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A sequential coastal current
prediction approach based on
hierarchical decomposition
Nini Wang*

College of Mathematics and Computer, Guangdong Ocean University, Zhanjiang, China
Precise prediction of coastal tidal current is essential for the efficient operation of

tidal power generation, coastal engineering and maritime activities. To excavate

the useful information in coastal current movement thus improving the accuracy

of coastal current prediction, a real-time sequential mechanism for coastal

current prediction is proposed based on a data reconstruction scheme. The

reconstruction decomposes the coastal current time series by taking both

advantage of the autonomy of the empirical mode decomposition and the

arbitrariness of the discrete wavelet transformation, and the decomposed

components are identified and predicted respectively by radial basis function

networks with variable structure whose hidden units’ locations can be adjusted in

real-time. To improve the adaptivity and rapidity of the prediction mechanism,

the Lipschitz quotients method is employed to determine the prediction system

structure, with a sliding data window serving as system dynamics observer.

Coastal current prediction simulation is conducted using the measurement

data of the tidal gauge of Cumberland Sound, USA and the results validated

the effectiveness of the proposed mechanism in respect of prediction accuracy

and processing speed.
KEYWORDS

coastal current prediction, hierarchical decomposition, sequential learning, time series
prediction, time series decomposition
1 Introduction

The prediction of coastal tidal currents represents a pivotal domain within the realms of

sustainable energy and oceanographic studies. Precise prediction of coastal current plays an

essential role in efficient operation of booming tidal power generation as well as the

convergence of tidal current energy into the electrical grid system (Jahromi et al., 2010;

Chen et al., 2021; Liu et al., 2021). Moreover, it stands as a critical factor influencing

maritime safety protocols and operational efficiency (Davidson et al., 2009; Chang et al.,

2013; Shu et al., 2024). Furthermore, the tidal current prediction also involves the processes

offishery, recreational activities, and the protection of coastal and marine resources (Huang

et al., 2023).
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Tidal movement is generated by the interplay of the orbital

dynamics of celestial entities and the axial rotation of the terrestrial

sphere, and affected by the shape of continental shelf and coastlines.

In addition to the astronomical and geographical factors, the

fluctuations in tidal currents are also influenced by a complex

array of meteorological and hydrological parameters,

encompassing variables such as wind velocity, atmospheric

pressure gradients, water salinity concentrations, thermal profiles

of the water column, precipitation rates, and the presence of ice

formations, etc (Jahromi et al., 2010). The variations in tidal

currents exhibit intricate characteristics, such as nonlinearity,

uncertainty, and temporal variability dynamics. The tidal current

also follows three dimensional motions, which make it more

complex than tide prediction in one vertical direction (Hu et al.,

2023). Therefore, it is hard to construct a prediction model with

high precision for tidal current attributing to the complexities of

environmental factors and their inherent attributes of tidal currents,

such as nonlinearity, temporal variability dynamics, and

uncertainties (Li and Zhu, 2023).

The harmonic analysis technique is traditional approach for

analyzing and forecasting tidal currents, analogous to its application

in tide analysis and prediction (Kumar and Kumar, 2010; Jin et al.,

2018; Liu et al., 2023). It constructs the tidal current model through

the superposition of harmonic components, each associated with

distinct frequencies and amplitudes that correspond to specific

influences. However, the determination of harmonic parameters

need systematic measurement of tidal current data which is not

available for most of the coastal locations. Furthermore, this

approach fails to incorporate meteorological and hydrological

variables, potentially leading to significant discrepancies between

the predicted and actual tidal currents, particularly under extreme

weather conditions.

Progress in information processing and intelligent

computational methodologies, including neural networks,

intelligent optimization algorithms, and probabilistic modeling

techniques, present the potential for attaining precise real-time

ocean current predictions driven by measured data (Hu et al.,

2023; Li et al., 2023). These methods exhibit their superiorities

over the conventional harmonic method in terms of handling of

nonlinear and noisy signal, expressing uncertainty message, and

representing non-harmonic or non-sinusoidal fluctuations.

Uncertainty is a key factor affecting the precision of the tidal

current prediction. The prediction performance of the

deterministic methods could degrade for dynamic current

regions. Kavousi-Fard (2017) proposed a probabilistic tidal

prediction model by modeling the uncertainty effects of tidal

current with optimal prediction intervals, and the method could

lead to high prediction accuracy for real tidal current data. To

process the tidal current spatiotemporal datasets effectively and

represent the inherent uncertainty and noise within such data,

Sarkar (Sarkar et al., 2019) introduced a Bayesian machine learning

(ML) framework, which is capable of describing the spatiotemporal

characterization. In implementing intelligent optimization

techniques, Remya et al. (2012) employ genetic algorithm (GA)

for the dominant principal components (PC) time series prediction,
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with the empirical orthogonal function (EOF) method being

utilized to compress the spatial heterogeneity into a limited set of

principal eigenmodes. The ensemble methodology has

demonstrated considerable efficacy in the prediction of tidal

currents. Neural networks play important roles in representing

nonlinear systems attributing to its nonlinear nature and adaptive

learning mode. A back propagation (BP) neural network technique

was employed for tidal current prediction taking into consideration

of meteorological parameters and surface elevations (Aydog et al.,

2010). Bradbury and Conley (2021) employ a recurrent neural

network (RNN) trained with Bayesian regularization to simulate

unobserved subsurface current velocities. This method surpasses

traditional harmonic analysis by identifying non-celestial influences

with a reduced number of input data. Qiao et al. (2020) proposed a

GA-BP network with the genetic algorithm being adopted to select

optimal connections and thresholds, and the historical temporal

sequence data and temporal factors are utilized to improve the

precision of tidal current forecasting.

The integration of deep learning methodologies in prediction

mechanism has emerged as research hot spot. Advanced deep

learning architectures, such as convolutional neural networks

(CNNs), long short-term memory (LSTM) networks, gated

recurrent units (GRUs), and recurrent neural networks (RNNs),

have gained considerable attention for their capacity to model

complex systems. These techniques excel at extracting salient

features from original signal through multi-layered processing,

thereby identifying various aspects from the input data (Mishra

et al., 2021). Li et al. (2023) constructed a deep learning architecture

based on the transformer model to estimate non-stationary

semidiurnal internal tides. Most of the temporal and spatial

variability inherent in baroclinic currents was effectively predicted

using this framework. Aly (2020a) developed hybrid models

involving various combinations of wavelet, neural networks, and

Fourier series based on recurrent Kalman filters and least squares,

and the efficacy of these models was validated based on measured

tidal current dataset. Aly (2020b) also proposed hybrid

methodologies for forecasting the harmonic constituents of tidal

currents, with clustering techniques being leveraged to enhance the

prediction accuracy. The validation of this hybrid model was

conducted based on the prediction simulation for the current

magnitude and the tidal currents direction. Jalali et al. (2022)

introduced a deep learning-based CNN-LSTM predictive strategy

based on deep learning to represent the uncertainties of tidal

current dynamics, which was evaluated using practical tidal

current datasets collected from the Bay of Fundy, Canada. The

CNN component of the framework is adept at extracting spatial

features from the data, while the LSTM component is designed to

capture temporal dependencies. The combination of these two

architectures allows for a more nuanced understanding of the

complex dynamics involved in tidal current dynamics, thereby

enhancing the accuracy and reliability of the prediction. Qian

et al. (2022) presented an ensemble machine learning approach to

enhance prediction accuracy through the integration of a long

short-term memory (LSTM) networks and hierarchical extreme

learning machine (H-ELM). Kavousi-Fard and Su (2017) propose
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another tidal current prediction method with high accuracy by

combining wavelet transform and SVR, with bat algorithm being

used to optimize the SVR.

Hybrid mechanisms that ensemble a variety of approaches can

leverage the advantages of individual methodologies, thereby tend

to attain more Interpretability and superior predictive accuracy

compared to singular models such as numerical models, analytic

models, and time series models. Kavousi-Fard (2016) introduced a

hybrid predictive method for forecasting the direction and velocity

of tidal currents. This hybrid predictive framework utilizes the

autoregressive integrated moving average (ARIMA) model to

characterize the linear characteristics of tidal currents, while

employing support vector regression (SVR) to capture the

complex residual components. The combination of traditional

analytical model with intelligent computation techniques can

bring their superiorities of the stability and interpretability of

analytical model as well as the adaptivity and model-free

capability of the data-driven techniques. Zhang et al. (2022)

applied rescaled range analysis to construct the tidal current

analytic model and utilized the least squares support vector

machine (LS-SVM) for learning in high-dimensional space. The

dragonfly algorithm was employed for optimizing the parameters of

the LS-SVM, thereby obtaining the optimal prediction solution. For

incorporating the deep learning model, Zhang et al. (2023)

introduced an ensemble tidal current forecasting model that

integrates numerical simulation techniques with advanced deep

learning algorithms. The model demonstrated superior

performance in predicting both the meridional and zonal

components of tidal currents, showcasing its efficacy in capturing

the complex dynamics of oceanic flows. Likely, Zhang et al. (2024)

proposed a hybrid model that integrates mechanism processes with

advanced deep learning techniques. This approach aims to address

the limitations of high computational burden in traditional

numerical models and the lack of interpretability in deep learning

methods driven by pure data. The model demonstrates improved

predictive capabilities for sea surface tidal currents, particularly in

high-magnitude currents prediction applications. Zhang et al.

(2023) developed a hybrid deep learning model that integrates a

physical model of nonstationary harmonic analysis (NSHA) with

the machine learning approach of LSTM, which is adapted to

compensate errors by using NSHA. The results indicated a

significant improvement in the prediction of extremely high-level

tidal currents.

The variations of tidal current present typical time-varying

characteristics. The adaptability of neural networks enables their

nonlinear identification implementations, but it present challenges

for conventional neural networks with fixed structure to model the

time-varying dynamics attributing their static dimension and static

structure (Schuman and Birdwell, 2013). The sequential variable

structure networks are designed to adapt to the time-varying

characteristics of by establishing and reconstruct the network by

adjusting the network dimension and hidden units’ locations in

real-time (Hong et al., 2021). Meanwhile, the adjustment of the

network scale can also restrain the adverse effects of under-fitting or

over-fitting phenomenon, thus improving the generalization result
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of the constructed network. Locally response radial basis function

(RBF) network is a generally-used network for sequential learning

owing to its features such as local response, compact structure, fast

convergence speed, and free of local minima (Yin et al., 2025).

To represent the complex characteristics of tidal currents such

as uncertainty, nonlinearity, and time-varying dynamics, one

solution is to reduce the complexity of the object system thus

facilitate its practical applications. The decomposition method is an

effective approach to reconstruct the data thus alleviate the

identification difficulty and the computation burden. In the

decomposition method, the original signal is disassembled into

sub-series with multi-resolution to enable further insight into the

target process. The decomposition and reconstruction processes

facilitate the identification and prediction of complex systems.

There are a variety of time series decomposition approaches such

as wavelet packet decomposition (WPD) (Liu et al., 2018), empirical

mode decomposition (EMD), and discrete wavelet transform

(DWT) (Huang et al., 2018) (Huang et al., 2018). DWT

arbitrarily decomposes original signal into subseries with similar

homogeneity components within one subseries, which facilitate the

identification of the dynamics of subseries (Yin et al., 2018).

However, the application of the DWT transform necessitates the

a priorimanual configuration of parameters, including the selection

of the wavelet basis type and the decomposition order. In contrast,

the methods like EMD can adaptively decompose the time series

without the need of manual adjustment of decomposition order,

which ensures its practical applications (Özger et al., 2020).

Adaptability is a critical issue for any predictive framework,

particularly in real-time application contexts. The efficacy of

identification and prediction models is contingent not only on the

employed nonlinear approximation methodologies but also on the

architectural model design, such as the input-output order and the

dimension of the model. Another aspect of adaptability in a

predictive scheme is the adaptability in parameter tuning, as

manual parameter adjustment is laborious and seldom yields

optimal solutions (Huang et al., 2019). The adaptability of

prediction schemes can be enhanced in respect of the predictive

model input order (Feil et al., 2004). Approaches for determining

the input order of prediction models encompass the Lipschitz

quotients (He and Asada, 1993; Wang and Chen, 2006), the false

nearest neighbors (FNN) method (Wallot and Mønster, 2018) and

the eigensystem realization algorithm (ERA) (Almunif et al., 2020),

etc. Among these, the Lipschitz quotients method stands out as a

straightforward and effective data-driven technique that immune to

any a priori knowledge of the object process and is resilient to the

laborious parameter tuning process (Wang et al., 2009).

As stated above, most of the tidal current prediction schemes,

especially the ensemble schemes, involves too much coefficients and

most of them have to be decided manually. Furthermore, the

relatively large system dimensions retard the computational

speed. In this study, a real-time prediction strategy for tidal

current is presented by ensemble EMD and DWT transformation

methods for deciding the decomposition scale, with a variable RBF

network being employed for online identification and prediction.

The approach is featured by its adaptability and flexibility, which
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are achieved by combining the decomposition methods of EMD

and DWT, with the Lipschitz quotients method being employed for

automatically determining the input orders of neural prediction

models. In addition to the adaptability, the prediction mechanism is

also featured by the rapidity which is realized by the sliding window

observer. The effectiveness of the proposed adaptive prediction

scheme is validated using the prediction simulation with data

being collected from the tidal current station of Cumberland

Sound, USA. Comparative simulations were also performed to

validate the effectiveness of the proposed tidal current

predictive strategy.

The remainder of this manuscript is structured as follows. In

Section 2, related methods of empirical mode decomposition

(EMD), Lipschitz quotients and variable RBF network are

presented. Section 3 introduces the tidal current neural prediction

strategy based on hierarchical multi-stage EMD-DWT

decomposition. The simulation of real-time prediction for tidal

current is delineated in Section 4. Discussion is finally concluded in

Section 5.
2 Methodologies

2.1 Empirical mode decomposition

As a data-driven information processing technique, empirical

mode decomposition is extensively utilized for the analysis of

nonlinear and nonstationary signals by adaptively transforming

such signals into components with multi-resolution amplitude and

frequency modulated (Huang et al., 2018). It dissects the signal in

accordance with its inherent time-scale attributes, obviating the

necessity for a priori assumptions regarding the signal’s intrinsic

characteristics. Attributing its merits such as adaptivity and data-

driven nature, it has been widely applied for signal identification,

de-noising, de-trending, compression and feature extraction in

areas of earth, atmosphere, ocean, and astronomical observation

analysis, it has found extensive application in the realms of earth,

atmospheric, oceanic, and astronomical information analysis for

tasks such as identification, noise reduction, trend analysis, data

compression, and feature extraction etc.

The EMD method decomposes original signal into a composite

of intrinsic oscillatory constituents, which are denoted as intrinsic

mode functions (IMFs). As shown in Equation 1, the EMD

generates n IMFs IMFj(k)
� �n

j=1 and a residual series r(k) from an

original signal x(k), and we get

x(k) =on
j=1IMFj(k) + r(k) (1)

To attain plausible intrinsic oscillations, the IMFs are organized

to encompass symmetric upper and lower envelopes, with the count

of zero crossings and extrema varying by zero or one. The iterative

procedure of EMD is shown as follows.

For a given original signal, the iterative procedure of standard

EMD method is outlined as follows:
Fron
1. Ascertain all the extremum points of x(k).
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2. Compose all the maxima and all the minima to form the

upper and lower envelopes, which is denoted as emin(k) and

emax(k), respectively.

3. Compute the mean of the upper envelope and lower

envelope: m(k) =(emin(k) + emax(k))/2.

4. Achieve the detail component by extracting the mean

envelope from the original signal: s(k) = x(k)−m(k).

5. If s(k) meets the termination criteria, then set d(k) = s(k) as

a component of IMF, otherwise set x(k) = s(k) and reiterate

the procedure on the residual signal from step 1).
Once an initial IMF has been ascertained, the iterations is

conducted iteratively on the residual signal r(k) = x(k)−d(k) to

extract the subsequent IMFs. When the criteria for IMFs are

satisfied for S consecutive iterations, the sifting procedure would

be terminated.
2.2 Discrete wavelet decomposition

The wavelet decomposition serves as a signal processing

methodology which is adept at decomposing both stationary and

nonstationary data, and providing higher resolution for both time

and frequency information, which is not available using the

conventional transformations such as Fourier transformation.

The wavelet decomposition dissects the original signal into a set

of wavelets, derived through scaling and translation of a mother

wavelet. The DWT procedure deconstructs the original signal into a

finite array of components, which can be reassembled to reconstruct

the original signal, ensuring no information is lost in the process.

Within the framework of the DWT multi-resolution

decomposition, signals are examined across a range of scales

utilizing filters with varying limit frequencies. The original signal

x(t) is passed through a set of high-and low-pass filters and generate

detail coefficients (D1, D2, …, DK) and approximation coefficients

(AK), respectively.

The logarithmic uniform spacing facilitates the construction of

allows the complete orthogonal wavelet basis. It employs N

transformation coefficients to comprehensively delineate a signal

of length N, with a redundancy-free representation. The discrete

wavelets are characterized by their specification at discrete temporal

points rather than being defined continuously along the time axis.

The resulting DWT is amenable to discrete-time translations and

dilations. For a function f across the entire scope of real line, a

mother wavelet function y can be employed to expand f as

Equation 2

f (t) = o
∞

j=−∞
o
∞

k=−∞

wjk2
j=2y (2jt − k) (2)

where the functions y(2jt−k) are orthogonal to each other. The

coefficient wjk provides insights into the behavior of the function f,

specifically highlighting the scale effects around 2−j and the

temporally around k×2−j. The discrete wavelet transform is

applicable for the decomposition and reconstruction of time

series data.
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2.3 Lipschitz quotients method

The Lipschitz quotients method (He and Asada, 1993) offers a

dependable and straightforward data-driven methodology for

identifying input-output mapping of unknown nonlinear dynamic

systems. The Lipschitz quotients algorithm (Wang et al., 2009)

provides a straightforward and reliable data-driven approach for

representing the relationships between inputs and outputs for

systems with complex nonlinear dynamic systems, facilitating a

deeper understanding of the underlying dynamics. It does not

require mechanistic knowledge of the system under study and

circumvents the laborious process of parameter adjustment

(Wang et al., 2009). Precise and mechanistic descriptions are

often unattainable for real-world systems due to their inherent

nonlinearities, uncertainties, and complexities. The Lipschitz

quotients method is independent of any a priori knowledge,

making it particularly suitable for constructing black-box models.

For representing an input-output mapping with continuity and

smoothness across certain regions, as shown in Equation 3, the

Lipschitz quotients method can be applied to facilitate a deeper

understanding of the underlying dynamics:

y = f (x) = f (x1, x2,…, xn) (3)

The Lipschitz quotients algorithm capitalizes on the continuity

attributes inherent in nonlinear continuous dynamic systems. As

shown in Equation 4, the method assumes that the partial

derivatives of the mapping with respect to its inputs are

constrained within finite bounds:

fj ji=
∂ f
∂ xi

����
���� ≤ M, i = 1, 2,…, n (4)

where M denotes positive and the Lipschitz quotient qnij is

represented as Equation 5:

q(n)
ij

=
y(i) − y(j)j j
x(i) − x(j)j j =

f (x(i)) − f (x(j))j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x1(i) − x1(j))

2 +⋯+
p

(xn(i) − xn(j))
2
, i ≠ j (5)

where |xi− xj| represents the distance between two samples

within the input space, while |yi− yj| denotes the distance between

their output mappings, with n being the appropriate value for

representation purpose. It has been noticed that the omission of an

input variable results in a significantly reduced Lipschitz quotient

q(n) compared to q(n−1). the inclusion of a superfluous input variable

leads to a marginal difference between q(n) and q(n−1). Consequently,

Accordingly, the Lipschitz quotient algorithm can ascertain the

optimal number of input variables by performing analysis based

purely on input-output samples.

The Lipschitz quotient, employed for the estimation of the

optimal system order, is delineated as Equation 6

q(n) = (
Yg
r=1

ffiffiffi
n

p
q(n)(r))1=g (6)

where q(n)(r) denotes the r-th largest quotient in the set of q(n)ij;

g represents a positive integer within the interval [0.01N, 0.02N], N

represents the total count of samples. The appropriate n will be
Frontiers in Marine Science 05
chosen when the setting is satisfied the Equation 7:

q(n−1) ≫ q(n) ≈ q(n+1) (7)
2.4 Variable-structure neural network

In this research, an adaptive prediction framework is utilized to

model the intricate dynamics of tidal currents. A neural network

with adjustable structure is employed to capture the complex

unmodeled residual information resulting from disturbances. To

monitor the real-time status of studied system, a first-in-first-out

(FIFO) sequence is used to construct a sequentially updated sliding

data window (SDW), and the network structure is dynamically

tuned in accordance with the SDW. The dimension of network is

modified by incorporating the new sample in the hidden layer and

eliminating obsolete units that fails to reflect the current system

dynamics detected using the SDW observer. Upon the

establishment of the network architecture, the connecting weights

linking the hidden and output layers are correspondingly

optimized. The sequential learning process is outlined as follows.

At time t, when a new input sample and corresponding output

is received, The SDW is updated as Equation 8

WSD = ½(xk, yk), (xk−1, yk−1),…, (xk−N+1, yk−N+1)� (8)

where N represents the SDW width, while x is the input and y

represent the output. SDW consists of X=[xk,…, xk−N+1]∈Rn×N as

input and Y=[yk, …, yk−N+1]
T ∈Rm×N as output. And the n and m

denote the input and output dimensions, respectively. The hidden

layer of network is initially constructed by incorporating the

updated data in the hidden layer.

There is only one hidden layer in the RBFN, and the j-th output

is achieved by Equation 9

yj = o
M

k=1

qkjfk( ‖ x − ck ‖ ) (9)

where M represents the hidden units’ number; qkj denotes the
parameters linking the k-th hidden layer unit and the j-th output

layer unit; ‖ṡ‖ represent the Euclidean distance metric; ck denotes

the center corresponding to the k-th hidden layer unit; fi represent
the Gaussian function of the k-th hidden layer unit. The output can

be achieved by Equation 10

Y = FQ (10)

where F denotes the response matrix of the hidden layer, it is

calculated from Equation 11, and Q represents the parameters

matrix linking the hidden layer and output layer. The Gram-

Schmidt algorithm is employed to orthogonalize the response

matrix (Chen and Chng, 1991)

F = WA (11)

where A represents the yielded upper- triangular matrix, andW

denotes the achieved matrix consisting of mutually orthogonal unit

vectors, as shown in Equation 12
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WTW = diag wT
1w1,…,wMw

T
M

� �
(12)

The index of error reduction ratio (err) is used to measure the

individual hidden unit’s contribution to the output it is calculated

by Equation 13.

½err�k =
(wT

k y)

(wT
k wk)(y

Ty)
(13)

where wk denotes the k-th vector in the matrix W.

The SDW serves as a dynamic observer to detect changes in

system status. However, the numbers of samples N is usually not the

same as number of hidden unitsM, the orthogonalizedW∈RN×M is

usually not square matrix. Therefore, the sum of err cannot directly

evaluate individual unit’s contribution to the output. To address

this, a modified index called the normalized error reduction ratio

(nerr) is used to assess individual hidden unit’s contribution to the

output, as shown in Equation 14

½nerr�k =
errk

oM
k=1errk

: (14)

At each step, the nerr values of existing units are arrayed in an

ascending order and sum the values of nerr one by one. As shown in

Equation 15, the selection process is terminated once the

cumulative sum reaches a threshold value r:

op+1
i=1 nerr ≥ r (15)

where p is the count of selected hidden units. This units-

selection procedure is executed step by step, and if certain units

are chosen for l consecutive iterations, they are identified as obsolete

units and would be pruned from network.

Subsequent to the pruning and expansion processes of the

hidden layer, the connecting parameters are determined

employing the pseudo-inverse method, as shown in Equation 16:

Q = F+Y = (FTF)−1FTY (16)

The prediction process is conducted once the learning process is

finished, and the two processes are processed in one single step.

Driven by the data in the SDW which serves as system dynamic

observer, the network is sequentially tuned to adapt to the current

status of studied system.
3 Neural prediction using hierarchical
decomposition

The tidal current time series contains extensive information

regarding tidal variation dynamics and environmental disturbances.

To extract useful underlying dynamics from the complex tidal

current time series f, as shown in the following Equation 17, the

original signal R is decomposed into IMFs and a residual

component using EMD approach:

f  ¼  IMF1þ IMF2þ ⋯+IMFjþ ⋯þ IMFn + r (17)
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The original series is subsequently converted into a set of

components with multi-resolution. Then the components IMFj
are identified and predicted respectively using the variable network.

The EMD dissect original signal into a set of IMFs based on the

signal’s inherent characteristics, with some resulted components

often reflecting physical meaning. However, the IMF components

may contain aliasing frequencies that represent the signal

components across different frequency bands (Feng and Chai,

2020), which hinders the prediction accuracy of tidal currents.

The energy of tidal current variations is predominantly contained in

the initial IMFs, which also contribute significantly to prediction

errors. The DWT is a robust tool for processing nonstationary

signals into components with fixed frequency bands. In this study,

the DWT is employed as a complementary approach to optimize

the data organization produced by EMD, thus alleviates the

difficulties associated with predictions.

In this research, the first IMF component, characterized by its

high frequency, is decomposed using the DWT algorithm. The

resulting detail and approximation components, along with the

original IMFs, are utilized for prediction. The predictions for each

individual component are then aggregated to produce the final

prediction: Equations 18–23 is the mathematical schematic diagram

of the entire prediction process.

f  ¼  D1I1þ ⋯+DiI1þ ⋯+DKI1 + AI1

+ IMF2þ ⋯+IMFjþ ⋯þ IMFn + r (18)

In the q-step-ahead prediction process, the variable networks

are employed to conduct the procedures of identification and

prediction in a single step, where p represents the model’s input

order. For prediction of q steps ahead, a network with p inputs and

single output is utilized for identification purposes. Regarding a

specific residual and IMF component, such as IMFj (j≠1):

Training
Input : IMFj(t − q),⋯, IMFj(t − q − pj + 1)

Output : IMFj(t)

(
(19)

For the approximation and detail components derived from

IMF1 by DWT, such as DiI1:

Training
Input : DiI1(t − q),⋯,DiI1(t − q − pDi + 1)

Output : DiI1(t)

(
(20)

where pj represents the network input order in processing the j-

th IMF, whose value is achieved according to (6). The prediction is

performed consequently with the trained network:

prediction
Input : IMFj(t),⋯, IMFj(t − pj + 1)

Output : IMFj(t + q)

(
(21)

and

prediction
Input : DiI1(t),⋯,DiI1(t − pDi + 1)

Output : DiI1(t + q)
:

(
(22)

The first component of IMFs typically contains the highest

energy and contributes the most to the errors of prediction.
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Consequently, only the first IMF is decomposed using DWT to

maintain simplicity. The prediction of f is obtained by aggregating

the prediction outcomes of IMFs:

f̂ (t + q) = AI1(t + q) + D1I1(t + q) +⋯+DiI1(t + q) +⋯+DKI1(t +

+ IMF2(t + q) + ⋯+IMFj(t + q) +⋯+IMFn(t + q) + r(t + q

(23)

where n denotes the IMFs number obtained using EMD

method, and K represents the detail components number derived

from DWT decomposition. The sub-series of the IMF1 obtained

through EMD method contains high frequency signals, but it is not

pure stochastic and may include valuable information related to the

impacts of hydrometeorological factors and other unmodeled

factors, whose influences are intertwined thus make it a complex

process. To extract the maximum amount of useful information, the

DWT is applied to IMF1 based on a randomness test. Specifically,

the parameter of K is decided upon the randomness test to optimize

the use of measurement data. The schematic of the identification

process is presented in Figure 1.
Frontiers in Marine Science 07
During the identification process, variable networks are

dynamically constructed for components generated by EMD and

DWT in real time. In a sequential learning scheme, both processes

of identification and prediction are carried out consecutively within

each step with the prediction being executed immediately following

the completion of the identification. The schematic of the

prediction process is depicted in Figure 2.

The final prediction result is obtained by combining the

prediction outputs of the individual IMFs and residue

component, along with the detailed information and approximate

information decomposed by the DWT.

4 Real-time tidal current prediction
simulation

4.1 Simulation dataset

The data were sourced from the PORTS system of the United

States National Oceanic and Atmospheric Administration (NOAA)
FIGURE 1

Identification procedure of the prediction scheme using EMD-DWT (q-steps-ahead).
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to evaluate the effectiveness of the proposed mechanism. The tidal

current station at Range A2, LB 29 Cumberland Sound (30°

43.489’N, 81°29.067’W) is chosen as the target station for this

study. Its near surface tidal current data were collected from July

1 GMT 0000, to Sept. 30 GMT 2359, 2024. This location was

selected due to its position at the convergence of flows from

Cumberland Sound, Cumberland Island Fry, St. Marys River,

Beach Creek, and Jolly River, as depicted in Figure 3. In addition

to hydrological and meteorological factors such as wind, air

pressure, precipitation, and evaporation, the dynamics of tidal

current at this site is also affected by the runoff flows, which add

to the complexity of the tidal current variations.

The speed and direction of tidal current in Cumberland Sound

are illustrated in Figure 4 and Figure 5, respectively. It is clearly

shown in Figure 4 that the tidal speed displays periodic

characteristics, and the tidal current direction also exhibits

clustering effects at certain thresholds, as shown in Figure 5. To

establish an appropriate prediction model, the tidal current was

analyzed, and the statistical histogram based on the tidal current

direction measurements from the Cumberland Sound station in

2022 is presented in Figure 6.

As depicted in Figure 6, the current exhibits a typical reciprocal

pattern with a flood direction of 330° and an ebb direction of 150°.

Consequently, to align with the needs of tidal power, the current

measurements are represented and predicted as longitudinal

current along 330° and lateral current along 60°. The current
Frontiers in Marine Science 08
speeds along the longitudinal and lateral directions are illustrated

in Figures 7 and 8, respectively.

It is demonstrated in Figures 7 and 8 that the variations of

longitudinal and lateral currents are complex processes, posing

challenges for identification and prediction. A single-step-ahead

prediction experiment was conducted for 2000 steps with a time

interval of 1 hour. The experiments were performed under Win10

system using computation platform of MATLAB R2009b, with the

computation configuration of 11th Gen Intel(R) Core(TM) i7-

1165G7 and the CPU at dual 2.80 GHz and RAM of 16.0 GB

memory. The predictive efficacy of the proposed framework is

assessed utilizing the quantitative metrics of root mean square

error (RMSE)and the correlation coefficient (CC). The

mathematical principle of the root mean square error is as shown

in Equation 24

RMSEPre =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i¼1(ŷ t+q − yt+q)
2

n

s
(24)

where y(t+q) and ŷ (t+q) represent the measured tidal current

velocity and predicted ones at time of t+q, respectively.

The variations of tidal current can be attributed to the complex

influences of external and internal factors. The EMDmethod is used

to dissect the original signal into a series of components of IMFs

which possess respective homogenous features. Initially, only the

EMD decomposition was applied, resulting in the adaptive
FIGURE 2

Prediction procedure based on EMD-DWT method.
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decomposition of 8 IMFs and 1 residual component, as shown

in Figure 9.

It is illustrated in Figure 9 that the EMD decomposition can

determine the order of decomposition automatically and transform

non-stationary time series to substantially stationary signals.

Moreover, obtaining a series of IMF components with distinct
Frontiers in Marine Science 09
features can aid in revealing hidden mechanistic features within

the time series, as an individual IMF component may explain a

specific practical process.

Adaptive networks are utilized to predict individual IMFs in

real time, and the Lipschitz quotients approach serves to ascertain

the number of input variables for the neural predictive model.
FIGURE 3

Location of the Cumberland sound (Source: https://tidesandcurrents.noaa.gov/).
FIGURE 4

Tidal current speed of Cumberland sound.
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Consequently, the model input orders are determined for individual

IMFs and the residual using the Lipschitz quotients approach, as

illustrated in Figure 10.

It is noticed in Figure 10 that in determining the Lipschitz

quotients values corresponding to IMF1∼ IMF8, the quotients at

order 3 q(3) are significantly declined compared to those at order 2

q(2); moreover, the corresponding q(4) exhibits only a marginal

difference from q(3). Consequently, for components of IMF1∼
IMF8, the prediction model input orders are set as 3. The model

input order for residual component cannot be determined using the

Lipschitz quotients method directly, and it is set to 3 attributing to

its approximately linear characteristics. For the residual component,

the model input order cannot be explicitly decided via the Lipschitz
Frontiers in Marine Science 10
quotients approach. Owing to its near-linear nature, the order is set

to 3 consequently. For neural prediction in multi steps ahead, the

input order are determined in a similar manner.
4.2 EMD-based neural network prediction

Since the data within each IMF exhibit homogeneous

characteristics, individual networks are utilized for each IMF. The

real-time tidal current prediction experiment for one step ahead is

conducted with variable-structure networks being constructed and

adjusted sequentially based on GOMS algorithm. The variable

neural networks are utilized for all decomposed components, and
FIGURE 5

Tidal current direction of Cumberland sound.
FIGURE 6

Statistics histogram of tidal current direction.
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the overall prediction results are sum of individual prediction

results. The overall prediction result is depicted in Figure 11.

The index of RMSE for the longitudinal tidal current prediction

experiment is 9.412990 cm/s over 2000 steps. The prediction results

align closely with the measured ones, exhibiting a CC of 0.976348,

as depicted in Figure 12.
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It is indicated from Figures 11 and 12 that the prediction results

for longitudinal tidal speed can accurately track the variations of the

real-measured data. Results exhibit the satisfactory holistic

agreement of predicted longitudinal tidal speed with measured

ones, demonstrating the adaptability of the proposed

prediction strategy.
FIGURE 7

Longitudinal speed of tidal current of Cumberland sound (July 1 to Sept. 30, 2024).
FIGURE 8

Lateral speed of tidal current of Cumberland sound (July 1 to Sept. 30, 2024).
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Data-driven techniques, such as neural networks, are

extensively employed for handling complex systems due to their

merits such as inherent nonlinearity and adaptability. Attributing to

the inherent data-driven nature, the generalization ability of the

neural network is significantly influenced by the complexity

underlying samples. To optimize the data space thus alleviate the

computation burden, the EMD method is firstly utilized to

transforms the original time series into subseries with

homogenous natures, which reduces the identification burden for

the identification and enhances the efficiency of the neural

prediction scheme.

Variable-structure neural networks are established and adjusted

sequentially for individual components to accommodate their
Frontiers in Marine Science 12
specific features. The prediction results for the components are

presented in Figure 13, respectively.

It is noticed that the predicted values for IMFs 2-8 exhibit

minimal deviations from the actual ones, indicating that the neural

network with variable structure can effectively identify the time-

varying dynamics of these components and produce accurate

predictions. For the component of IMF1, the predicted values

predominantly fall within the envelope curve of the original IMF1

signal, as further illustrated in Figure 14.

Significant deviation occurs in the prediction result of IMF1,

with the index of RMSE reaching 8.5459 cm/s over 2000 steps. This

is relatively high compared to the overall prediction errors. This

discrepancy may be attributed to the presence of highly noisy
frontiersin.or
FIGURE 9

Decomposition of longitudinal speed by EMD.
FIGURE 10

The Lipschitz quotients for IMFs and residual components of longitudinal current.
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FIGURE 11

Neural prediction result for longitudinal speed result based on EMD decomposition.
FIGURE 12

Prediction scatter diagram for longitudinal speed result based on EMD decomposition.
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signals and other unmodeled dynamics within the IMF1

component. Additionally, the decomposed IMF1 component

contains signals with varying frequencies and amplitudes, which

complicates prediction and degrades the performance of neural

prediction approaches.

The improve the generalization ability of the neural networks,

the networks are tuned not only in the parameters but also in the

number of hidden units and their locations. For each IMF, the

evolution history of hidden units’ number is depicted in Figure 15.
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It is shown in Figure 15 that there exist vibrations at the initial

stage of curves. This is because that the GOMS algorithm constructs

the variable RBF network sequentially, starting from an empty

network with no hidden units. The initial few samples in SDW are

employed to construct hidden layer directly, then the hidden units

are adjusted sequentially through the identification process. The

number of hidden units (HUN) is variant, indicating that the

hidden units are dynamically adjusted according to the

identification of the time-varying SDW.
FIGURE 13

Prediction results for components by using the EMD-based neural prediction model.
FIGURE 14

Prediction errors for components by using the EMD-based neural prediction model.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1668178
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang 10.3389/fmars.2025.1668178
The total time consumed for 2000 steps is 26.6018 seconds,

which is considerably fast because that only the samples within the

SDW are processed. Despite the need to process 8 IMFs and 1

residual component, the fast processing speed, along with the

adaptive determination of the EMD decomposition order and

model input order, facilitates the practical online application of

the prediction scheme.
4.3 Hierarchical EMD-SDW-based neural
prediction scheme

It is indicated from Figures 13 and 14 that the prediction error

decreases from IMF1 to IMF7 and to residual series. This trend can

be attributed to the reduction in complexity and energy, which in
Frontiers in Marine Science 15
turn simplifies the identification and prediction processes. The

energy of the tidal current time series is predominantly

concentrated in the first few IMFs, which also contribute

significantly to the overall prediction error. To enhance

prediction accuracy, one approach is to optimize the data

structure in the time series of IMF1, thereby reducing the

prediction burden. Therefore, in this study, the high-frequency

component of IMF1 is further decomposed by using the DWT

algorithm. The DWT decomposition order is set to 1 for simplicity,

t, and ‘db4’ wavelet is used as the basis. The Lipschitz quotients

method is employed to determine the model input orders for both

the approximation and detail components, with both orders set to 3

for the predictions.

The resulting detail and approximation components are utilized

for prediction, and the prediction outputs for all decomposed
FIGURE 15

Evolution of hidden units number by the EMD-based neural prediction.
FIGURE 16

Prediction results by the proposed EMD-DWT-based neural prediction model.
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components are aggregated to produce the final prediction. The

prediction results and the corresponding errors are illustrated

in Figure 16.

It is shown in Figure 16 that the frequency aliasing is mitigated

through the DWT decomposition. The prediction results show a

good overall agreement with the tidal current measurements,

indicating that the proposed prediction scheme based on

hierarchical multi-stage decomposition can serve as a feasible

approach for forecasting current profiles in strait areas.

The detail component contains a signal that resembles noise,

while the approximation component exhibits a certain degree of

regularity. The DWT decomposes IMF1 into two components, each

with a homogeneous nature, which facilitates prediction using the

neural model. The evolution history of the hidden units’ number

during the prediction for the detail and approximation components

of IMF1 are illustrated in Figure 17.

The predictions for the approximation and detail components

are summed to generate the prediction of IMF1. This prediction is

then added to the predictions of the other IMFs to obtain the overall

longitudinal tidal current prediction. The overall prediction

generated by the hierarchical EMD-DWT-based neural prediction

scheme is depicted in Figure 18.

It is evident that the predicted longitudinal speed of the tidal

current closely aligns with the actual measurements. The prediction

RMSE has decreased to 8.886484 cm/s compared to the 9.412990

cm/s using the EMD-based prediction scheme. This reduction

demonstrates the enhanced prediction accuracy of the EMD-

DWT-based prediction configuration. The prediction results

closely match the measured values, with a correlation coefficient

of 0.978893, as illustrated in Figure 19.

To evaluate the efficacy of the proposed scheme over an

extended temporal spectrum, simulations were also conducted for
Frontiers in Marine Science 16
various prediction lead times, and the prediction results are

presented in Table 1.

It can be noticed from Table 1 that the prediction accuracy

decreases as the increase of the prediction lead time. This is because

that the prediction is generated based on the temporal data in the

sliding window, which make the approach suitable for short-term

predictions of time-varying systems.

As the tidal current incorporates the longitudinal and lateral

current, its lateral part is also predicted with the prediction

approaches based on decomposition parts of EMD and EMD-

DWT, and the results are depicted in Table 2.

It is evident that the EMD-DWT-based neural prediction

scheme produces relatively stable predictions for lead times

ranging from 1 hour to 48 hours. This stability can be a result of

the hierarchical multi-stage decomposition strategy, which optimize

the data space and converts the original tidal current time series into

more detailed multi-resolution subseries with homogeneous

characteristics. This alleviate the system identification burden by

using variable neural networks. Generally, prediction accuracy

decreases as the lead time increases, showing the existence of

time-varying dynamics of tidal currents. The scheme ’s

computation speed is considerably fast because the variable

network’s learning scheme processes only a limited number of

samples in the SDW, comparing to the entire dataset in a batch

learning strategy. This merit also facilitates the practical

applications in real time of the proposed scheme.

The comparison validated the satisfactory overall performance

of the EMD-DWT-based neural model with respect to prediction

accuracy and processing speed. The design of the SDW enables fast

processing and adaptability to time-varying dynamics, while the

EMD-DWT transform ensures the accuracy and reliability of the

predictions. The hierarchical-decomposition-based sequential
frontiersin.or
FIGURE 17

Evolution of hidden units’ number for detail and approximation components.
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FIGURE 18

Prediction result by the EMD-DWT-based prediction.
FIGURE 19

Scatter diagram based on hierarchical decomposition.
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prediction scheme offers a potential solution for online

identification and prediction of a set of complex systems.
5 Conclusion

To accurately model the complex characteristics of tidal

currents, which are influenced by environmental disturbances, an

adaptive tidal current prediction scheme based on hierarchical

decomposition is proposed. This scheme ensembles hierarchical

multi-resolution decomposition techniques with a variable RBF

network. The coefficients of decomposition order and the model

input order of the neural prediction model are both autonomously

decided by the approaches of EMD composition and the Lipschitz

quotients algorithm, respectively. To alleviate the computational

burdens of identification of complex processes, the tidal current

time series is hierarchically decomposed into a set of IMFs, with the

highest-energy IMF1 being further decomposed using the DWT

decomposition. The achieved components from hierarchical

decomposition are identified by the variable RBF network. The

overall tidal current prediction is obtained by recombining the

predicted values of the IMFs from EMD, as well as the detail and

approximation components from DWT. Simulations of real-time

tidal current prediction were performed and the results validate the

viability and efficacy of the proposed prediction framework,

featured by its high precision and rapid computational efficiency.
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The self-adaptive nature of the prediction framework coefficients

enhances its practical feasibility. By analyzing the potential physical

significance of different IMF or DWT components in relation to

coastal ocean dynamics would improve the transparency and

interpretability of the model outputs. However, the proposed

strategy is driven by the data in the SDW and is hard to capture

the long-term system variations. Our future research work will

focus on the insight of the interpretability of the hierarchically

decomposed components as well as the combination with

mechanism model of tidal current variations with long-term

dynamic tidal current features.
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TABLE 1 Prediction results for longitudinal tidal current.

Schemes EMD-DWT EMD

lead time
RMSEPre
(cm/s)

CC
time/
step (s)

RMSEPre
(cm/s)

CC
time/
step (s)

1 hour 8.8865 0.9789 0.01331 9.4130 0.9763 0.01319

6 hours 9.2483 0.9771 0.01522 11.656 0.9631 0.01427

12 hours 10.4601 0.9706 0.01700 12.866 0.9554 0.01128

24 hours 10.7163 0.9691 0.01971 13.1110 0.9532 0.01760

48 hours 11.6365 0.9638 1.00152 13.4795 0.9505 0.01943
TABLE 2 Prediction results for lateral tidal current.

Schemes EMD-DWT EMD

lead time
RMSEPre
(cm/s)

CC
time/
step (s)

RMSEPre
(cm/s)

CC
time/
step (s)

1 hour 5.8491 0.9388 0.01837 6.5685 0.9202 0.01122

6 hours 7.0200 0.9091 0.02210 8.8865 0.9789 0.01760

12 hours 7.3738 0.8984 0.02214 9.6604 0.8185 0.01625

24 hours 9.4130 0.9763 0.01997 10.025 0.8027 0.10217

48 hours 10.71623 0.9691 0.01839 11.656 0.9631 0.01327
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