Immunostimulant
Kiron et al., 2016a, b; Montoya et al., 2017;
Yamamoto et al., 2018

Schizochytrium sp. Atlantic salmon Enhanced fillet firmness Kousoulaki et al., 2016

Spirulina sp.
Red tilapia, Koi, Striped jack,
Black tiger prawn, and
yellow catfish

Enhanced coloration
Ansarifard et al., 2018; Dineshbabu et al.,
2019; Liu et al., 2021

2.5% Phaeodactylum tricornutum Gilthead seabream High fucoxanthin content Ribeiro et al., 2017

Arthrospira platensis
Freshwater prawns
(Macrobrachium rosenbergii)

Enhanced growth performance Radhakrishnan et al., 2016

5% Schizochytrium sp. oil Atlantic salmon (Salmo salar L.) Weight gain Wei et al., 2021

0.75% Tetraselmis suecica
Post larvae pacific white shrimp
(Litopenaeus vannamei)

30% weight gain Sharawy et al., 2020

15% Chlorella sp.
Nile tilapia
(Oreochromis niloticus)

30% reduction in FCR (feed
conversion ratio)

Fadl et al., 2020

Nannochloropsis gaditana African catfish and Nile tilapia Improved weight gain and FCR Agboola et al., 2019

Spirulina-based fish feed
Mozambique tilapia fingerlings
(Oreochromis mossambicus)

Improved digestibility Sharma et al., 2021

Nannochloropsis sp.extruded feed Gibel carp Improved digestibility Shi et al., 2016

Pavlova sp., Chaetoceros sp.,
Nannochloropsis ocu lata, and Isochrysis
sp., in feed,

Seahorses (Hippocampus reidi)
and Oysters
(Pinctada margaritifera)

Increased survivability
Martıńez-Fernández and Southgate, 2007;
Mélo et al., 2016

1-2% Dunaliella salina
supplemented feed

Litopenaeus vannamei Increased survival rate Medina-Félix et al., 2014

Tetraselmis suecica live cells
White shrimp
(Fenneropenaeus indicus

Reduced gut pathogenic bacterial load Regunathan and Wesley, 2004

Microencapsulated Chaetoceros sp.
Pacific white shrimp (Lito
penaeus vannamei)

Survivability at larval stage increased Nimrat et al., 2011

Paramylon in Euglena sp. cell wall
Atlantic salmon, mussels, red
drum, and matrinxa

Immunostimulant
Bianchi et al., 2015; Kiron et al., 2016a, b;
Montoya et al., 2017; Yamamoto
et al., 2018

6-8% of Chlorella vulgaris
Post larvae of
Macrobrachium rosenbergii

Improved immune response and
survivability agianst Aeromonas
hydrophila infection

Maliwat et al., 2017

Tetraselmis chuii, Nanno chloropsis
gaditana, and P. tricornutum

Gilthead seabream
(Sparus. aurata)

Enhanced defence activity Cerezuela et al., 2012

Euglena viridis Rohu fish (Labeo rohita) Increased immunostimulatory effects Das et al., 2009

Dunaliella salina Penaeus monodon
Increased antioxidant factors and
survival rate

Madhumathi and Rengasamy, 2011

Fish diet with Lactobacillus sakei and
Navicula sp.

Pacific red snapper
(Lutjanus peru)

Improved humoral response Reyes-Becerril et al., 2013

Feed with Prunus incisa Guppy fish (Poecilia reticulata) Increased survival rate Nath et al., 2012

10% A. Platensis diet
Rainbow trout
(Oncorhynchus mykiss)

Increased in total proteins level Yeganeh et al., 2015

5% Schizochytrium sp. Atlantic salmon Improved fillets quality Kousoulaki et al., 2016

Schizochytrium limacinum Atlantic salmon Improved fillets taste and odour Katerina et al., 2020

(Continued)
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TABLE 1 Continued

Microalgae Fish species Effect Reference

Schizo chytrium sp. Atlantic salmon
Rich in PUFA (polyunsaturated
fatty acids)

Ren et al., 2010

4% defatted-Spirulina and 0.4%
Spirulina-lipid-ex tract

Yellow catfish
(Pelteobagrus fulvidraco)

Improved skin colour Liu et al., 2021

7.5% Spirulina platensis Showa koi Improved pigmentation Sun et al., 2012
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TABLE 2 Effect of microalgae on plant growth.

Microalgae Plant species Effect Reference

Spirulina platensis Raphanus sativus Enhanced germination rate and seedling vigour Godlewska et al., 2019

Chlorella vulgaris
Solanum lycopersicum L.,
Cucumus sativus

Improved root parameters, increased biomass yield
Bumandalai and
Tserennadmid, 2019

Scenedesmus quadricauda, Chlorella
vulgaris, Arthrospira spp.

Beta vulgaris L.
Improved root parameters, enhanced biomass and
nutritional quality

Barone et al., 2018;

Navicula spp.
Solanum lycopersicum L., Capsicum
annuum L., Solanum melongena

Enhanced biomass Alshehrei et al., 2021

Oscillatoria agardhii Triticum spp. Drought tolerance Haggag et al., 2018

Chlorella vulgaris, Nannochloropsis salina Moringa oleifera Salinity tolerance
Al Dayel and El
Sherif, 2021

Chlorella vulgaris Vigna mungo L. Enhanced growth (acts as a biostimulant)
Dineshkumar
et al., 2019

Spirulina extract Triticum aestivum, Hordeum vulgare Enhanced germination and biomass yield Akgül, 2019

Spirulina platensis extract Calotropis procera Ait Improved root growth and germination rate
Bahmani Jafarlou
et al., 2021

Spirulina platensis extract Vigna mungo L.
Enhanced germination, nutritional content, root
growth, biomass and stress tolerance

Thinh, 2021

Spirulina platensis Phycocyanin extract Solanum lycopersicum L.
Increased biomass, nutritional content,
and germination

Metwally et al., 2022

Chlorella spp. Cell suspension Triticum aestivum, Hordeum vulgare
Enhanced root development, biomass and
germination rate

Odgerel and
Tserendulam, 2016

Nostoc commune aqueous extracts Oryza sativa L.
Enhanced root development, biomass and
germination rate

Abedi Firoozjaei
et al., 2021

Scenedesmus quadricauda and Chlorella
vulagaris extract

Beta vulgaris Improved seed vigour and root growth Puglisi et al., 2020

Consortia of
Chlorococcum spp. Micractinium spp.
Scenedesmus spp.
Chlorella spp.

Spinacia oleraceae
Enhanced biomass, nutritional content and
germination rate

Rupawalla et al., 2022

Scenedesmus subspicatus Allium cepa L Improved root development Gemin et al., 2022

Chlorella vulgaris biomass with cow dung Solanum lycopersicum L.
Enhanced root growth, leaf phytochemical content,
soil, enzyme activity and stress tolerance

Suchithra et al., 2022

Chlorella vulgaris extract Lactuca sativa
Increased crop yield, leaf pigment content, fruits,
flowers numbers and nutritional quality

La Bella et al., 2021

Chlorella vulgaris Brassica oleracea var. italica
Enhanced leaf pigments, stress tolerance, enzymatic
activity, early flowering

Kusvuran, 2021

Chlorella vulgaris extract Latuca sativa L.
Increased enzymatic activity, early flowering,
nutritional quality

Puglisi et al., 2022

(Continued)
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system productivity and resilience. Moreover, multidisciplinary

approaches combining aquaculture, plant science, and microbial

ecology are needed to optimise microalgae integration. By

addressing these knowledge gaps, aquaponics can evolve into a

more self-sustaining, circular food production system capable of

meeting future global demands.
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TABLE 2 Continued

Microalgae Plant species Effect Reference

Cell lysates of Chlamydomonas reinhardtii
CC124
Chlorella sp. MACC360

Solanum lycopersicum L.
Improved crop yield, enzymatic activity, number of
fruits, early flowering

Gitau et al., 2022

Polysaccharides extract of Dunaliella
salina MS002 and MS067
Phaeodactylum tricornotum MS023
Porphyridium spp.MS081, Desmodesmus
spp.
Spirulina platensis MS001

Solanum lycopersicum L. Enhanced nutritional quality and stress tolerance Rachidi et al., 2021

Extracts of microalgae consortium
Chlorella spp., Scenedesmus spp., Spirulina
spp., Synechocystis spp

Solanum lycopersicum L.
Increased biomass, leaf pigment content,
nutritional quality

Hans et al., 2020

Chlorella vulgaris Cyamopsis tetragonoloba (L.) Taub.
Early flowering, improved nutritional quality and
stress tolerance

Kusvuran and
Can, 2020

Polysaccharide extracts of Chlorella
vulgaris, Chlorella Sorokiniana

Solanum lycopersicum L.
Early flowering, increased enzymatic activity and
stress tolerance

Farid et al., 2019

Scenedesmus spp.extract, Arthrospira
platensis cell hydrolysate

Petunia x hybrida Enhanced crop yield, nutritional quality Plaza et al., 2018

Scenedesmus obliquus Chlorella vulgaris
and Anabaena oryzae biomass

Musa spp.
Improved root growth, leaf phytochemical content, soil
quality, stress tolerance

Hamouda and El-
Ansary, 2017

Chlorella fusca Cucumis sativus Arabidopsis thaliana Stress tolerance
Kim et al., 2018; Lee
et al., 2020
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