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Potential impacts of typhoon
tracks on storm surge and
typhoon wave in the Beibu
Gulf: a case study of Super
Typhoon Rammasun
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Frequent typhoons in the Beibu Gulf pose a significant threat to marine and
coastal infrastructure. To address this issue, we applied a fully integrated tide-
surge-wave model using the Holland typhoon model and Delft3D-FLOW-WAVE.
The model simulates storm surge and typhoon waves generated by Super
Typhoon Rammasun (2014). We generated five idealized typhoon tracks by
systematically shifting Rammasun'’s track to evaluate their potential impacts on
storm surge and waves. The results indicate that nearshore storm surges in the
Beibu Gulf exhibit a distinct rise-then-fall pattern, with the maximum surge
occurring on the right-hand side of the typhoon track. Surge magnitude
diminishes as the track shifts eastward. Significant wave heights undergo
marked spatial redistribution upon the typhoon’s entry into the Gulf,
transitioning from left- to right-biased asymmetry during passage. Coastal
ports in the Beibu Gulf and the eastern Leizhou Peninsula experience
pronounced positive surges, while the highest surge and wave intensities
occur along northeastern Hainan Island and both sides of the Qiongzhou
Strait. Although based on idealized tracks, this study offers critical insights for
optimizing coastal disaster mitigation against extreme typhoons in the region.
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1 Introduction

Coastal regions, especially shallow nearshore waters, experience
highly dynamic processes during typhoons. These dynamics are
driven by spatially heterogeneous factors, including bathymetry,
topography, shoreline geometry, and tidal currents (Keen and
Glenn, 1999; Yang et al,, 2015; Shen et al, 2017; Bacopoulos,
2019). During typhoon events, key physical mechanisms, such as
astronomical tide-surge interactions (Valle-Levinson et al., 2013;
Hsiao et al., 2019), wave-current coupling, and wave-current
feedback dynamics (Smith et al., 2013; Sun et al., 2018;
Hegermiller et al., 2019; Wu et al.,, 2025), govern the
spatiotemporal evolution of storm surges and the generation-
propagation-dissipation cycles of typhoon waves (Lin et al., 2021;
Yin et al., 2022; Ma et al., 2022).

In coastal shallows and estuarine zones, significant interactions
exist between astronomical tides and storm surges (Bilskie et al.,
20165 Spicer et al,, 2019; Gao et al., 2020, 2024). Regions like the
Taiwan Strait (Liu et al., 2016; Liu and Huang, 2019, 2020), Gulf of
Mexico (Bilskie et al., 2016; Vega et al., 2021), Bay of Bengal (Murty
etal., 1986; Pattanayak et al., 2016), and Australian coast experience
water level anomalies exceeding 1 m due to these interactions.
During typhoon landfall, local tidal phase and topographic features
modulate tide-surge coupling, exerting critical controls on surge
intensity (Masselink and van Heteren, 2014; Zhang et al., 2024).

The tide-surge interaction substantially modulates water levels
in nearshore shallow waters, primarily through phase-dependent
mechanisms: (a) positive surge components accelerate tidal
propagation, amplifying extreme water levels; (b) negative surge
components decelerate tidal advancement (Horsburgh and Wilson,
2007; Idier et al., 2012; Feng et al., 2019; Gao et al.,, 2021, 2023).
Storm surge dynamics are strongly influenced by astronomical
tides, with nonlinear tide-surge interactions governing surge
morphology, amplitude, spatial distribution, and duration. These
mechanisms must be explicitly incorporated in storm surge
numerical models (Wu et al., 2019, 2020).

Wave-current interactions constitute critical coastal processes,
predominantly occurring in nearshore shallow waters, particularly
within the surf zone. Region-specific bathymetry, topography, and
shoreline configurations determine the dominant modulation
mechanisms of these interactions. Wave-current coupling
manifests bidirectionally: (a) Waves influence currents through
Stokes drift, radiation stress, wave-induced surface stress
modification, and wave-enhanced bottom boundary layer stress
(Sheng and Liu, 2011; Chen et al, 2019; Wu et al., 2024); (b)
Currents modulate waves via Doppler shifting (altering wavelength/
steepness) and depth-induced breaking controlled by water levels
(Bolafos et al., 2014; Lin et al., 2021).

As extreme marine dynamical events, typhoons drive intense
wave-current interactions between storm surges and typhoon waves
under extreme wind forcing (Gong et al,, 2018; He et al., 2020; Li
et al, 2022). These interactions govern extreme wave heights and
storm water levels in affected regions and have been extensively
studied. Wave setup effects significantly modify peak surge
magnitudes (Joyce et al., 2018; Thomas et al,, 2019). Storm surges
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and typhoon waves exhibit regionally distinct characteristics
modulated by local bathymetry, shoreline geometry, and tidal
currents (Wu et al,, 2021). As direct products of typhoon forcing,
they also function as responses to external drivers including typhoon
track, translation speed, storm intensity, and sea surface elevation.
Typhoon genesis, evolution, and dissipation constitute inherently
complex natural phenomena. Under current global warming trends,
their tracks demonstrate heightened unpredictability while dynamic
elements intensify toward extremes. This necessitates urgent
investigation into mitigating future risks from storm surges and
typhoon waves under escalating extreme events, a focus of growing
scholarly attention.

Beyond tide-surge and wave-current interactions, local
bathymetry and shoreline geometry are recognized as critical
factors controlling the spatial distribution and magnitude of
storm surge (Mori et al, 2014; Liang et al, 2024). Studies in
various coastal regions have demonstrated that converging
embayments can funnel water, leading to significant surge
amplification. Similarly, shallow continental shelves can enhance
bottom friction and wind stress effects, further modifying surge
patterns (Isachsen et al, 2014; Sjur et al., 2025). The presence of
islands and capes can provide sheltering or focusing effects for
waves and surge. For instance, the specific concave-shaped coast of
Leizhou Peninsula has been shown to be particularly prone to
extreme surges due to the combined effects of wind direction and
topographic amplification.

The Beibu Gulf is characterized by its semi-enclosed nature,
intricate coastline, and the presence of Hainan Island and Leizhou
Peninsula, which create a complex geomorphic setting. While the
aforementioned studies underscore the importance of fixed
topographic features, the interaction between these features and
variable typhoon tracks in this region remains less quantified. Given
that the relative position of a typhoon’s center to a specific coastline
determines wind direction (onshore/offshore) and thus dominates
surge generation, it is hypothesized that the Gulfs response to
typhoons will be highly sensitive to track variations.

Therefore, this study aims to build upon the established
understanding of topographic controls by systematically
investigating how different typhoon tracks modulate storm surge
and wave patterns in this topographically complex region. We
utilize a coupled numerical model to not only capture the
essential dynamics of tide-surge-wave interactions but also to
isolate the effect of track displacement against the backdrop of the
Beibu Gulf's unique topography.

In conclusion, although conducting simulations of ocean and
coastal dynamic processes under the influence of typhoons has
deepened our understanding of the disaster processes caused by
storm surge and typhoon wave. However, as products of typhoon
activity, their dynamic characteristics are directly dominated on one
hand by uncontrollable factors such as the typhoon’s track, wind
pressure scale, and tidal phase at landfall, and indirectly influenced
on the other hand by local features such as water depth, topography,
and coastline. This leads to extremely complex spatiotemporal
variations worldwide, and the distribution characteristics of storm
surge and typhoon wave in different regions under the influence of
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different typhoons are not entirely consistent. Given the strategic
significance of the Beibu Gulf region, coupled with a relative lack of
research on extreme storm processes in the Beibu Gulf. Therefore,
the main purpose of this paper is to utilize a coupled tide-surge-
wave model to assess the potential impacts of extreme typhoon
track on storm surge and typhoon wave in the Beibu Gulf, especially
in coastal areas. While typhoon incident angle and translation speed
also critically influence surge and wave patterns, this study first
focuses on the fundamental role of track position to establish a
baseline understanding of spatial vulnerabilities in the Beibu Gulf.

The remainder of this paper is organized as follows. Section 2
introduces the research data and the methods employed. Section 3
describes the model validation results based on observational data.
Section 4 first analyzes the storm surge and typhoon wave processes
in the Beibu Gulf under the influence of Super Typhoon Rammsun,
further discussing the response characteristics of storm surge and
typhoon wave in the Beibu Gulf and adjacent coastal areas to
different typhoon tracks. Section 5 summarizes the paper and
presents the conclusions.

2 Study area and typhoon conditions
2.1 Study area

The Beibu Gulf, situated at the northwest end of the South
China Sea, is one of the world crucial international regional
economic cooperation zones. The Beibu Gulf is a typical semi-
enclosed shallow-water bay, with an average water depth of
approximately 42 meters. It borders the Guangxi Zhuang
Autonomous Region of China in the north, faces the Leizhou
Peninsula and Hainan Island of China in the east, and is adjacent
to Vietnam in the west. Notably, the the strategy of promote
economy cooperation around Beibu Gulf have been approved by
the national leaders from these two countries. The bay covers
approximately 105°39'E~110°02'E and 18°08'N~21°53'N, with a
total area of about 130,000 km> The coastline is winding and
convoluted, showing a total length of ~ 1600 km.

The tidal characteristics in the Beibu Gulf are primarily
classified as irregular diurnal tide. The average tidal range along
the coast ranges from 2.3m to 2.6m. Nearshore wave in the Gulf is
composed of wind waves, swell waves, and mixed waves. Wind
waves have the highest annual frequency of occurrence at 100%,
followed by swell waves at an annual frequency of 19.0%, and mixed
waves with an annual frequency of 18.1%. The average significant
wave height along the coast ranges from 0.3m to 0.6m, with an
average wave period of 2.7s. Typhoons are the major natural
meteorological disasters in the Beibu Gulf, and they exhibit
noticeable seasonal patterns in their impact on the coast.

According to statistics, an average of 1.5 typhoons enter the
Beibu Gulf each year. Among them, Typhoon Rammasun (2014)
made landfall with a maximum central wind force of 17 levels and a
central pressure of 910hPa. The storm surge and typhoon wave it
triggered caused varying degrees of disasters in different areas of the
Beibu Gulf. In recent years, due to factors such as climate change
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and rising sea level, typhoon events in global coastal areas have
shown an increasing frequency and greater intensity''**!. Therefore,
exploring the potential impacts under the influence of extreme
typhoon events is of significant importance for coastal disaster
prevention and mitigation efforts in the Beibu Gulf.

2.2 Super Typhoon Rammasun (2014)

This study focuses on the Super Typhoon Rammasun, which
was acknowledged as one of the strongest typhoons that has landed
the Beibu Gulf in the past 50 years (Figure 1). It formed in the
northwest Pacific Ocean on July 9, 2014, and made landfall at a
strong typhoon level at 07:00 on July 19, 2014, when the maximum
wind force near the center reached level 15 and the central
minimum pressure was 950 hPa. Specifically, it exhibits one of
the most widespread and destructive typhoon tracks in the Beibu
Gulf, thus providing valuable information for studying extreme
typhoon events in this region.

3 Model setup and validation

3.1 Calculation of atmospheric pressures
and surface winds

This study employs the Holland typhoon model (Holland, 2008,
2010), which is widely used in storm surge and typhoon wave
simulation, to generate the pressure/wind field of Typhoon
Rammasun. The governing equation for the pressure field is as
follows:

v )b

P =P+ AP (1)

where P; represents the surface pressure at a radius (distance
away from the typhoon center) of r, P, represents the central
pressure of the typhoon, AP, = P, — P, represents the pressure
drop from a specified external pressure P, to the central pressure
P, 1, represents the maximum wind speed radius of the typhoon,
and b represents a scale parameter.The governing equation for the
wind field is as follows:

b X
100b,AP, (“2) ™ }

ek

Vms{ (fv:,s)bse[l_(%)bs} }x

where V; represents the surface wind speed at radius r, the

Vs = )

subscript s denotes the surface value (nominal height of 10 m), b,
represents the surface scale parameter of the typhoon, and x
represents a profile shape parameter of the typhoon (Equations 1, 2).

Data on the track, central pressure, maximum wind speed
radius, and sustained maximum wind speed of Typhoon
Rammasun at a 6-hour interval are collected from the Northwest
Pacific Typhoon Best Track Archive of the Joint Typhoon Warning
Center, to calculate the spatiotemporally varying atmospheric
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FIGURE 1
Study area of the Beibu Gulf, the track of Typhoon Rammasun (2014) and the location of validation stations.
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and is widely used in the prediction and hindcast of storm events in
estuarine, coastal, and marine environments. In this study, the
FLOW module and the WAVE module are used to describe the
storm surge and wave process during Typhoon Rammasun.

The FLOW module is based on the shallow water equations and
the Boussinesq assumption, solving the Navier-Stokes transport
equations under the inclined pressure using finite difference
method. It can be used to simulate the hydrodynamic processes
of oceans and coastal areas in multi-dimensional (2DH or 3D)
space. The governing equations are as follows. For the mass
conservation equation:

3_§+3((d+C)U)+8((d+C)V) - Q

ot ox ay 3)

where { represents the total water depth, d represents the net
water depth from the reference plane, U and V respectively denote
the velocity components in the x and y directions, and Q represents
the mass intensity per unit area. For the momentum conservation
equation:
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where f represents the Coriolis force parameter, v;, represents
the dynamic horizontal eddy viscosity, p, represents the reference
density, p represents the irregular density, 7., and 7, respectively
denote the wind pressure components at the sea surface in the x and
y directions, and 7, and 7, respectively denote the bottom shear
stress components in the x and ydirections (Equations 3-5).

An integrally-coupled tide-surge-wave model is constructed
based on the Holland typhoon model and Delft3D-FLOW-
WAVE model. The interaction process of the coupled model is
illustrated in Figure 2. Specifically, the Holland typhoon model
provides meteorological forcing at the sea surface during the
passage of typhoons for the Delft3D-FLOW-WAVE model. The
FLOW and WAVE modules are bidirectionally coupled in real-
time. The FLOW module computes the spatiotemporal variations of
water level and flow field under the impacts of typhoons, and
transmits such information such to the WAVE module.
Simultaneously, the WAVE module considers the effects of wind
stress and radiation stress on storm surge, providing feedback on
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FIGURE 2

Conceptual diagram depicting variables exchanges in the coupled tide-surge-wave model.

wave radiation stress and other information to the FLOW module.
This interacticve process achieves the coupling between
astronomical tide, storm surge, and typhoon wave.

3.3 Computational domain and parameter
settings

The setting of the computational domain and mesh resolution is
crucial for the simulation of storm surge and typhoon wave.
Considering the impact of disturbances at the offshore boundaries
and the necessity to finely depict the dynamic process in nearshore,a
double-layer nested mesh system was ultilazed (see Figure 3) to
respectively construct models for the whole South China Sea (SCS)
and the adjacent seas of the Beibu Gulf (BBG). The open-boundary
water level of the SCS model was obtained through the global tidal
model TPXO, and its modelled time-varying water level further
provides information for the open boundaries of the BBG model.
The coastline data within the computational domain are obtained
from the Globally Self-consistent, Hierarchical, High-resolution
Shoorelines (GSHHS) database. Nearshore topographic data are
provided by the Electronic Navigational Charts from the China
Navy Hydrographic Office (CNHO), while topographic data in
deeper regions are sourced from the 15” resolution General
Bathymetric Chart of the Oceans(GEBCO)dataset. For more
information on nesting meshes and model parameters, see Table 1.

3.4 Model validation

Three widely used error statistic indicators (Root Mean Square
Error, Bias and Skill Score) are employed to in the validation of the
tide-surge-wave coupled model. Root Mean Square Error (RMSE) is
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defined as:

RMSE = | /ii(Mn -G, (6)
Nn:l

Bias is defined as:

. 1 X
Bias = 5 > (M, -C,) (7)

n=1

Skill Score is defined as:

25:1 (Mn - Cn)2

Skill =1 - — — —
2n:1<|Mn_Mn’ +|Cn_Mn| )

(8)

Where N represents the observed value, C, represents the actual
measured value, M, represents the modeled value, C, represents the
average of observed value C,, and M, represents the average of
modeled value M,, (Equations 6-8).

Since the accurate simulation of astronomical tide is a
prerequisite for typhoon process hindcast, the astronomical tide
process was firstly verified based a simulation (without considering
meteorological forcing) running between June 1, 2014 and August
1, 2014. The modelling results exhibit a good agreement with the
observational data at stations S1, S2, S3, and S4, indicating that the
model could accurately capture the astronomical tide
process (Figure 4).

A time range from July 10, 2014 to July 20, 2014 (UTC) was
selected in the simulation of storm surge and typhoon wave related
to Typhoon Rammasun, as it encompasses the whole lifespan (e.g.,
formation, intensification, landfall and dissipation) of the typhoon.
The observational data from stations S1, S2, S5, S6, S7, and S8 were
used to validate the simulated storm surge. It is found that
(Figure 5) that the model accurately captures the extremum of
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e simulation of typhoon processes.

initial excitation phase, principal oscillation phase, and residual
oscillation phase during the storm surge.

Furthermore, this study selected observational data of
significant wave heights from stations S9 and S10 to validate the
typhoon wave simulations. As shown in Figure 6, the simulated

TABLE 1 Parameters of nesting meshes and other parameters.

Computational mesh
region
node

resolution

SCS BBG
105.5°E~122.9°E 105.6°E~114.6°E
8.9°N~28.5°N 17.6°N~22.7°N
687x671 986x1172
6.5km in the 300m in the

offshore are nearshore area

roughness formula Manning
manning coefficient 0.020 0.022
bottom friction type Jonswap
bottom friction coefficient 0.067m’s
whitecapping Komen

astronomical tide running time

storm surge and typhoon wave
running time

2014-06-01 00:00~2014-08-01 00:00(UTC)

2014-07-10 00:00~2014-07-20 00:00(UTC)

time step
Smoothing time

wave-current coupling time step
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60s

3600s

3600s

114°E

115°E 120°E
Longitude

peak value of significant wave heights align well with the
observational data, reflecting the trend of wave height changes.

4 Results and discussion

4.1 Storm surges during Super Typhoon
Rammasun

The storm surge in the Beibu Gulf showed dynamic
spatiotemporal distributions during the passage of Typhoon
Rammasun. Before the landfall of Rammasun, offshore winds tend
to generate negative storm surges (up to -3 m) northward the
typhoon center; however, a localized positive surge is generally
developed in the south or west under the impacts of onshore winds,
with the high surge center distributed along the coast of the Leizhou
Peninsula (Figures 7A-C). As Rammasun made landfall, large scale
coastal areas began to experience strong positive surges, except for
the ports close to the typhoon low-pressure center (Figure 7D).
Particularly, the positive surges at the head of the Tieshan Port
reached 3m, due to the trumpet-shaped coastal morphology. After
the dissipation of Rammasun, the widespread positive surge
remained due to the residual winds (Figure 7F). At this time, the
maximum positive surge of > 2m primarily occurred within the
Qinzhou Port, characterized by a gourd-shaped coastal morphology.

The storm surge process is governed by interactions between
wind forcing and coastal topography. As noted by Heidarzadeh
et al. (2023) onshore/offshore winds during typhoons favor the
development of positive/negative storm surge, tending to trigger
asymmetry surge distributions around the typhoon center. Thus,
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FIGURE 4

Comparison of simulated and observed astronomical tide level time series for model calibration with Typhoon Rammasun (2014). .

typhoons do not necessarily cause increased water level, just as the
case before typhoon landfall. Besides, the surge distribution is
squeezed by coastal topography, which amplify regional storm
surge and induces a larger absolute value of the positive surges.
The amplification effects of shoreline convergence and water depth
reduction on storm surges or tidal waves, as well as their differences,
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are of paramount importance in ocean engineering research. As
shown in our modelling, maximum surge occurs in the
Tieshan Port and Qinzhou Port, which are characterized by the
most convergent coastline (Figure 7). Our study further indicates
that the maximum surge overall follows the typhoon track along
the coast of the bay, with a presence of lag of four hours.
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FIGURE 5
Comparison of simulated and observed storm surge level time series for model calibration with Typhoon Rammasun (1409).

Furthermore, divergences exist between the location of largest 4 2 Typhoon waves during Super Typhoon
surge and of typhoon land fall for the whole bay, and between = Rammasun

the timing of largest surge and shortest distance to typhoon center
for a specific location. This shed light on coastal defense A large-scale rotating wave field is formed in the Beibu Gulf during
against typhoons. Typhoon Rammasun. Notably, a region of a diameter > 100 km and
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Comparison of simulated and observed significant wave height time series for model calibration with Typhoon Rammasun (1409).
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significant wave height > 7m gathered leftward the typhoon track, and
the waves rightward the track was obviously weaker (Figure 8D).
The region of strong waves continuously locates around the typhoon
center, and waves in the coastal area stay weaker than those in deeper
regions, despite the landfall of the typhoon. A close positive correlation
is found between the wave height series and the wind speed series, and
their distribution remains similar.

Our modelling results are different from previous studies, which
found that typhoons in the Northern Hemisphere generally
generate strong waves rightward their tracks, owing to a larger
wind area and wind time on the right front side of the typhoon
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center. To explore the cause of this phenomenon, the process of
Typhoon Rammasun was analyzed from a larger spatiotemporal
scale (Figure 9). It is found that strong wave is mainly concentrated
on the right side of the typhoon track before the typhoon enters the
Beibu Gulf, and a transformation from a right-biased distribution to
a left-biased distribution occurs thereafter (Figure 9). Presumably,
as the presence of Hainan Island and Leizhou Peninsula attenuate
the winds on the sea surface, and the shallow water depth of the bay
significantly dissipate the regional waves. Meanwhile, the wind
direction and wave direction in the left rear side area of the
typhoon low-pressure center show a cross-directionality,
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indicating that the typhoon wave in this area can obtain continuous
wind energy input and achieve sufficient development and growth
(Figure 10), which may also be one of the reasons for the left-biased
distribution of the waves.

The spatiotemporal distribution of typhoon waves also suffers the
impacts from the interactions of wind action and coastal topography,
while its response is different from that of storm surge. Firstly, the lag

between wave field and typhoon movement is limited, given the
universe distribution of strong waves around the typhoon center.
Besides, the modulation from topography results in weak waves in
the coastal area, a regime opposite to the storm surge. Thus, it is worth
noting how does the combined surge (storm surge + significant wave
height) distribute in the bay over the typhoon. Figure 11 illustrates the
superimposed water level heights of storm surge plus significant wave
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FIGURE 10

Simulated wind field (black arrows), wave field (brown arrows), and current field (white arrows) after Typhoon Rammasun (2014) entered the BBG.
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Maps showing storm surge plus significant wave height in Beibu Gulf from July 18 to 19, 2014: (A) 2014-07-18 15:00 UTC, (B) 2014-07-18 17:00
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height during Typhoon Rammasun, and it is clear that during the
typhoon passage, the water level offshore the Beibu Gulf was determined
by wave, and the water level in the nearshore was determined by surge.

4.3 Responses of storm surge under
different typhoon track scenarios

Knowledge on future storm surge and typhoon wave in
response to climate change is of significance for the design of
coastal defense and construction of engineering like ports and
channels. To investigate the potential impacts of typhoon tracks,
this study employs a typical typhoon track construction method to
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re-simulate the typhoon process in the Beibu Bay. Five additional
typhoon scenarios (namely T1 to T5 from west to east) have been
generated, with the duration and intensity of Rammasun
unchanged but the track shifted (Figure 12). The five parallel
tracks (T1-T5) were designed based on historical typhoon
climatology in the Beibu Gulf to cover critical landfall scenarios
from west to east, ensuring representativeness of spatial surge and
wave response patterns. The spatial distribution of maximum
positive surges, maximum negative surges, and significant wave
heights during each typhoon scenario were then analyzed.

The positive surges exhibit a clear right-biasd spatial
distribution, despite the varying magnitudes of surges related to
the five different tracks. Besides, an obvious decrease in the positive
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surges has been detected as the typhoons passed through the
Qiongzhou Strait, and the surge maxima are located in the
northeastern waters of Hainan Island, the eastern waters of
Leizhou Peninsula, and the coastal ports of the Beibu Gulf. The
affected area of positive surges in the Beibu Gulf gradually decreases
from offshore to nearshore as typhoon tracks shift from west to east.

The intensity of positive surge along the coast of the Beibu Gulf
is closely related to the typhoontrack. As the typhoon moves from
west to east, the intensity of positive surge decreases along the
western coast and increases along the eastern coast of the Beibu
Gulf. Among them, the typhoons of a westward track (scenarios T1
and T2; Figures 13A, B) tended to induce larger positive surges of
nearly 2.5 m along the western coast of the Beibu Gulf and surges of
3 m along the northeastern coast of Hainan Island and both sides of
the Qiongzhou Strait, and those of an eastward (scenarios T3, T4,
and T5; Figures 13D-F) could cause larger surges of 3 m along the
eastern coast of the Beibu Gulf. The eastern coast of Leizhou
Peninsula, of a special concave-shaped coastal morphology,
exhibited an extremely large surge of up to 4.5 m under
scenarioT3, but just showed surge of ~ 1 meter under scenario T5.

Again, the response of storm surge to typhoon tracks is spatially
different, similar to our findings based on the real case of
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Rammasun (see Section 4.1). These diverse response modes could
be explained by the relative position between the typhoon center
and a specific location. Since onshore winds, which locate at the
right-hand side of the typhoon center, favors the development of
the storm surge, Larger positive surges in the western coast of the
Beibu Gulf during the impacts of typhoons T1, T2 and R (Figures
14A-C), and in the eastern coast during the impacts of typhoons
T3, T4 and T5 (Figures 14D-F), which is due to the fact that this
region is immediately to the right of the typhoons track, the influx
of seawater into the Gulf under the action of the onshore winds
results in a strong rise of the water level in this region, at the same
time the intensity of its positive surges varies slightly due to the
differences in the position of the typhoon wind circles of the
different tracks of the typhoon in which this region is situated.
This process is further modulated by the coastal topography of the
bay. The elevation of nearshore water level caused by storm surge is
a key triggering factor for inland flood disasters during extreme
typhoon, often resulting in the flooding of important coastal
infrastructure such as houses and factories, as well as land
salinization. Therefore, in the future coastal protection of the
Beibu Gulf, it should be noted that the storm surge risk level in
the typhoon landfall area is not necessarily the highest, and the
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Maps showing spatial distribution of maximum positive surges in the northern South China Sea during typhoons with different tracks. (A) T1, (B) T2,

small bay to the east of the typhoon landfall point is often likely to
be extremely destructive due to its complex topographic features.
During extreme typhoons, the offshore wind effect causes a
rapid drop in water level in nearshore areas, leading to extensive
exposure of beaches and other phenomena. This has a certain
impact on coastal production activities and may result in
consequences such as the grounding of nearshore vessels and
difficulties in water intake for important units like coastal power
plants. Figure 15 presents the calculated results of the maximum
value of negative surges caused by typhoons with different tracks in
the northern part of the South China Sea. During the typhoon
passage, the negative surges in the offshore areas outside the Beibu

Frontiers in Marine Science

Gulf is relatively small, with most regions experiencing negative
surges of less than 1 meter. The negative surges within the Beibu
Gulf are mainly concentrated in coastal areas, especially in
the nearshore areas on the northeast side. This is related to the
orientation of the coastline in this region relative to the
typhoon track.

The maximum value of negative surges caused by typhoons in
the northern coastal areas of the South China Sea with different
tracks is shown in Figure 16. Overall, typhoons caused serious
negative surges along the coast of the Beibu GulfIn comparison
with positive surges, the distribution characteristics of negative
surges along the coast of the Beibu Gulf do not exhibit clear

frontiersin.org
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Maps showing spatial distribution of maximum positive surges along the northern coast of the South China Sea during typhoons with different tracks.

patterns relative to the typhoon track. The negative surges are
greatest along the northeastern coast of the Beibu Gulf, while it is
smaller along the western coast. Typhoon T2 was the most severe
typhoon causing negative surges along the coast of the Beibu Gulf.
During its passage, it generally resulted in negative surges of over -1
meter along the Beibu Gulf coast, with negative surges reaching up
to approximately -5 meters along the northeastern coast.

The impacts of typhoon wave on marine and coastal
engineering cannot be ignored. The combination of storm surge
and higher wave from typhoon can severely exacerbate the risk

Frontiers in Marine Science

of coastal flooding. The Study finds significant increase in
global typhoon-induced wave height extremes in last 44 years,
understanding the distribution of extreme typhoon wave in the
Beibu Gulf and its nearshore areas is crucial. During the typhoon
passage, strong waves are mainly concentrated around the typhoon
track. As the typhoons passed through the Qiongzhou Strait, the
significant wave heights experienced a sharp decrease and a
transformation from being right-biased distribution to left-biased
distribution. Specifically, the maximum significant wave heights
gradually decrease as the typhoon track shifts eastward.

15 frontiersin.org
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Maps showing spatial distribution of maximum negative surges in the northern South China Sea during typhoons with different tracks. (A) T1, (B) T2,
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Along with the propagation towards the nearshore areas, the
waves undergo attenuation due to geographical features such as
topography, water depth, and coastline morphology. The eastern
coast of Hainan Island and both sides of the Qiongzhou Strait are
frequent areas of strong wave, and the nearshore significant wave
heights is closely related to the typhoon track. Typhoons T1 and T2,
crossing diagonally through the interior of the Qiongzhou Strait,
caused the maximum significant wave heights in that region,
reaching close to 9m. As the typhoon track shifted eastward, the
maximum significant wave heights gradually decreased to around
5m under the influence of Typhoon T5. Response of the typhoon
wave to typhoon tracks is similar to that of storm surge, as was

Frontiers in Marine Science

attenuation is inversely proportional to water depth. Along the
coasts of the Beibu Gulf, the wave heights within the ports are
larger, with maximum value concentrated at the port apex. On the
western side, the maximum significant wave heights at the apex of
Qinzhou Port reaches around 4m under the influence of Typhoon
T1, while on the eastern side, the maximum significant wave heights
at the apex of Tieshan Port reaches around 3.5m under the
influence of Typhoon T4. Additionally, due to its location
surrounded by the sea on all sides and the relatively greater
nearshore water depth, along the coast of Weizhou Island, the
maximum significant wave heights consistently remain around 4 m
under the influence of typhoons with various tracks (Figures 17, 18).
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FIGURE 16
Maps showing spatial distribution of maximum negative surges along the northern coast of the South China Sea during typhoons with different
tracks. (A) T1, (B) T2, (C) RAMMASUN, (D) T3, (E) T4, (F) T5.

The Hainan Island and Qiongzhou Strait provide important  Strait, which bridges these two systems. Thus, typhoon process in
sheltering effects against both storm surge and typhoon wave for the ~ the Bay functions in a similar way to enclosed bay. Even so, its
Beibu Gulf, shown by the obviously larger positive surge and wave  response to typhoon characteristics at different locations is highly
heights eastward the Leizhou Peninsula. However, storm surge and  variant, owing to the complex coastline configuration and regional
typhoon wave during typhoon event can still be significant and  topography. Overall, typhoons passing through the west end of the
require precautions. The typhoon process in the Beibu Gulf  Qiongzhou Strait likely have a more significant impacts on surge
experiences limited impacts from that occurring eastward the  and wave of the bay. This characteristic may provide certain insights
Leizhou Peninsula, given the small magnitude of Qiongzhou  for typhoon prevention in the Beibu Gulf.
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FIGURE 17

(B) T2, (C) RAMMASUN, (D) T3, (E) T4, (F) T5.

Maps showing spatial distribution of maximum significant wave heights in the northern South China Sea during typhoons with different tracks. (A) T1,
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5 Conclusions

Based on the Holland typhoon model and the Delft3D-FLOW-
WAVE model, a nested tide-surge-wave coupled model was applied
for the Beibu Gulf. The numerical simulations were conducted for
the 2014 Super Typhoon Rammasun, and the model was validated
using obversional data. Building upon the well-validated model,
more typhoon events were generated using a typical typhoon track
scenario construction method combined with information from
Typhoon Rammasun. The typhoon incident angle and translation
speed critically influence surge and wave patterns, this study first
focuses on the fundamental role of track position to establish a
baseline understanding of spatial vulnerabilities in the Beibu Gulf.
Based on the simulation results of storm surge and typhoon wave
during each typhoon passage, the maximum positive surges,

Frontiers in Marine Science

maximum negative surges, and maximum significant wave
heights in the offshore and nearshore areas under different
typhoon tracks were statistically analyzed. The potential impacts
of extreme typhoon tracks on storm surge and typhoon wave in
the Beibu Gulf was investigated, leading to the following
main conclusions.

The storm surge process in the nearshore areas of the Beibu
Gulf exhibits a characteristic of first negative surges followed by
positive surges. The intensity of positive surges showing a clear
spatial right-biased feature, and the affected area it as the typhoon
track shifts eastward. Influenced by local factors such as the depth
and coastal morphology of the Qiongzhou Strait, obvious changes
occur in the distribution characteristics of the wave field before and
after a typhoon enters the Northern Gulf, with the significant wave
heights of the typhoon wave exhibiting a spatial trend transitioning
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FIGURE 18
Maps showing spatial distribution of maximum significant wave heights along the northern coast of the South China Sea during typhoons with
different tracks. (A) T1, (B) T2, (C) RAMMASUN, (D) T3, (E) T4, (F) T5.

from a right-biased spatial distribution to a left-biased spatial
distribution. Storm surge is highly sensitive to complex micro-
topography. The winding and tortuous characteristics of the
coastline result in serious positive surges within the ports of the
Beibu Gulf, and the eastern coast of Leizhou Peninsula is a severely
affected area by positive surges. The intensity of positive surges and
significant wave heights is greater along the northeastern coast of
Hainan Island and the shores of the Qiongzhou Strait.

In conclusion, the tide-surge-wave coupled model developed in
this study demonstrates high accuracy. By conducting simulations of
storm surge and typhoon wave under different typhoon tracks, the
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research findings can serve as a reference for the construction of
marine engineering and the disaster prevention and mitigation efforts
in the Beibu Gulf region. However, the typhoon tracks designed in
this study are overly idealized, while in actual scenarios, typhoon
tracks are highly complex and variable. Therefore, in future studies
on the potential impacts of storm surge and typhoon wave under
different typhoon tracks, emphasis should be placed on constructing
typhoon tracks more realistically. While the idealized parallel tracks
effectively isolate the role of lateral displacement, future work will
incorporate additional parameters such as incident angle and
translation speed to enhance real-world applicability.
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