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A sequential coastal current
prediction approach based on
hierarchical decomposition

Nini Wang*

College of Mathematics and Computer, Guangdong Ocean University, Zhanjiang, China

Precise prediction of coastal tidal current is essential for the efficient operation of
tidal power generation, coastal engineering and maritime activities. To excavate
the useful information in coastal current movement thus improving the accuracy
of coastal current prediction, a real-time sequential mechanism for coastal
current prediction is proposed based on a data reconstruction scheme. The
reconstruction decomposes the coastal current time series by taking both
advantage of the autonomy of the empirical mode decomposition and the
arbitrariness of the discrete wavelet transformation, and the decomposed
components are identified and predicted respectively by radial basis function
networks with variable structure whose hidden units’ locations can be adjusted in
real-time. To improve the adaptivity and rapidity of the prediction mechanism,
the Lipschitz quotients method is employed to determine the prediction system
structure, with a sliding data window serving as system dynamics observer.
Coastal current prediction simulation is conducted using the measurement
data of the tidal gauge of Cumberland Sound, USA and the results validated
the effectiveness of the proposed mechanism in respect of prediction accuracy
and processing speed.

KEYWORDS

coastal current prediction, hierarchical decomposition, sequential learning, time series
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1 Introduction

The prediction of coastal tidal currents represents a pivotal domain within the realms of
sustainable energy and oceanographic studies. Precise prediction of coastal current plays an
essential role in efficient operation of booming tidal power generation as well as the
convergence of tidal current energy into the electrical grid system (Jahromi et al., 2010;
Chen et al, 2021; Liu et al,, 2021). Moreover, it stands as a critical factor influencing
maritime safety protocols and operational efficiency (Davidson et al., 2009; Chang et al.,
2013; Shu et al., 2024). Furthermore, the tidal current prediction also involves the processes
of fishery, recreational activities, and the protection of coastal and marine resources (Huang
et al., 2023).
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Tidal movement is generated by the interplay of the orbital
dynamics of celestial entities and the axial rotation of the terrestrial
sphere, and affected by the shape of continental shelf and coastlines.
In addition to the astronomical and geographical factors, the
fluctuations in tidal currents are also influenced by a complex
array of meteorological and hydrological parameters,
encompassing variables such as wind velocity, atmospheric
pressure gradients, water salinity concentrations, thermal profiles
of the water column, precipitation rates, and the presence of ice
formations, etc (Jahromi et al., 2010). The variations in tidal
currents exhibit intricate characteristics, such as nonlinearity,
uncertainty, and temporal variability dynamics. The tidal current
also follows three dimensional motions, which make it more
complex than tide prediction in one vertical direction (Hu et al,
2023). Therefore, it is hard to construct a prediction model with
high precision for tidal current attributing to the complexities of
environmental factors and their inherent attributes of tidal currents,
such as nonlinearity, temporal variability dynamics, and
uncertainties (Li and Zhu, 2023).

The harmonic analysis technique is traditional approach for
analyzing and forecasting tidal currents, analogous to its application
in tide analysis and prediction (Kumar and Kumar, 2010; Jin et al.,
2018; Liu et al.,, 2023). It constructs the tidal current model through
the superposition of harmonic components, each associated with
distinct frequencies and amplitudes that correspond to specific
influences. However, the determination of harmonic parameters
need systematic measurement of tidal current data which is not
available for most of the coastal locations. Furthermore, this
approach fails to incorporate meteorological and hydrological
variables, potentially leading to significant discrepancies between
the predicted and actual tidal currents, particularly under extreme
weather conditions.

Progress in information processing and intelligent
computational methodologies, including neural networks,
intelligent optimization algorithms, and probabilistic modeling
techniques, present the potential for attaining precise real-time
ocean current predictions driven by measured data (Hu et al,
2023; Li et al,, 2023). These methods exhibit their superiorities
over the conventional harmonic method in terms of handling of
nonlinear and noisy signal, expressing uncertainty message, and
representing non-harmonic or non-sinusoidal fluctuations.
Uncertainty is a key factor affecting the precision of the tidal
current prediction. The prediction performance of the
deterministic methods could degrade for dynamic current
regions. Kavousi-Fard (2017) proposed a probabilistic tidal
prediction model by modeling the uncertainty effects of tidal
current with optimal prediction intervals, and the method could
lead to high prediction accuracy for real tidal current data. To
process the tidal current spatiotemporal datasets effectively and
represent the inherent uncertainty and noise within such data,
Sarkar (Sarkar et al., 2019) introduced a Bayesian machine learning
(ML) framework, which is capable of describing the spatiotemporal
characterization. In implementing intelligent optimization
techniques, Remya et al. (2012) employ genetic algorithm (GA)
for the dominant principal components (PC) time series prediction,
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with the empirical orthogonal function (EOF) method being
utilized to compress the spatial heterogeneity into a limited set of
principal eigenmodes. The ensemble methodology has
demonstrated considerable efficacy in the prediction of tidal
currents. Neural networks play important roles in representing
nonlinear systems attributing to its nonlinear nature and adaptive
learning mode. A back propagation (BP) neural network technique
was employed for tidal current prediction taking into consideration
of meteorological parameters and surface elevations (Aydog et al.,
2010). Bradbury and Conley (2021) employ a recurrent neural
network (RNN) trained with Bayesian regularization to simulate
unobserved subsurface current velocities. This method surpasses
traditional harmonic analysis by identifying non-celestial influences
with a reduced number of input data. Qiao et al. (2020) proposed a
GA-BP network with the genetic algorithm being adopted to select
optimal connections and thresholds, and the historical temporal
sequence data and temporal factors are utilized to improve the
precision of tidal current forecasting.

The integration of deep learning methodologies in prediction
mechanism has emerged as research hot spot. Advanced deep
learning architectures, such as convolutional neural networks
(CNNs), long short-term memory (LSTM) networks, gated
recurrent units (GRUs), and recurrent neural networks (RNNs),
have gained considerable attention for their capacity to model
complex systems. These techniques excel at extracting salient
features from original signal through multi-layered processing,
thereby identifying various aspects from the input data (Mishra
etal, 2021). Liet al. (2023) constructed a deep learning architecture
based on the transformer model to estimate non-stationary
semidiurnal internal tides. Most of the temporal and spatial
variability inherent in baroclinic currents was effectively predicted
using this framework. Aly (2020a) developed hybrid models
involving various combinations of wavelet, neural networks, and
Fourier series based on recurrent Kalman filters and least squares,
and the efficacy of these models was validated based on measured
tidal current dataset. Aly (2020b) also proposed hybrid
methodologies for forecasting the harmonic constituents of tidal
currents, with clustering techniques being leveraged to enhance the
prediction accuracy. The validation of this hybrid model was
conducted based on the prediction simulation for the current
magnitude and the tidal currents direction. Jalali et al. (2022)
introduced a deep learning-based CNN-LSTM predictive strategy
based on deep learning to represent the uncertainties of tidal
current dynamics, which was evaluated using practical tidal
current datasets collected from the Bay of Fundy, Canada. The
CNN component of the framework is adept at extracting spatial
features from the data, while the LSTM component is designed to
capture temporal dependencies. The combination of these two
architectures allows for a more nuanced understanding of the
complex dynamics involved in tidal current dynamics, thereby
enhancing the accuracy and reliability of the prediction. Qian
et al. (2022) presented an ensemble machine learning approach to
enhance prediction accuracy through the integration of a long
short-term memory (LSTM) networks and hierarchical extreme
learning machine (H-ELM). Kavousi-Fard and Su (2017) propose
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another tidal current prediction method with high accuracy by
combining wavelet transform and SVR, with bat algorithm being
used to optimize the SVR.

Hybrid mechanisms that ensemble a variety of approaches can
leverage the advantages of individual methodologies, thereby tend
to attain more Interpretability and superior predictive accuracy
compared to singular models such as numerical models, analytic
models, and time series models. Kavousi-Fard (2016) introduced a
hybrid predictive method for forecasting the direction and velocity
of tidal currents. This hybrid predictive framework utilizes the
autoregressive integrated moving average (ARIMA) model to
characterize the linear characteristics of tidal currents, while
employing support vector regression (SVR) to capture the
complex residual components. The combination of traditional
analytical model with intelligent computation techniques can
bring their superiorities of the stability and interpretability of
analytical model as well as the adaptivity and model-free
capability of the data-driven techniques. Zhang et al. (2022)
applied rescaled range analysis to construct the tidal current
analytic model and utilized the least squares support vector
machine (LS-SVM) for learning in high-dimensional space. The
dragonfly algorithm was employed for optimizing the parameters of
the LS-SVM, thereby obtaining the optimal prediction solution. For
incorporating the deep learning model, Zhang et al. (2023)
introduced an ensemble tidal current forecasting model that
integrates numerical simulation techniques with advanced deep
learning algorithms. The model demonstrated superior
performance in predicting both the meridional and zonal
components of tidal currents, showcasing its efficacy in capturing
the complex dynamics of oceanic flows. Likely, Zhang et al. (2024)
proposed a hybrid model that integrates mechanism processes with
advanced deep learning techniques. This approach aims to address
the limitations of high computational burden in traditional
numerical models and the lack of interpretability in deep learning
methods driven by pure data. The model demonstrates improved
predictive capabilities for sea surface tidal currents, particularly in
high-magnitude currents prediction applications. Zhang et al.
(2023) developed a hybrid deep learning model that integrates a
physical model of nonstationary harmonic analysis (NSHA) with
the machine learning approach of LSTM, which is adapted to
compensate errors by using NSHA. The results indicated a
significant improvement in the prediction of extremely high-level
tidal currents.

The variations of tidal current present typical time-varying
characteristics. The adaptability of neural networks enables their
nonlinear identification implementations, but it present challenges
for conventional neural networks with fixed structure to model the
time-varying dynamics attributing their static dimension and static
structure (Schuman and Birdwell, 2013). The sequential variable
structure networks are designed to adapt to the time-varying
characteristics of by establishing and reconstruct the network by
adjusting the network dimension and hidden units’ locations in
real-time (Hong et al., 2021). Meanwhile, the adjustment of the
network scale can also restrain the adverse effects of under-fitting or
over-fitting phenomenon, thus improving the generalization result
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of the constructed network. Locally response radial basis function
(RBF) network is a generally-used network for sequential learning
owing to its features such as local response, compact structure, fast
convergence speed, and free of local minima (Yin et al., 2025).

To represent the complex characteristics of tidal currents such
as uncertainty, nonlinearity, and time-varying dynamics, one
solution is to reduce the complexity of the object system thus
facilitate its practical applications. The decomposition method is an
effective approach to reconstruct the data thus alleviate the
identification difficulty and the computation burden. In the
decomposition method, the original signal is disassembled into
sub-series with multi-resolution to enable further insight into the
target process. The decomposition and reconstruction processes
facilitate the identification and prediction of complex systems.
There are a variety of time series decomposition approaches such
as wavelet packet decomposition (WPD) (Liu et al., 2018), empirical
mode decomposition (EMD), and discrete wavelet transform
(DWT) (Huang et al., 2018) (Huang et al, 2018). DWT
arbitrarily decomposes original signal into subseries with similar
homogeneity components within one subseries, which facilitate the
identification of the dynamics of subseries (Yin et al,, 2018).
However, the application of the DWT transform necessitates the
a priori manual configuration of parameters, including the selection
of the wavelet basis type and the decomposition order. In contrast,
the methods like EMD can adaptively decompose the time series
without the need of manual adjustment of decomposition order,
which ensures its practical applications (Ozger et al., 2020).
Adaptability is a critical issue for any predictive framework,
particularly in real-time application contexts. The efficacy of
identification and prediction models is contingent not only on the
employed nonlinear approximation methodologies but also on the
architectural model design, such as the input-output order and the
dimension of the model. Another aspect of adaptability in a
predictive scheme is the adaptability in parameter tuning, as
manual parameter adjustment is laborious and seldom yields
optimal solutions (Huang et al, 2019). The adaptability of
prediction schemes can be enhanced in respect of the predictive
model input order (Feil et al., 2004). Approaches for determining
the input order of prediction models encompass the Lipschitz
quotients (He and Asada, 1993; Wang and Chen, 2006), the false
nearest neighbors (FNN) method (Wallot and Monster, 2018) and
the eigensystem realization algorithm (ERA) (Almunif et al., 2020),
etc. Among these, the Lipschitz quotients method stands out as a
straightforward and effective data-driven technique that immune to
any a priori knowledge of the object process and is resilient to the
laborious parameter tuning process (Wang et al., 2009).

As stated above, most of the tidal current prediction schemes,
especially the ensemble schemes, involves too much coefficients and
most of them have to be decided manually. Furthermore, the
relatively large system dimensions retard the computational
speed. In this study, a real-time prediction strategy for tidal
current is presented by ensemble EMD and DWT transformation
methods for deciding the decomposition scale, with a variable RBF
network being employed for online identification and prediction.
The approach is featured by its adaptability and flexibility, which
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are achieved by combining the decomposition methods of EMD
and DWT, with the Lipschitz quotients method being employed for
automatically determining the input orders of neural prediction
models. In addition to the adaptability, the prediction mechanism is
also featured by the rapidity which is realized by the sliding window
observer. The effectiveness of the proposed adaptive prediction
scheme is validated using the prediction simulation with data
being collected from the tidal current station of Cumberland
Sound, USA. Comparative simulations were also performed to
validate the effectiveness of the proposed tidal current
predictive strategy.

The remainder of this manuscript is structured as follows. In
Section 2, related methods of empirical mode decomposition
(EMD), Lipschitz quotients and variable RBF network are
presented. Section 3 introduces the tidal current neural prediction
strategy based on hierarchical multi-stage EMD-DWT
decomposition. The simulation of real-time prediction for tidal
current is delineated in Section 4. Discussion is finally concluded in
Section 5.

2 Methodologies
2.1 Empirical mode decomposition

As a data-driven information processing technique, empirical
mode decomposition is extensively utilized for the analysis of
nonlinear and nonstationary signals by adaptively transforming
such signals into components with multi-resolution amplitude and
frequency modulated (Huang et al., 2018). It dissects the signal in
accordance with its inherent time-scale attributes, obviating the
necessity for a priori assumptions regarding the signal’s intrinsic
characteristics. Attributing its merits such as adaptivity and data-
driven nature, it has been widely applied for signal identification,
de-noising, de-trending, compression and feature extraction in
areas of earth, atmosphere, ocean, and astronomical observation
analysis, it has found extensive application in the realms of earth,
atmospheric, oceanic, and astronomical information analysis for
tasks such as identification, noise reduction, trend analysis, data
compression, and feature extraction etc.

The EMD method decomposes original signal into a composite
of intrinsic oscillatory constituents, which are denoted as intrinsic
mode functions (IMFs). As shown in Equation 1, the EMD
generates n IMFs {IMFj(k)};l:1 and a residual series r(k) from an
original signal x(k), and we get

x(k) = EJ’LIIMFj(k) + r(k) (1)

To attain plausible intrinsic oscillations, the IMFs are organized
to encompass symmetric upper and lower envelopes, with the count
of zero crossings and extrema varying by zero or one. The iterative
procedure of EMD is shown as follows.

For a given original signal, the iterative procedure of standard
EMD method is outlined as follows:

1. Ascertain all the extremum points of x(k).
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2. Compose all the maxima and all the minima to form the
upper and lower envelopes, which is denoted as e;,(k) and
emax(k), respectively.

3. Compute the mean of the upper envelope and lower
envelope: m(k) =(emin(k) + emax(k))/2.

4. Achieve the detail component by extracting the mean
envelope from the original signal: s(k) = x(k)-m(k).

5. If s(k) meets the termination criteria, then set d(k) = s(k) as
a component of IMF, otherwise set x(k) = s(k) and reiterate
the procedure on the residual signal from step 1).

Once an initial IMF has been ascertained, the iterations is
conducted iteratively on the residual signal r(k) = x(k)-d(k) to
extract the subsequent IMFs. When the criteria for IMFs are
satisfied for S consecutive iterations, the sifting procedure would
be terminated.

2.2 Discrete wavelet decomposition

The wavelet decomposition serves as a signal processing
methodology which is adept at decomposing both stationary and
nonstationary data, and providing higher resolution for both time
and frequency information, which is not available using the
conventional transformations such as Fourier transformation.

The wavelet decomposition dissects the original signal into a set
of wavelets, derived through scaling and translation of a mother
wavelet. The DWT procedure deconstructs the original signal into a
finite array of components, which can be reassembled to reconstruct
the original signal, ensuring no information is lost in the process.

Within the framework of the DWT multi-resolution
decomposition, signals are examined across a range of scales
utilizing filters with varying limit frequencies. The original signal
x(t) is passed through a set of high-and low-pass filters and generate
detail coefficients (D, D, ..
(Ag), respectively.

., Dg) and approximation coefficients

The logarithmic uniform spacing facilitates the construction of
allows the complete orthogonal wavelet basis. It employs N
transformation coefficients to comprehensively delineate a signal
of length N, with a redundancy-free representation. The discrete
wavelets are characterized by their specification at discrete temporal
points rather than being defined continuously along the time axis.
The resulting DWT is amenable to discrete-time translations and
dilations. For a function f across the entire scope of real line, a
mother wavelet function y can be employed to expand f as
Equation 2

fo=3 3 w2y (2t - k) 2)
fmy—

where the functions w(2/t-k) are orthogonal to each other. The
coefficient wj, provides insights into the behavior of the function f,
specifically highlighting the scale effects around 27 and the
temporally around kx27. The discrete wavelet transform is
applicable for the decomposition and reconstruction of time

series data.
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2.3 Lipschitz quotients method

The Lipschitz quotients method (He and Asada, 1993) offers a
dependable and straightforward data-driven methodology for
identifying input-output mapping of unknown nonlinear dynamic
systems. The Lipschitz quotients algorithm (Wang et al., 2009)
provides a straightforward and reliable data-driven approach for
representing the relationships between inputs and outputs for
systems with complex nonlinear dynamic systems, facilitating a
deeper understanding of the underlying dynamics. It does not
require mechanistic knowledge of the system under study and
circumvents the laborious process of parameter adjustment
(Wang et al,, 2009). Precise and mechanistic descriptions are
often unattainable for real-world systems due to their inherent
nonlinearities, uncertainties, and complexities. The Lipschitz
quotients method is independent of any a priori knowledge,
making it particularly suitable for constructing black-box models.
For representing an input-output mapping with continuity and
smoothness across certain regions, as shown in Equation 3, the
Lipschitz quotients method can be applied to facilitate a deeper
understanding of the underlying dynamics:

y:f(x) :f(xl’xb'--’xn) (3)

The Lipschitz quotients algorithm capitalizes on the continuity
attributes inherent in nonlinear continuous dynamic systems. As
shown in Equation 4, the method assumes that the partial
derivatives of the mapping with respect to its inputs are
constrained within finite bounds:

0
= 5L

<M,i=12,..,n (4)

where M denotes positive and the Lipschitz quotient ¢"7 is
represented as Equation 5:

|f (@) - f(x(7))]
Ger (i) = 21 (D) + -+, (i) = %, (7))

g0 = OO
T () = x()]

izj (5)

where |x— x| represents the distance between two samples
within the input space, while [y~ y,| denotes the distance between
their output mappings, with #n being the appropriate value for
representation purpose. It has been noticed that the omission of an
input variable results in a significantly reduced Lipschitz quotient

q" compared to ¢~

. the inclusion of a superfluous input variable
leads to a marginal difference between g and ¢"*"". Consequently,
Accordingly, the Lipschitz quotient algorithm can ascertain the
optimal number of input variables by performing analysis based
purely on input-output samples.

The Lipschitz quotient, employed for the estimation of the

optimal system order, is delineated as Equation 6

g
q" = ([ [vna” )" (©6)
r=1

where " (r) denotes the r-th largest quotient in the set of g"7;
g represents a positive integer within the interval [0.01N, 0.02N], N

represents the total count of samples. The appropriate n will be
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chosen when the setting is satisfied the Equation 7:

q(nfl) > q(n) ~ q(nﬂ) 7)

2.4 Variable-structure neural network

In this research, an adaptive prediction framework is utilized to
model the intricate dynamics of tidal currents. A neural network
with adjustable structure is employed to capture the complex
unmodeled residual information resulting from disturbances. To
monitor the real-time status of studied system, a first-in-first-out
(FIFO) sequence is used to construct a sequentially updated sliding
data window (SDW), and the network structure is dynamically
tuned in accordance with the SDW. The dimension of network is
modified by incorporating the new sample in the hidden layer and
eliminating obsolete units that fails to reflect the current system
dynamics detected using the SDW observer. Upon the
establishment of the network architecture, the connecting weights
linking the hidden and output layers are correspondingly
optimized. The sequential learning process is outlined as follows.

At time f, when a new input sample and corresponding output
is received, The SDW is updated as Equation 8

WSD = [(xk)yk)) (xk—l)yk—l)> LR (xkaH))’kan)] (8)

where N represents the SDW width, while x is the input and y
represent the output. SDW consists of X=[x,..., Xeone1]ERPN as
input and Y=[yy, ..., yk,Nﬂ]T eR™N as output. And the n and m
denote the input and output dimensions, respectively. The hidden
layer of network is initially constructed by incorporating the
updated data in the hidden layer.

There is only one hidden layer in the RBFN, and the j-th output
is achieved by Equation 9

M
Vi = 2040l x = e ll) )]
k=1

where M represents the hidden units’ number; 6;; denotes the
parameters linking the k-th hidden layer unit and the j-th output
layer unit; ||$]| represent the Euclidean distance metric; ¢, denotes
the center corresponding to the k-th hidden layer unit; ¢; represent
the Gaussian function of the k-th hidden layer unit. The output can
be achieved by Equation 10

Y = @O (10)

where @ denotes the response matrix of the hidden layer, it is
calculated from Equation 11, and © represents the parameters
matrix linking the hidden layer and output layer. The Gram-
Schmidt algorithm is employed to orthogonalize the response
matrix (Chen and Chng, 1991)

D =WA (11)

where A represents the yielded upper- triangular matrix, and W
denotes the achieved matrix consisting of mutually orthogonal unit
vectors, as shown in Equation 12

frontiersin.org


https://doi.org/10.3389/fmars.2025.1668178
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Wang

WTW = diag{w{wy, ..., wywiy } (12)

The index of error reduction ratio (err) is used to measure the
individual hidden unit’s contribution to the output it is calculated
by Equation 13.

(wiy)

—_— 13
W Iw) o) (13)

lerr]y =

where w; denotes the k-th vector in the matrix W.

The SDW serves as a dynamic observer to detect changes in
system status. However, the numbers of samples N is usually not the
same as number of hidden units M, the orthogonalized WeR™ is
usually not square matrix. Therefore, the sum of err cannot directly
evaluate individual unit’s contribution to the output. To address
this, a modified index called the normalized error reduction ratio
(nerr) is used to assess individual hidden unit’s contribution to the
output, as shown in Equation 14

[nerr]; = ald: (14)

) EkM:1e”k ‘

At each step, the nerr values of existing units are arrayed in an
ascending order and sum the values of nerr one by one. As shown in
Equation 15, the selection process is terminated once the
cumulative sum reaches a threshold value p:

f:llnerr >p (15)

where p is the count of selected hidden units. This units-
selection procedure is executed step by step, and if certain units
are chosen for [ consecutive iterations, they are identified as obsolete
units and would be pruned from network.

Subsequent to the pruning and expansion processes of the
hidden layer, the connecting parameters are determined
employing the pseudo-inverse method, as shown in Equation 16:

O=0Y=(d'®)'d"Y (16)

The prediction process is conducted once the learning process is
finished, and the two processes are processed in one single step.
Driven by the data in the SDW which serves as system dynamic
observer, the network is sequentially tuned to adapt to the current
status of studied system.

3 Neural prediction using hierarchical
decomposition

The tidal current time series contains extensive information
regarding tidal variation dynamics and environmental disturbances.
To extract useful underlying dynamics from the complex tidal
current time series ¢, as shown in the following Equation 17, the
original signal R is decomposed into IMFs and a residual
component using EMD approach:

¢ = IMF,+ IMFy+ - +IMFj+ -+ IMF, +r  (17)
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The original series is subsequently converted into a set of
components with multi-resolution. Then the components IMF;
are identified and predicted respectively using the variable network.

The EMD dissect original signal into a set of IMFs based on the
signal’s inherent characteristics, with some resulted components
often reflecting physical meaning. However, the IMF components
may contain aliasing frequencies that represent the signal
components across different frequency bands (Feng and Chai,
2020), which hinders the prediction accuracy of tidal currents.
The energy of tidal current variations is predominantly contained in
the initial IMFs, which also contribute significantly to prediction
errors. The DWT is a robust tool for processing nonstationary
signals into components with fixed frequency bands. In this study,
the DWT is employed as a complementary approach to optimize
the data organization produced by EMD, thus alleviates the
difficulties associated with predictions.

In this research, the first IMF component, characterized by its
high frequency, is decomposed using the DWT algorithm. The
resulting detail and approximation components, along with the
original IMFs, are utilized for prediction. The predictions for each
individual component are then aggregated to produce the final
prediction: Equations 18-23 is the mathematical schematic diagram
of the entire prediction process.

¢ = D+ - +Dip+ - +Dgpy + A
+ IMEy+ - +IMFi+ -+ IMF, +r (18)

In the g-step-ahead prediction process, the variable networks
are employed to conduct the procedures of identification and
prediction in a single step, where p represents the model’s input
order. For prediction of g steps ahead, a network with p inputs and
single output is utilized for identification purposes. Regarding a
specific residual and IMF component, such as IMF; (j=1):

o Input : IMFj(t—q),---,IMFj(t—q—pj+ 1)
Training (19)
Output : IMFj(t)
For the approximation and detail components derived from
IMF1 by DWT, such as Di;:

. Input : Dip(t - q), -+, Dipy (t = q — pp; + 1)
Training (20)
Output : Dij(t)
where p; represents the network input order in processing the j-
th IMF, whose value is achieved according to (6). The prediction is
performed consequently with the trained network:

Input : IMFy(t), -, IMF;(t - p; +1)

prediction (21)
Output : IMF(t + q)

and

Input : Diy(t), -+, Dipy (t — pp; + 1)
prediction . (22)
Output : Dip (¢t +¢q)

The first component of IMFs typically contains the highest
energy and contributes the most to the errors of prediction.
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FIGURE 1
Identification procedure of the prediction scheme using EMD-DWT (g-steps-ahead).
Consequently, only the first IMF is decomposed using DWT to During the identification process, variable networks are

maintain simplicity. The prediction of ¢ is obtained by aggregating ~ dynamically constructed for components generated by EMD and

the prediction outcomes of IMFs: DWT in real time. In a sequential learning scheme, both processes

. of identification and prediction are carried out consecutively within

¢t +q) = Ap(t+q) + DiIL(E +q) + - +D;I1(E +q) + - +DI1(t + ) each step with the prediction being executed immediately following

+IME,(t+q) + - +IMF;(t + q) + - +IMF,(t + @) + r(t + q) the completion of the identification. The schematic of the
(23)  prediction process is depicted in Figure 2.

The final prediction result is obtained by combining the
where 7 denotes the IMFs number obtained using EMD prediction outputs of the individual IMFs and residue
method, and K represents the detail components number derived
from DWT decomposition. The sub-series of the IMF1 obtained

through EMD method contains high frequency signals, but it is not

component, along with the detailed information and approximate
information decomposed by the DWT.

pure stochastic and may include valuable information related to the

impacts of hydrometeorological factors and other unmodeled 4 Real-time tidal current pl’ed iction
factors, whose influences are intertwined thus make it a complex  simulation

process. To extract the maximum amount of useful information, the

DWT is applied to IMF1 based on a randomness test. Specifically, 4.1 Simulation dataset

the parameter of K is decided upon the randomness test to optimize

the use of measurement data. The schematic of the identification The data were sourced from the PORTS system of the United
process is presented in Figure 1. States National Oceanic and Atmospheric Administration (NOAA)
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FIGURE 2
Prediction procedure based on EMD-DWT method.

to evaluate the effectiveness of the proposed mechanism. The tidal
current station at Range A2, LB 29 Cumberland Sound (30°
43.489N, 81°29.067W) is chosen as the target station for this
study. Its near surface tidal current data were collected from July
1 GMT 0000, to Sept. 30 GMT 2359, 2024. This location was
selected due to its position at the convergence of flows from
Cumberland Sound, Cumberland Island Fry, St. Marys River,
Beach Creek, and Jolly River, as depicted in Figure 3. In addition
to hydrological and meteorological factors such as wind, air
pressure, precipitation, and evaporation, the dynamics of tidal
current at this site is also affected by the runoff flows, which add
to the complexity of the tidal current variations.

The speed and direction of tidal current in Cumberland Sound
are illustrated in Figure 4 and Figure 5, respectively. It is clearly
shown in Figure 4 that the tidal speed displays periodic
characteristics, and the tidal current direction also exhibits
clustering effects at certain thresholds, as shown in Figure 5. To
establish an appropriate prediction model, the tidal current was
analyzed, and the statistical histogram based on the tidal current
direction measurements from the Cumberland Sound station in
2022 is presented in Figure 6.

As depicted in Figure 6, the current exhibits a typical reciprocal
pattern with a flood direction of 330° and an ebb direction of 150°.
Consequently, to align with the needs of tidal power, the current
measurements are represented and predicted as longitudinal
current along 330° and lateral current along 60°. The current

Frontiers in Marine Science

speeds along the longitudinal and lateral directions are illustrated
in Figures 7 and 8, respectively.

It is demonstrated in Figures 7 and 8 that the variations of
longitudinal and lateral currents are complex processes, posing
challenges for identification and prediction. A single-step-ahead
prediction experiment was conducted for 2000 steps with a time
interval of 1 hour. The experiments were performed under Winl10
system using computation platform of MATLAB R2009b, with the
computation configuration of 11th Gen Intel(R) Core(TM) i7-
1165G7 and the CPU at dual 2.80 GHz and RAM of 16.0 GB
memory. The predictive efficacy of the proposed framework is
assessed utilizing the quantitative metrics of root mean square
error (RMSE)and the correlation coefficient (CC). The
mathematical principle of the root mean square error is as shown
in Equation 24

Ein:1()7t+q - yt+q)2
n

RMSEp,. = (24)

where y(t+q) and y (t+q) represent the measured tidal current
velocity and predicted ones at time of t+¢, respectively.

The variations of tidal current can be attributed to the complex
influences of external and internal factors. The EMD method is used
to dissect the original signal into a series of components of IMFs
which possess respective homogenous features. Initially, only the
EMD decomposition was applied, resulting in the adaptive
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Location of the Cumberland sound (Source: https://tidesandcurrents.noaa.gov/).
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FIGURE 4
Tidal current speed of Cumberland sound.

features can aid in revealing hidden mechanistic features within

decomposition of 8 IMFs and 1 residual component, as shown
the time series, as an individual IMF component may explain a

in Figure 9.

It is illustrated in Figure 9 that the EMD decomposition can  specific practical process.
determine the order of decomposition automatically and transform Adaptive networks are utilized to predict individual IMFs in
non-stationary time series to substantially stationary signals.  real time, and the Lipschitz quotients approach serves to ascertain
Moreover, obtaining a series of IMF components with distinct  the number of input variables for the neural predictive model.
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Tidal current direction of Cumberland sound.
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Consequently, the model input orders are determined for individual
IMFs and the residual using the Lipschitz quotients approach, as
illustrated in Figure 10.

It is noticed in Figure 10 that in determining the Lipschitz
quotients values corresponding to IMF1~ IMF8, the quotients at
order 3 g are significantly declined compared to those at order 2
q?; moreover, the corresponding ¢ exhibits only a marginal
difference from ¢®. Consequently, for components of IMF1~
IMF8, the prediction model input orders are set as 3. The model
input order for residual component cannot be determined using the
Lipschitz quotients method directly, and it is set to 3 attributing to
its approximately linear characteristics. For the residual component,
the model input order cannot be explicitly decided via the Lipschitz

Frontiers in Marine Science 10

quotients approach. Owing to its near-linear nature, the order is set
to 3 consequently. For neural prediction in multi steps ahead, the
input order are determined in a similar manner.

4.2 EMD-based neural network prediction

Since the data within each IMF exhibit homogeneous
characteristics, individual networks are utilized for each IMF. The
real-time tidal current prediction experiment for one step ahead is
conducted with variable-structure networks being constructed and
adjusted sequentially based on GOMS algorithm. The variable
neural networks are utilized for all decomposed components, and
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Longitudinal speed of tidal current of Cumberland sound (July 1 to Sept. 30, 2024).
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Lateral speed of tidal current of Cumberland sound (July 1 to Sept. 30, 2024).

the overall prediction results are sum of individual prediction
results. The overall prediction result is depicted in Figure 11.

The index of RMSE for the longitudinal tidal current prediction
experiment is 9.412990 cm/s over 2000 steps. The prediction results
align closely with the measured ones, exhibiting a CC of 0.976348,
as depicted in Figure 12.

Frontiers in Marine Science 11

It is indicated from Figures 11 and 12 that the prediction results
for longitudinal tidal speed can accurately track the variations of the
real-measured data. Results exhibit the satisfactory holistic
agreement of predicted longitudinal tidal speed with measured
ones, demonstrating the adaptability of the proposed
prediction strategy.
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The Lipschitz quotients for IMFs and residual components of longitudinal current.

Data-driven techniques, such as neural networks, are
extensively employed for handling complex systems due to their
merits such as inherent nonlinearity and adaptability. Attributing to
the inherent data-driven nature, the generalization ability of the
neural network is significantly influenced by the complexity
underlying samples. To optimize the data space thus alleviate the
computation burden, the EMD method is firstly utilized to
transforms the original time series into subseries with
homogenous natures, which reduces the identification burden for
the identification and enhances the efficiency of the neural
prediction scheme.

Variable-structure neural networks are established and adjusted
sequentially for individual components to accommodate their
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specific features. The prediction results for the components are
presented in Figure 13, respectively.

It is noticed that the predicted values for IMFs 2-8 exhibit
minimal deviations from the actual ones, indicating that the neural
network with variable structure can effectively identify the time-
varying dynamics of these components and produce accurate
predictions. For the component of IMF1, the predicted values
predominantly fall within the envelope curve of the original IMF1
signal, as further illustrated in Figure 14.

Significant deviation occurs in the prediction result of IMF1,
with the index of RMSE reaching 8.5459 cm/s over 2000 steps. This
is relatively high compared to the overall prediction errors. This
discrepancy may be attributed to the presence of highly noisy
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Prediction scatter diagram for longitudinal speed result based on EMD decomposition
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Prediction errors for components by using the EMD-based neural prediction model.

signals and other unmodeled dynamics within the IMF1
component. Additionally, the decomposed IMF1 component
contains signals with varying frequencies and amplitudes, which
complicates prediction and degrades the performance of neural
prediction approaches.

The improve the generalization ability of the neural networks,
the networks are tuned not only in the parameters but also in the
number of hidden units and their locations. For each IMF, the
evolution history of hidden units’ number is depicted in Figure 15.
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It is shown in Figure 15 that there exist vibrations at the initial
stage of curves. This is because that the GOMS algorithm constructs
the variable RBF network sequentially, starting from an empty
network with no hidden units. The initial few samples in SDW are
employed to construct hidden layer directly, then the hidden units
are adjusted sequentially through the identification process. The
number of hidden units (HUN) is variant, indicating that the
hidden units are dynamically adjusted according to the
identification of the time-varying SDW.
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Prediction results by the proposed EMD-DWT-based neural prediction model.

The total time consumed for 2000 steps is 26.6018 seconds,
which is considerably fast because that only the samples within the
SDW are processed. Despite the need to process 8 IMFs and 1
residual component, the fast processing speed, along with the
adaptive determination of the EMD decomposition order and
model input order, facilitates the practical online application of
the prediction scheme.

4.3 Hierarchical EMD-SDW-based neural
prediction scheme

It is indicated from Figures 13 and 14 that the prediction error

decreases from IMF1 to IMF7 and to residual series. This trend can
be attributed to the reduction in complexity and energy, which in

Frontiers in Marine Science

turn simplifies the identification and prediction processes. The
energy of the tidal current time series is predominantly
concentrated in the first few IMFs, which also contribute
significantly to the overall prediction error. To enhance
prediction accuracy, one approach is to optimize the data
structure in the time series of IMFI1, thereby reducing the
prediction burden. Therefore, in this study, the high-frequency
component of IMF1 is further decomposed by using the DWT
algorithm. The DWT decomposition order is set to 1 for simplicity,
t, and ‘db4’ wavelet is used as the basis. The Lipschitz quotients
method is employed to determine the model input orders for both
the approximation and detail components, with both orders set to 3
for the predictions.

The resulting detail and approximation components are utilized
for prediction, and the prediction outputs for all decomposed
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Evolution of hidden units’ number for detail and approximation components

components are aggregated to produce the final prediction. The
prediction results and the corresponding errors are illustrated
in Figure 16.

It is shown in Figure 16 that the frequency aliasing is mitigated
through the DWT decomposition. The prediction results show a
good overall agreement with the tidal current measurements,
indicating that the proposed prediction scheme based on
hierarchical multi-stage decomposition can serve as a feasible
approach for forecasting current profiles in strait areas.

The detail component contains a signal that resembles noise,
while the approximation component exhibits a certain degree of
regularity. The DWT decomposes IMF1 into two components, each
with a homogeneous nature, which facilitates prediction using the
neural model. The evolution history of the hidden units’ number
during the prediction for the detail and approximation components
of IMF1 are illustrated in Figure 17.

The predictions for the approximation and detail components
are summed to generate the prediction of IMF1. This prediction is
then added to the predictions of the other IMFs to obtain the overall
longitudinal tidal current prediction. The overall prediction
generated by the hierarchical EMD-DWT-based neural prediction
scheme is depicted in Figure 18.

It is evident that the predicted longitudinal speed of the tidal
current closely aligns with the actual measurements. The prediction
RMSE has decreased to 8.886484 cm/s compared to the 9.412990
cm/s using the EMD-based prediction scheme. This reduction
demonstrates the enhanced prediction accuracy of the EMD-
DWT-based prediction configuration. The prediction results
closely match the measured values, with a correlation coefficient
of 0.978893, as illustrated in Figure 19.

To evaluate the efficacy of the proposed scheme over an
extended temporal spectrum, simulations were also conducted for
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various prediction lead times, and the prediction results are
presented in Table 1.

It can be noticed from Table 1 that the prediction accuracy
decreases as the increase of the prediction lead time. This is because
that the prediction is generated based on the temporal data in the
sliding window, which make the approach suitable for short-term
predictions of time-varying systems.

As the tidal current incorporates the longitudinal and lateral
current, its lateral part is also predicted with the prediction
approaches based on decomposition parts of EMD and EMD-
DWT, and the results are depicted in Table 2.

It is evident that the EMD-DWT-based neural prediction
scheme produces relatively stable predictions for lead times
ranging from 1 hour to 48 hours. This stability can be a result of
the hierarchical multi-stage decomposition strategy, which optimize
the data space and converts the original tidal current time series into
more detailed multi-resolution subseries with homogeneous
characteristics. This alleviate the system identification burden by
using variable neural networks. Generally, prediction accuracy
decreases as the lead time increases, showing the existence of
time-varying dynamics of tidal currents. The scheme’s
computation speed is considerably fast because the variable
network’s learning scheme processes only a limited number of
samples in the SDW, comparing to the entire dataset in a batch
learning strategy. This merit also facilitates the practical
applications in real time of the proposed scheme.

The comparison validated the satisfactory overall performance
of the EMD-DWT-based neural model with respect to prediction
accuracy and processing speed. The design of the SDW enables fast
processing and adaptability to time-varying dynamics, while the
EMD-DWT transform ensures the accuracy and reliability of the
predictions. The hierarchical-decomposition-based sequential
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TABLE 1 Prediction results for longitudinal tidal current.

10.3389/fmars.2025.1668178

Schemes EMD-DWT
lead time RMSEp,. time/ RMSEp,. time/
(cm/s) step (s) (cm/s) step (s)

1 hour 8.8865 0.9789 0.01331 9.4130 09763 0.01319
6 hours 9.2483 0.9771 0.01522 11.656 09631 0.01427
12 hours 10.4601 0.9706 0.01700 12.866 0.9554 0.01128
24 hours 10.7163 0.9691 0.01971 13.1110 0.9532 0.01760
48 hours 11.6365 0.9638 1.00152 13.4795 0.9505 0.01943

TABLE 2 Prediction results for lateral tidal current.

Schemes EMD-DWT EMD
lead time RMSEp, time/ RMSEp,e time/
(cm/s) step (s) (cm/s) step (s)

1 hour 5.8491 0.9388 0.01837 6.5685 0.9202 0.01122
6 hours 7.0200 0.9091 0.02210 8.8865 0.9789 0.01760
12 hours 7.3738 0.8984 0.02214 9.6604 0.8185 0.01625
24 hours 9.4130 0.9763 0.01997 10.025 0.8027 0.10217
48 hours 10.71623 0.9691 0.01839 11.656 0.9631 0.01327

prediction scheme offers a potential solution for online
identification and prediction of a set of complex systems.

5 Conclusion

To accurately model the complex characteristics of tidal
currents, which are influenced by environmental disturbances, an
adaptive tidal current prediction scheme based on hierarchical
decomposition is proposed. This scheme ensembles hierarchical
multi-resolution decomposition techniques with a variable RBF
network. The coefficients of decomposition order and the model
input order of the neural prediction model are both autonomously
decided by the approaches of EMD composition and the Lipschitz
quotients algorithm, respectively. To alleviate the computational
burdens of identification of complex processes, the tidal current
time series is hierarchically decomposed into a set of IMFs, with the
highest-energy IMF1 being further decomposed using the DWT
decomposition. The achieved components from hierarchical
decomposition are identified by the variable RBF network. The
overall tidal current prediction is obtained by recombining the
predicted values of the IMFs from EMD, as well as the detail and
approximation components from DWT. Simulations of real-time
tidal current prediction were performed and the results validate the
viability and efficacy of the proposed prediction framework,
featured by its high precision and rapid computational efficiency.

Frontiers in Marine Science

The self-adaptive nature of the prediction framework coefficients
enhances its practical feasibility. By analyzing the potential physical
significance of different IMF or DWT components in relation to
coastal ocean dynamics would improve the transparency and
interpretability of the model outputs. However, the proposed
strategy is driven by the data in the SDW and is hard to capture
the long-term system variations. Our future research work will
focus on the insight of the interpretability of the hierarchically
decomposed components as well as the combination with
mechanism model of tidal current variations with long-term
dynamic tidal current features.
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