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Advancing mussel-based
monitoring: integrating litter
and harmful algal bloom data
into a multi-stressor assessment
of England and Wales
Alexandra R. McGoran1*, Shamina Page2, Adam Lewis2,
Adil Bakir1, Jon Barry1, Karl Dean2 and Josie Russell 1

1Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, Suffolk, United Kingdom,
2Centre for Environment, Fisheries and Aquaculture Science, Weymouth, United Kingdom
Effective monitoring is essential for decisionmakers tomake informed choices to

address pollution issues, including marine litter and microplastics which are

subjects of increasing interest. Monitoring biota is essential for estimating the

bioavailable fraction of litter in the environment and is a step towards

understanding the risks associated with microplastics. The present study

assessed the suitability of mussels as a sentinel species in a multi-stressor

context. Mussels are already used as sentinel species for many contaminants,

including harmful algal blooms, but to date there is no agreed sentinel species

targeting microplastics. Mussels from seven locations on the English and Welsh

coast were monitored for both microplastics and harmful algal biotoxins.

Fluorescent and non-fluorescent microplastics were quantified. Over half (53%)

of mussels contained microplastics. No geographical accumulation zones in

microplastic abundance were identified at the sample locations with a mean

contamination of 1.33 ± 3.04 (SD) items per individual (95% CI = 0.88–1.79) and

0.33 ± 0.71 items per g (wet weight) (95% CI = 0.23–0.44). Five groups of harmful

algal toxins were screened within the study animals, with no quantifiable levels of

any being present at the time of sampling for this study. However, four of the six

sites were exposed to the Diarrhetic shellfish toxins earlier in the year,

representing a prior exposure to harmful algal toxins. Research has shown that

microplastic exposure alone does not always negatively impact organisms. But

there is mounting evidence that microplastics may increase sensitivity and

susceptibility to other stressors in the environment. Given the presence of both

microplastics and algal neurotoxins in oceans around the world and the concern

for multi-stressor impacts on the marine environment, it is proposed that multi-

factor monitoring could provide insight into the true risk of microplastics as a

contaminant vector and antagonistic pollutant. This evidence is urgently needed
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to support governments globally in creating mitigation strategies and monitoring

the success of these interventions. The present study finds that mussels are a

suitable sentinel species for this use, but ongoing research is needed to

determine special and temporal variations.
KEYWORDS

microplastics, Mytilus edulis, mussels, sentinel species, plastic pollution, harmful algal
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1 Introduction

Due to its mass production, transportation and disposal, plastic

pollution has become a significant global issue. Demand for plastic

has increased annually with 413.8 million metric tonnes produced

in 2023 (PlasticsEurope, 2024). Large plastic fragments break up in

the environment to make small microplastics (Andrady, 2022; Sipe

et al., 2022). These are defined as plastic items between 1 mm and

5 mm (GESAMP, 2019). Primary microplastics, those

manufactured at smaller than 5 mm rather than fragmented from

larger items, can also enter the environment directly (Van Wesel

et al., 2016; Wang et al., 2019). The term ‘microlitter’ refers to all

anthropogenic materials including plastic. Recently developed

guidance from the regional seas convention OSPAR (OSPAR

MicroPlastics Expert Group (MPEG), 2024), however, includes

semi-synthetic cellulosic material as a microplastic. The present

study, therefore, refers to all items collected as microplastics.

Microplastics are more widely bioavailable than larger items and

have been ingested by entire food webs (McGoran, 2023) from

plankton (Desforges et al., 2015; Zheng et al., 2020) to cetaceans

(Besseling et al., 2015; Moore et al., 2020). Once ingested,

microplastics have the potential to adversely affect the host

organism (Khalid et al., 2021; Castro et al., 2022) sometimes

altering gut physiology, immune function, growth and more

(Osman et al., 2023). Effects on immune function and metabolism

have been observed in mussels when exposed to microplastics

smaller than 250 mm (Nardi et al., 2024). A review by Xu et al.

(2024) also concluded that exposure to small microplastics (<400

mm) negatively impacted bivalve mollusks including mussels.

Mussels have been shown to be pathways for the entry of

microplastics to humans through the food chain with some

evidence of impacts in humans, though more evidence is needed

on this topic (Danopoulos et al., 2022; Walker et al., 2022). Models

have also predicted that harmful pollutants can leach from

microplastics into the human digestive system (Peters et al.,

2022). However, it is not definitive that microplastics cause harm

with many studies observing minimal or no negative impacts of

microplastic exposure. Indeed, this has been observed in studies of

suspension feeding mollusks (Hamm and Lenz, 2021; Opitz et al.,

2021; Joyce and Falkenberg, 2022). It is predicted that in the next 70

to 100 years there will be wide-scale environmental harm as a result
02
of microplastic abundance (Thompson et al., 2024). As such it is

essential to develop a sentinel species to gather baseline data prior to

widescale negative effects, even if current environmental levels are

not sufficient to elicit a response from biota.

Despite their abundance, persistence and potential risk to biota

and human health, there is no agreed sentinel species targeted at

microplastics monitoring (Matiddi et al., 2021; Ghosh et al., 2023).

Whilst sentinel species do not inherently infer risk, once thresholds

are determined, monitoring levels of ingestion is important to track

changes in the bioavailable fraction of microplastics in the

environment. In the meantime, monitoring data can feed into

environmentally relevant concentrations for the necessary

ecotoxicological tests. But harmonized approaches are needed to

ensure that regional and international data can be compared. In

March 2022, UN member states agreed to forge the first

international legally binding framework to end plastic pollution.

Whilst talks eventually failed due to geopolitical complexities and

economic challenges, it highlighted a global demand for improved

mitigation of marine litter. Therefore, at this pivotal time,

monitoring programs are needed to inform governments and

decision making for future frameworks. The latest assessments on

Good Environmental Status (GES) for the UKMarine Strategy (part

one) show that the UK has not met GES for marine litter which

includes microplastics. It also highlights the need to continue to

build the evidence base for harm that marine litter causes on

ecosystems (Defra, 2024). OSPAR uses two sentinel species:

fulmars (Van Franeker, 2019) and turtles (Galgani et al., 2022)

which capture microplastics larger than 1 mm but are unable to

quantify the smaller fraction of microplastics, which are typically

more abundant (Lindeque et al., 2020) and may be able to

translocate to other tissues and organs, including the circulatory

system, organs, placenta and lungs once ingested (Browne et al.,

2008; Cattaneo et al., 2023; Yang et al., 2020; Zeytin et al., 2020; Li

et al., 2021; McIlwraith et al., 2021). These indicators were selected

to quantify the abundance of mesoplastics at the ocean surface and

not to monitor microplastic abundance. More suitable species may

be available for this purpose.

Mollusks, especially mussels, have often been proposed as a

potential sentinel species for microplastics (Bråte et al., 2018; Li

et al., 2019; Gerigny et al., 2023; Wu et al., 2024). Mussels, as a

suspension feeder, are able to ingest particles between 2 and 500 mm
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(Rosa et al., 2018), retaining them for just a few days (Ward and

Kach, 2009; Catarino et al., 2017). Several species exist with large

populations and wide geographical spreads (e.g.,Mytilus edulis, blue

mussel; Tyler-Walters, 2008). Additionally, mussels are sedentary,

easy to sample from the shore and are of economic importance.

Through their use as sentinel species for chemical pollutants (e.g.,

ROCCH, OSPAR, CEMP), mussels are a strong contender for a

microplastics sentinel species. Whilst not a perfect sentinel for

microplastics (Ward et al., 2019; Mladinich et al., 2022; Shumway

et al., 2023), microplastic assessments have recently been added to

existing monitoring programs with mussels (Farrington et al.,

2016). The Mussel Watch program has been a long-standing

init iat ive by the National Oceanic and Atmospheric

Administration (NOAA) to monitor chemical contaminants and

more recently microplastics in coastal waterways and Great Lakes

(NCCOS, 2020). Following NOAA’s initiative, a case study on the

suitability of a mussel watch program for the Mediterranean Sea

was carried out using Mytilus galloprovincialis (Provenza

et al., 2022).

Despite several studies investigating microplastic ingestion by

mussels (Van Cauwenberghe et al., 2015; Li et al., 2016, 2018;

Catarino et al., 2017, 2018; Lusher et al., 2017; Digka et al., 2018; Qu

et al., 2018; Reguera et al., 2019), a lack of harmonized and

standardized methods limits comparisons (Li et al., 2021) with a

need for higher study design and quality requirements (Shumway

et al., 2023). Shumway et al. (2023) highlighted that a rapid increase

in publications lacking the necessary quality and contamination

controls lead to misinformation and incorrect assumptions around

bivalve suitability as a sentinel species. Thus, more work is needed

to refine analysis and monitoring of microplastics in mussels.

Microplastics can act as a vector of chemical contaminants and

biological agents (Tumwesigye et al., 2023) and thus antagonistic

effects of their combined presence with other contaminants may be

observed. Current monitoring focuses on individual contaminant

assessments, siloing analyses and overlooking these multi-stressor

interactions. If mussels were proposed as a microplastic sentinel

they would align with existing monitoring programs to support

these comparisons, for example biotoxins from harmful algal

blooms. This contaminant group comprises several distinct

classes of toxins, each exhibiting different properties and often

containing multiple analogues of a parent compound (Van Dolah,

2000). Many of these microalgal produced toxins can be
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accumulated in filter feeding bivalve mollusks, such as mussels.

These accumulated marine algal biotoxins are known to negatively

affect the health of higher consumers of mussels, including humans

(Grattan et al., 2016). Consequently, a robust monitoring program

exists for classified shellfish growing areas around the UK coast. The

monitoring program is for the presence of the harmful algal groups

known to produce the toxins in shellfish growing waters, as well as

for the presence of the toxins within the shellfish. The frequency of

toxin monitoring undertaken at each site is dependent on a risk

assessment, with specified frequencies ranging from monthly

sampling through to weekly, phytoplankton sampling occurs

fortnightly from April until September and monthly from

October until March. There are five groups of toxins specified in

legislation and therefore monitored within the UK (EC 853/2004,

2004; EU 786/2013, 2013) and more broadly in many other

countries (Table 1). The most common of the toxins present in

British waters are the Diarrhetic Shellfish Poisoning toxins caused

by Okadaic acid and its analogues (Dhanji-Rapkova et al., 2018;

Bresnan et al., 2021). This group of toxins has been found to impact

a wide geographic spread around the British coast, from the

Shetland Islands in Scotland, to the Southwest of England, as well

as causing the longest temporary closures of shellfish production

areas, alongside the Azaspiracids (Dhanji-Rapkova et al., 2018,

2019). Whilst having caused lengthy harvesting restrictions, the

Azaspiracids are far less common in occurrence in British waters

than those compounds found in the Okadaic acid group. Although

these toxins have acute impacts in humans (Grattan et al., 2016),

their impact on shellfish has been less well explored. There is

evidence of deleterious effects within bivalves, such as

genotoxicity and DNA fragmentation (Prego-Faraldo et al., 2013;

McCarthy et al., 2014) as well as suppression of immune function

(Chi et al., 2016). It should be noted, however, that bivalves show a

high level of resistance to the impacts of Okadaic acid, indicating

that they have internal mechanisms for dealing with the negative

effects of exposure (Prego-Faraldo et al., 2013; McCarthy

et al., 2014).

The aim of the present study was to build on the CleanAtlantic

Project, which developed a harmonized extraction method for

mussels (Gerigny et al., 2023), by adding analysis of non-

fluorescent litter items and integrating additional environmental

stressors. The present study aims to progress beyond single

pollutant monitoring towards a more comprehensive and
TABLE 1 The five groups of toxins monitored in the UK under specific legislation (EC 853/2004, 2004; EU 786/2013, 2013).

Syndrome Parent toxin Number of
known analogues

Regulatory maximum
permitted levels in
classified shellfish,
wet weight

Reference

Paralytic Shellfish Poisoning (PSP) Saxitoxin 57 800 µg STX di-HCl eq.kg-1 Wiese et al., 2010

Amnesic Shellfish Poisoning (ASP) Domoic Acid 9 20 mg kg-1 Saeed et al., 2017

Diarrhetic Shellfish Poisoning (DSP) Okadaic Acid 11 160 µg OA eq.kg-1 Dominguez et al., 2010

Azaspiracid Shellfish Poisoning (AZP) Azaspiracid >60 160 µg AZA1 eq.kg-1 Krock et al., 2019; Twiner et al., 2008

Yessotoxins (YTX) Yessotoxin 36 3.75 mg YTX eq.kg-1 Paz et al., 2008
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systems-based approach that includes harmful algal bloom

monitoring data to enable a multi-stressor assessment. This

approach aims to better capture the combined and potentially

detrimental effects of multiple contaminants on organisms.
2 Materials and methods

2.1 Sample collection

To maximize efficiency, existing monitoring networks were

utilized for the collection of samples. As such, selection of sample

locations was limited to those already established, The Food

Standards Agency monitors harmful algal bloom levels utilizing

monthly collections of mussels (Mytilus edulis) and other shellfish

from around England and Wales (Food Standards Agency (FSA),

2025). Within the biotoxin official control program mussels are

collected by Local Authority Environmental Health Officers (EHO).

In the present study, surplus mussels were collected from seven

stations (3052: Taw/Torridge, 3077: Morecambe Bay, 3083:

Brixham, 3156: Lyme Bay, 3221: Menai Strait West, 3222: Menai

Strait East, 3223: Blakeney) monitored within the biotoxin official

control program (Figure 1) in November 2022 for microplastic
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analysis. Coordinates of sample locations are available in the

Supplementary Material. Biotoxin analysis was completed at the

Cefas laboratory in Weymouth, UK. As recommended by Bakir

et al. (2020b), a minimum sample of 25 surplus individuals were

sampled. Of the available locations, the seven selected were chosen

to ensure enough material could be analyzed and to give the best

spread around England and Wales. Mussels were frozen (−20 °C)

and stored at the Cefas laboratory in Lowestoft, UK until

microplastic extraction.
2.2 Microplastic extraction and analysis

2.2.1 Chemicals
The chemicals used in microplastic extraction in the present

study are listed in Table 2. All chemicals were prepared as per

Gerigny et al. (2023) and Bakir et al. (2023). Details are available in

the Supplementary Materials.

2.2.2 Contamination control procedures
Samples were processed in a designated microplastic laboratory

with an anteroom so that two doors separated the laboratory from

the corridor. This reduced airflow to minimize airborne
FIGURE 1

Sampling locations of mussels on the English and Welsh coastline.
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contamination into the laboratory, which was also restricted access

for the same reason. In the anteroom, a sticky contamination mat

collected contamination from the soles of shoes. Mats were changed

at a minimum every two weeks to ensure they remained sticky.

Cotton lab coats dyed purple (Dylon dye) for easy contamination

recognition were put on in this space prior to entering the

laboratory. Before work began, the floor and surfaces were

cleaned with a vacuum cleaner to remove any dust. Surfaces were

also wiped with damp cotton cloths to remove any microplastics

that may have settled on them after vacuuming. All glassware and

equipment were triple rinsed with reverse osmosis (RO) water. A

RO dispenser was used to first rinse the surfaces of the glassware.

Following this, the glassware was allowed to fill with RO, which was

then poured out. This was repeated twice more and the glassware

wrapped in RO rinsed foil. The plastic handle of the shucking knife

was wrapped in RO rinsed aluminum foil to prevent any

contamination during shucking. All reagents were rinsed through

a regenerated cellulose filter (Whatman, ø 45 mm, 0.2 µm pore size)

prior to use and all work was conducted in a biological safety

cabinet (Monmouth Guardian MSC T1200). Samples were kept

covered whenever possible. In addition, laboratory controls

(procedural blanks or negative controls) were collected. Three

controls were collected for each station (n=7) for a total of 21

blanks. Controls were collected throughout sample processing to

reflect potential changes in the laboratory environment during

processing. A control beaker was opened at the start of the

dissection and remained open until the mussel was sealed in a

second beaker. The first control was collected during the dissection

of one of the first three mussels. The second was collected at around

mussel 12 and the third was collected during one of the last three

mussels. Thereafter, lab controls were processed at the same time as

the paired mussel.

2.2.3 Sample preparation
Mussels were defrosted and measured in their longest

dimension. The tissue was removed from the shell with a blunt

shucking knife. The byssal threads were removed and the tissue was

then rinsed with filtered (0.2 µm regenerated cellulose filter) RO

water in a red wash bottle, as recommended by Kolandhasamy et al.

(2018). For stations 3052 (Taw/Torridge) and 3083 (Brixham), the

filtrate was reserved and examined to quantify microplastic removal

during this stage. The filtrate was only analyzed for two stations as it
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was not the main focus of the study. The data is available in the

open access dataset (McGoran and Barry, 2025a). The wet weight

mass of the tissue was recorded.

Each individual mussel was placed in a clean 100 mL glass

beaker and covered with 40 mL of potassium hydroxide/sodium

hypochlorite (15% KOH/2% chlorine) solution following the

protocols of Gerigny et al. (2023) and Bakir et al. (2023). A glass

Petri dish was used as a lid for the beaker to prevent atmospheric

contamination. Beakers were placed in an ultrasonic bath (VWR

USC200T) for 5 minutes and then transferred to a shaker incubator

for 72 hours (VWR 980151UK, 40 °C, 120 rpm). After 72 hours, 40

mL o f fi l t e r e d d e g r e a s e r ( E l bow Gr e a s e , h t t p s : / /

elbowgreasecleans.com/) was added to each sample. Beakers were

returned to the incubator with the same settings for a further 24

hours. Following these steps, all tissue and fatty residues were

removed and samples could be vacuum filtered over Whatman

GF/D filters (45 mm ø, 2.75 µm pore size) in a six-sample manifold

with 300 mL glass filtration units. Filters were flushed with 100 mL

RO water to remove chemicals and the sides of the funnels were

rinsed using a red wash bottle. Nile red (0.01 g L-1 in ethanol),

stored in amber glass to prevent UV degradation, was added to each

filter so that a small layer formed above visible material. The

solution was left for 30 minutes and then filtered off. The filter

was flushed and rinsed with reverse osmosis water for a second

time. Filters were frozen (-20 °C) in glass petri dishes until further

analysis could be completed.

Using a binocular microscope (Leica MZ10F), filters were

examined under blue light (Fluo III Cool LED) followed by white

light. A USB camera attachment was used to image and measure all

suspected microplastic items (GXCAM-U3PRO-20, GX Capture-

T). Items were then transferred to an Anodisc (VWR, ø 25 mm, 0.2

µm pore size) and dried at 40 °C for 24 hours prior to FTIR analysis.

A Lumos II µFTIR (Bruker) was used to identify polymer type in a

subset of picked items. Analysis utilized the MCT detector and ATR

FTIR (32 scans in reflectance mode, 4000–500 cm-1, 4 cm-1).

Identification was only accepted with a minimum match of 60%

against the library spectra (ATR-FTIR-library complete, vol. 1-4;

Bruker Optics ATR-Polymer library; IR-Spectra of Polymers,

Diamond-ATR, Geranium-AT & IR-Spectra of Additives,

Diamond-ATR) as recommended by Leistenschneider et al. (2021).

The results presented below have been corrected for

contamination. For each station the mean contamination was

calculated and removed from each sample where items (e.g.,

white filaments) were present in both controls and samples.

Corrected and uncorrected data is available in the open access

dataset (McGoran and Barry, 2025a).
2.3 Harmful algal biotoxin extraction and
analysis

2.3.1 Reagents, chemicals and analytical
equipment

The reagents which were used for the toxin extractions and

High-Performance Liquid Chromatography (HPLC) analysis were
TABLE 2 List of chemicals, manufacturers, and suppliers.

Chemicals Molecular
formula

Manufacturer/
Supplier

Purity (%)

Potassium
hydroxide

KOH VWR/VWR -

Sodium
hypochlorite

NaClO VWR/VWR 14% active
chlorine

Ethanol C2H6O Acros organics/
ThermoFisher scientific

95% purity

Nile Red C20H18N2O2 Acros organics/
ThermoFisher scientific

99% purity
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of HPLC grade or higher. Chemicals of Liquid Chromatography

with Mass Spectrometry (LC-MS) grade were utilized for the

preparation of reagents for the Lipophilic toxins, where mass

spectrometry was used for analysis. The chemicals used were

sourced either from Fisher Scientific (Loughborough, UK) or

VWR (Lutterworth, UK). All solid phase extraction (SPE)

processes were automated and performed using a Gilson

(Dunstable, UK) ASPEC, running Trilution software. A full list of

chemicals (>30) is not provided here.

2.3.2 Marine biotoxin extractions
For each sample, a minimum of 10 individual animals were

shucked to yield a minimum of 50 g (wet weight) of flesh, these

criteria are considered representative of the sample within the

official control framework. This flesh was collected and allowed to

drain before being homogenized. Once the sample was

homogenous, the required quantity of shellfish homogenate was

weighed into a 50 mL centrifuge tube, 2 ± 0.01 g each for ASP and

LT analysis and 5 ± 0.1 g for PSP analysis. A solvent with a high

affinity for the respective toxin was added to each. These were

methanol for the lipophilic toxins, a 50:50 mix of methanol and

water for the ASP toxins and weak (1%) acetic acid for the

PSP toxins.

Lipophillic toxins (LTs), including Okadaic acid toxins (OAs),

Azasparacids (AZAs) and Yessotoxins (YTXs) were extracted and

analyzed using a refined version of the Gerssen et al. (2009) method.

Specifically, 6 mL of methanol was added to the shellfish tissue,

which was mixed thoroughly and separated via centrifugation (8

minutes at 3500 rpm). The supernatant was then collected, and the

process was repeated two further times, with supernatants from the

same sample combined after each centrifugation step, until 18 mL

of supernatant was recovered. This was then topped up to 20 mL

with methanol. At this stage 1 mL was filtered into an LCMS vial for

analysis and a further 1 mL was aliquoted into a separate LCMS vial

and underwent hydrolysis by the addition of 125 µL of 2.5M sodium

hydroxide and incubation at 76 °C for 40 minutes. This reaction was

then neutralized by the addition of 125 µL of 2.5 M hydrochloric

acid. Both vials were then ready for analysis by LC-MS/MS. For the

analysis of the OA, AZA and YTX toxins, LC-MS/MS analysis was

utilized, it was performed using a Waters (Milford, MA, USA)

Acquity I class UPLC coupled with either a Waters Xevo TQ or

Xevo TQ-S triple quadrupole mass spectrometer as described in

Gerssen et al. (2009).

The ASP extraction was performed using a refined version of

Quilliam et al. (1995). Specifically,18 mL of 50:50 methanol:water

was added to the 2 ± 0.01 g of shellfish homogenate. This was

thoroughly mixed before separation via centrifugation (10 minutes

at 4500 rpm). Following this, 1 mL of the supernatant was then

passed through a 0.45 µM filter into an HPLC vial, ready for

analysis. No selective cleanup or pre-concentration solid phase

extraction steps were performed on any samples. For the analysis

of ASP toxins, HPLC-DAD analysis was utilized, it was performed

using an Agilent 1100/1200 series HPLC with ultraviolet detection

as per Quilliam et al. (1995).
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PSP analysis was undertaken using a refined AOAC, 2005.06

pre-column oxidation method (AOAC, 2005) described by Hatfield

et al. (2016). Specifically, the addition of 3 mL of 1% HAC to 5 ±

0.1g of shellfish homogenate. This was then mixed, boiled at 100 °C

in a water bath for 5 minutes, cooled for 5 minutes, mixed again and

then separated by centrifugation (10 minutes at 4500 rpm). The

supernatant was collected and a further 3 mL of 1% Acetic acid was

added to the remaining shellfish pellet, this was subsequently mixed

and separated again by centrifugation, with the supernatant being

combined with that from the first step. This mixture was topped up

to 10 mL with deionized water. Following this, 1 mL of the extract

underwent automated solid phase extraction. The cleaned sample

was then pH adjusted to between 6.0 and 7.0 using either sodium

hydroxide or acetic acid. At this stage, 500 µL of this adjusted

sample was then added to an HPLC vial and derivitized by

oxidation with 100 µL of a periodate reagent (1:1:1 periodic acid:

ammonium formate:sodium phosphate), in the presence of 100 µL

of matrix modifier (blank pacific oyster extract). After 1 minute this

reaction was quenched with 5 µL of glacial acetic acid. After resting

on the bench this derivatized sample was ready for analysis. For the

analysis of PSP toxins, HPLC with fluorescence detection (FLD)

analysis was utilized; it was performed using an Agilent 1100/1200

series HPLC-FLD. No samples were fully quantified, instead

samples were analysed using a semi-quantitative approach as

described in Hatfield et al. (2016).
2.4 Statistical analysis

The statistical analysis mainly consisted of comparisons

between stations. This approach was taken to determine whether

there was evidence of potential accumulation zones on the British

coast. This could potentially be linked to plastic inputs or

hydrodynamics reducing plastic flushing. Three different

comparisons were made. These were:
i. Comparison of microplastic mean abundances between

stations. These were done in two ways: per individual and

per gram (wet weight). A non-parametric Wilcoxon

procedure was used because Shapiro-Wilk tests suggested

that both abundance measures were not normally distributed.

ii. Whether the proportion of individuals (p) containing

microplastics differed between stations. This was achieved

by fitting a binomial generalized linear model. The full

model was of the form (Equation 1):

log (p=1 − p) = a + sj (1)

where a is an intercept term and sj represents the effect of

the jth station (j = 1,…,7). The reduced model was the same

as (1) but without the station effect sj. The statistical

significance of stations was assessed with a likelihood

ratio test between the full and reduced models

(Faraway, 2006).
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iii. A comparison of the abundance of rayon polymers between

stations. Because no replicate batches of samples were

analyzed at each station, a standard binomial generalized

linear model could not be used. Instead, to achieve this

comparison, a randomization test was run (Manly and

Navarro Alberto, 2021). Essentially testing whether the

rayon proportion for each station is consistent with some

overall probability of rayon under the null hypothesis that

the proportion of rayon is the same at each station.

Formally, the test estimated the overall probability p (over

all stations) that a fiber is rayon by the total number of

rayon fibers divided by the total number of fibers.

Assuming the null hypothesis of no significant difference

between stations and assuming independence between

fibers in a station, the number of rayon fibers Nj per

station is distributed (Equation 2):

binomial(p,Nj) j = 1,…, 7 (2)

A summary statistic of the variation of rayon counts over

stations is the variance. Thus, to perform the

randomization procedure, we first calculated the variance

of the observed counts over stations. Then the model in (3)

was simulated 999 times and the variance of the counts on

each simulation calculated. If there were differences

between stations in the proportions of rayon, it would be

expected that the variance of the observed counts would be

larger than the variance of the simulated counts. The p-

value for statistical significance was calculated as: p-value =

(g + 1)/1000, where g is the number of simulated variances

that are greater than or equal to the observed variance

(Manly and Navarro Alberto, 2021).
In addition to comparisons between stations A standard linear

regression model was used to determine the relationship between

mussel length (mm) and microplastic load.
tiers in Marine Science 07
Plots were created with ggplot (Wickham, 2016), ggpubr

(Kassambara, 2023) and ggbreak (Xu et al., 2021). The R script

for all analysis is available in the Supplementary Material S1.

No statistical analysis could be conducted on the harmful algal

biotoxin data due to the large number of results below the limit

of detection.
3 Results

Between 26 and 55 individuals were collected from each of

seven locations. As described above, a random subsample of 25

individuals was analyzed from each location. Shell lengths of all

collected mussels ranged between 25–75 mm. Individuals

subsampled for microplastics analysis measured between 40–70

mm long (mean ± SD: 56.5 ± 5.9 mm). The wet weight of the tissue

was between 1.24–12.89 g (4.3 ± 1.9 g).

Mean contamination was calculated from the three blanks per

station and used for data correction. The overall mean

contamination (± SD) across all 21 blanks was 3.05 ± 2.22 items

per sample. Corrected and uncorrected microplastic concentrations

are reported in the Supplementary Material S3, where

contamination correction refers to the removal of the average

contamination at each station. After correction, between 42%

(STN 3052) and 67% (STN 3156) of mussels contained

microplastics at each station. The binomial model (1) indicated

there was no statistically significant difference between the

proportion of individuals containing microplastics between

stations (p = 0.139). The likelihood ratio test confirmed this

conclusion (p = 0.137).

The Shapiro-Wilk identified the data was skewed (MP ind-1, p =

2.2 × 10-16; MP g-1, p = 2.2 × 10-16). As the data was positively

skewed count data, a non-parametric Wilcoxon test was used to

compare microplastic load between stations. The mean

contamination per station ranged from 0.60 ± 0.71 (STN 3083) to

2.84 ± 7.31 (STN 3222) items per individual (95% CI = 0.88–1.79)
FIGURE 2

Microplastic abundance (corrected) in mussels from seven stations (3052: Taw/Torridge, 3077: Morecombe Bay, 3083: Brixham, 3156: Lyme Bay,
3221: Menai Strait – West, 3222: Menai Strait – East, 3223: Blakeney) around the coastline of England and Wales per individual (A) and per gram wet
weight (B).
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and 0.15 ± 0.23 (STN 3077) to 0.59 ± 1.56 (STN 3222) items gram-1

(wet weight) (95% CI = 0.23–0.44), but there was no statistically

significant difference in microplastic abundance between stations

for either microplastic load per gram or individual (all pairwise p-

values were below 0.05; range: 0.13–0.99) (Figure 2).

Shell length of mussels and microplastic load (model 2) did not

correlate (MP = (0.05 × length) - 1.01, p = 0.402). The mean

microplastic loads recorded in the present study are in agreement

with global concentrations (Supplementary Material S4).

Plastic was the dominant material (52%) with cellulose the

second most common litter item (28%). Of the plastics, rayon was

most common (37%). Other materials present included polyester,

paint, acrylic, polypropylene and polyethylene (Figure 3A). A

randomized test was used to determine whether polymer

abundance varied between stations. Rayon was selected as the

polymer was present in all stations and the proportion of rayon

in samples varied from 21% to 56%. The randomization test

estimated the overall probability that a particle was rayon by the

total number of rayon particle divided by the total number of

particles. This was p=47/114 = 0.41. When comparing rayon across

the stations, the p-value from the randomization test was 0.66

(model 3, p >0.05). Thus, there is no evidence of differences in the

proportion of rayon particles between stations (Figure 4). Items

were primarily blue or black filaments (84%) with some fragments,
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films and microbeads present (Figure 3B). One mesoplastic item

was recovered (Figure 3C) but was removed from analysis as the

study focused on microplastics. The majority (42%) of items were

between 300–999 µm long (mean 889 ± 934 µm).

In total, 119 shellfish samples were tested in 2022 for the

presence of marine algal biotoxins from the same sites at which

microplastic sampling occurred. Of these 10 were from Blakeney, 11

from Menai Strait – East, 27 from Lyme Bay, 23 from Brixham, 21

from Morecombe Bay and 27 from Taw/Torridge. Of these samples

118 were tested for LTs, 75 screened for PSP and 74 tested for ASP.

None of the samples tested contained any PSP toxins above the limit

of detection. None of the samples tested contained any ASP toxins

above the limit of quantitation. None of the samples tested

contained AZAs or YTXs above the LT reporting limit of 16µg

AZA eq kg-1 and 100 µg YTX eq kg-1 respectively. Results are

summarized in the Supplementary Materials S5. OA group toxins

were present at Taw/Torridge (48% > 16 µg OA eq kg-1 with a

maximum 60 µg OA eq kg-1), Morecombe Bay (62% >16 µg OA eq

kg-1 with a maximum of 181 µg OA eq kg-1), Brixham (48% > 16 µg

OA eq kg-1 with a maximum of 131µg OA eq kg-1) and Lyme Bay

(37% > 16 µg OA eq kg-1 with a maximum of 173 µg OA eq kg-1)

(Figure 5). OA group toxins were present at variable times at each

site from April 2022 in Brixham to October 2022 in Morecombe

Bay. No OA group toxins > 16 µg OA eq kg-1 were detected in
FIGURE 3

Descriptive analysis of microplastics present in mussels from the coast of England and Wales (combined across stations and corrected for
contamination). (A) Polymer identification including plastics (rayon, polyester, paint, acrylic, polypropylene and polyethylene) and other litter (cotton
and cellulose); (B) Microplastic shape (filament, fragment, film, bead) and color (black, blue, clear/white, pink/purple/red, brown, green, orange);
(C) Length (longest dimension) of meso- and microplastics.
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FIGURE 5

Line plot describing Total Okadaic acid toxins (OA) group concentrations across 2022 at each sampling location. Red horizontal hashed line
represents the maximum permitted level of OA group toxins (160 µg OA eq/kg) in shellfish destined for human consumption. Black vertical line
represents the sampling time of microplastics samples. Only points which exceeded 16 µg OA eq/kg are plotted.
FIGURE 4

Polymer abundance of microplastic contamination in mussels between stations (outside to center: 3052: Taw/Torridge, 3077: Morecombe Bay,
3083: Brixham, 3156: Lyme Bay, 3221: Menai Strait - West, 3222: Menai Strait - East, 3223: Blakeney).
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Menai Strait – East or Blakeney in any sample. At time of sampling

for microplastics, none of the sites contained any OA group toxins

>16 µg OA eq kg-1.
4 Discussion

4.1 Occurrence and abundance of
microplastics and harmful algal blooms in
UK mussels

Microplastics, including cellulosic items, were recovered from

53% of mussels with a mean load of 1.33 ± 3.04 items per individual

(95% CI = 0.88–1.79) and 0.33 ± 0.71 items per g (wet weight) (95%

CI = 0.23–0.44). Mussels from all seven stations were contaminated,

most commonly with rayon, a semi-synthetic material categorized

as microplastics by OSPAR (OSPAR MicroPlastics Expert Group

(MPEG), 2024). No harmful algal biotoxins were found at

quantifiable levels in the shellfish samples tested for microplastics.

However, of the seven sites analyzed for microplastics within this

study, four (3052: Taw/Torridge, 3077: Morecambe Bay, 3082:

Brixham, 3156: Lyme Bay) showed presence of the DSP group

toxins in shellfish within the preceding six months. For two of the

sites assessed, the levels of the okadaic acid group toxins exceeded

the regulatory threshold, whereas in the other two sites with

quantifiable levels of DSP toxins, this food safety limit was not

reached. The final two sites assessed showed no presence of DSP

toxins within the year 2022. All other testing for marine biotoxins

indicated that there were no detectable levels present within the

study year. This means that those animals assessed for microplastics

would have had a prior exposure to DSP toxins in four of the six

samples analyzed, with higher levels previously present in shellfish

from Morecambe Bay and Lyme Bay.
4.2 Risks from harmful algal blooms in the
UK

The primary sources of algal biotoxins within shellfish growing

in British waters are planktonic species of microalgae. Several

species within varying genera of Dinoflagellates are responsible

for PSP, DSP, AZP and YTX, with several species of the Diatom

genus Pseudonitzschia being the producers of the toxins responsible

for ASP. The blooms or cell abundances causing the contamination

of mollusks can occur naturally within the spring and summer

months, occasionally continuing into the Autum. The frequency

and scale of algal blooms can be exacerbated by anthropogenic

impacts, with some factors such as nutrient-enriched coastal runoff

having the potential to stimulate algal growth (Heisler et al., 2008)

whilst also acting as an input for microplastic pollution. The most

common impacts in British waters are those from Dinophysis acuta

and Dinophysis acuminata, both known to be producers of DSP

toxins (Bresnan et al., 2021; Dhanji-Rapkova et al., 2018). This leads

to the shellfish growing in some areas being exposed to recurrent

levels of DSP toxins; these will vary between years but can reach
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high levels or prolonged exposures in some localities (Dhanji-

Rapkova et al., 2018). As the okadiac acid group of compound

has been shown to have potential negative impacts on bivalve

molluskan health, albeit in limited studies (Prego-Faraldo et al.,

2013; McCarthy et al., 2014; Chi et al., 2016; Lassudrie et al., 2020),

this group of compounds could adversely affect the ability of

bivalves to deal with the additional stressor of microplastic

contamination. It is also known that several harmful algal species

produce a wide range of bioactive extracellular compounds, which

may also have negative effects on bivalve health, although these are

often much less well described (Lassudrie et al., 2020). As such, the

confirmed presence of okadaic acid producers at four of the sites

assessed in this study represents an additional environmental stress

factor impacting the study animals from those sites.
4.3 UK microplastics data in a regional and
global context

The microplastic contamination reported in the present study is

in line with most previous studies in the UK. But they are low

compared to some studies in the country, which reported mean

concentrations as high as 7.64 items per individual (Scott et al.,

2019) and 12.6 items per individual (Catarino et al., 2017). The

concentrations in the present study are also in line with estimates

from Europe (De Witte et al., 2014; Van Cauwenberghe et al., 2015;

Vandermeersch et al., 2015; Bråte et al., 2018; Phuong et al., 2018;

Railo et al., 2018; Hermabessiere et al., 2019; Nalbone et al., 2021;

Ferreira et al., 2023; Gerigny et al., 2023; Digka et al., 2024). This

suggests that the high concentrations reported by Scott et al. (2019)

and Catarino et al. (2017) may be outliers rather than indicative of

accumulation zones of contamination. However, a greater number

of sites would better capture regional differences.

Globally, all continents and regions find that most mussels

consume less than one microplastic per individual or gram on

average (Supplementary Material S4). On the American continents,

mean contamination ranges from <1 – 8.7 particles per individual

(Zhao et al., 2018; Klasios et al., 2021) or <1–40 particles per gram

(Zhao et al., 2018; Migliarini et al., 2025). Oceania is represented by

relatively few published studies. Webb et al. (2019) reported that in

New Zealand mean contamination per individual and per gram

were both less than one. Most African studies originate from South

Africa, reporting contamination of mussels at ca. 4 particles per

individual (Sparks, 2020; Sparks et al., 2021) and between <1 – 2.3

particles per gram (Sparks, 2020; Ferguson et al., 2024). In Asia

mussels were contaminated with <1 – 22.5 particles per individual

(Dowarah et al., 2020; Do et al., 2024) or <1 – 9.2 particles per gram

(Kolandhasamy et al., 2018; Naidu, 2019). Few studies are available

for mussel contamination in the Middle East, with Bagheri et al.

(2020) reporting concentrations of up to 19.8 particles per gram in

Iran. Whilst some records of contamination are high, the majority

are similar to the results of the present study.

Comparison between studies is hindered by a lack of

standardized protocols and reporting (Li et al., 2021; Shumway

et al., 2023). Best practice is to report microplastic abundance per
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gram (wet weight) as well as per individual. Yet, several studies only

report a single unit (e.g., MPs g-1 Courtene-Jones et al., 2017; MPs

individual-1 McCoy et al., 2020). In the UK, only six studies have

estimated microplastic abundance in mussels (S3), with a further

two studies on clams (McCoy et al., 2020) and scallops (Akoueson

et al., 2020). Some potential local accumulation zones have been

identified (Li et al., 2018; Scott et al., 2019) but long-term data is

needed to confirm whether spatial variation in abundance persists.

According to Li et al. (2018), mussels from Plymouth contained

more microplastics than those from Brighton (6.4 to 1.1 MPs

individual-1). Similarly high concentrations were reported at

Whitsand Bay compared to Torquay Bay (mean 7.64 to 1.43

items individual-1, Scott et al., 2019). With no statistical difference

in abundance between stations and a mean abundance of between

0.60 and 2.84 items individual-1, the present study identifies no

accumulation zones relevant for the UK. Plymouth and Whitsand

Bay are located near the mouth of the River Tamar, previously

shown to be contaminated with plastic debris (Sadri and

Thompson, 2014), for which more than 80% consisted of

microplastics. It was, however, unclear whether the River Tamar

acted as a net source or sink for plastic debris (Sadri and Thompson,

2014). Three stations in the present study are located in the

southwest of the UK (3052: Taw/Torridge, 3083: Brixham, 3156:

Lyme Bay). Mussels at these stations primarily contained cellulosic

fibers, which is in line with the reports of Scott et al. (2019). For

both Scott et al. and Sadri and Thompson (2014), polypropylene

and polyethylene were the most abundant plastics. However, the

present study recovered polyester and paint at the Southwest

stations (3052: Taw/Torridge, 3083: Brixham, 3156: Lyme Bay).

In the present study, only the station at Lyme Bay (3156) is located

near a major river (River Exe). This station had the highest

proportion of contaminated mussels and the second highest mean

contamination per individual. High abundances of microplastics

were previously reported for seafloor sediments collected from

Lyme Bay and Off Tamar; both of these sites are considered as

accumulation zones for microplastics (Bakir et al., 2023). Regular

repeat monitoring is necessary to detect persistent accumulation

zones. This is useful to identify whether river mouths are

accumulation zones that may lead to a greater rate of microplastic

ingestion due to the increased abundance of particles.
4.4 Addressing the need for a microplastics
sentinel species and the requirements for
success

In future years, microplastics are likely to become much more

abundant through increased and varied use, as well as through

fragmentation of large litter already in the environment.

Inconsistent methods for sampling and processing, a lack of

robust controls in some early studies and advances in particle

detection hinder comparisons between studies. Plastic abundance

in the ocean is expected to double by 2040 (Thompson et al., 2024).

Litter already negatively impacts the marine environment, with calls

for policy interventions to make drastic changes (Roman et al.,
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2020) and evidence that the cost of inaction is greater than cost of

implementing these changes (Watkins et al., 2017). As microplastic

abundance increases, so does the likelihood of negative

environmental impacts. Many ecotoxicological studies, especially

early studies, utilized concentrations far higher than those observed

in the environment. Whilst less useful for determining current risks

from microplastic exposure, these studies demonstrate that

eventually microplastic loads will be high enough to cause severe

negative impacts (Foley et al., 2018). Indeed, microplastic toxicity is

positively correlated to microplastic concentration (e.g., in oysters

Teng et al., 2021). As particles continue to fragment, small

microplastics and nanoplastics are able to translocate to organs

other than the gills and digestive system (Cattaneo et al., 2023; Yang

et al., 2020; Zeytin et al., 2020; Li et al., 2021; McIlwraith et al.,

2021). This increases retention time (Ward and Shumway, 2004)

and likelihood of negative impacts. At high concentrations,

microplastics can move from the digestive gland to the circulatory

system of mussels (Browne et al., 2008).

As suspension feeders, mussels are susceptible to the negative

impacts from microplastic ingestion (Moore, 2008; Kühn and van

Franeker, 2020), albeit at often high concentrations. Ingestion of

microplastics has been linked to negative health impacts. For

instance, reduced feeding rate in mussels (Pedersen et al., 2020;

Hatzonikolakis et al., 2024), which reduced mussel growth.

Furthermore, the gut microbiome biodiversity can decline in

mussels that ingested polystyrene; with damage also observed in

the gut tissues (Ferguson et al., 2022). Although, Collins et al. (2023)

observed no impact on gut microbiome. The shape of the plastic is

likely to impact the severity of the reaction, with fibers and filaments

being more toxic than microbeads (waterflea Ceriodaphnia dubia

Ziajahromi et al., 2017a; zebrafish Danio rerio Qiao et al., 2019;

Rebelein et al., 2021). Mussels are potentially less selective when

consuming filaments compared to beads (Ward et al., 2019) making

them vulnerable to these negative effects. The abundance of

cellulosic filaments, and associated dyes, in the environment has

raised concerns over their health impact as well as plastic filaments

(Remy et al., 2015; Mateos-Cárdenas et al., 2021). Walkinshaw et al.

(2023) demonstrated that at exposures associated with heavily

polluted environments (80 filaments L-1) cotton and polyester

filaments both reduced growth rate of juvenile mussels, with

polyester reducing growth more than cotton.

At low exposures (0.1 g L-1), 70% of ingested microplastics are

excreted by mussels within 24 hours (Pedersen et al., 2020).

Similarly, oysters exposed to 0.33 g L-1 daily for 10 days retained

less than 0.5% of particles; though more were retained when

particles were biofouled (Fabra et al., 2021). In contrast, at higher

concentrations (0.4–0.8 g L-1) over 94% of microplastics were

retained after 24 hours (Pedersen et al., 2020). Woods et al.

(2018) noted that even at 3,000 filaments per L-1, 71% of particles

are ejected in pseudofaeces, but those ingested were retained after

72 hours. Increased retention time is necessary for the chemical to

leach into the digestive tract and to increase the chance of negative

impacts on the organism. Jang et al. (2021) demonstrated that

expanded polystyrene could increase mussel exposure to plastic

additives but noted that direct exposure to leachates posed a more
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significant threat. Microplastics and their associated chemicals, such

as adhered persistent organic pollutants (Bakir et al., 2014), are

linked to negative health effects when ingested. The chemicals

within plastic can be carcinogenic and endocrine disrupting

(Zimmermann et al., 2019). Mussels exposed to polyethylene and

polystyrene accumulated pyrene, a polyaromatic hydrocarbon

(PAH). This resulted in an immunological response and a change

in gene expression affecting apoptosis (Avio et al., 2015). More

recent studies, however, suggest that microplastic exposure is not

correlated to PAH uptake in environmental conditions (Klasios

et al., 2021). Whilst physically possible to transfer chemicals from

plastics upon ingestion, this is not the primary route of exposure in

the marine environment. However, at environmental

concentrations evidence of risk is limited. Some studies suggest a

negligible toxicological impact (Koelmans et al., 2016; Daniel et al.,

2024), including on mussels (Santana et al., 2018). Though with

concentrations set to increase, harm is likely to intensify in coming

years (Thompson et al., 2024). Thus, collecting baseline data

through monitoring is essential to have an early warning system

of harm before impacts become severe. Additionally, sub-lethal and

population level effects are important to monitor, especially for

commercially important species such as mussels (Beaumont

et al., 2019).

Sessile sentinel species not only allow for the development of

risk assessments but allow for static points to monitor pathways and

sources of microplastics in parallel to environmental matrices.

Microplastics in the marine environment can originate from

various sources, including, but not limited to, landfill runoff,

agricultural runoff (Hurley et al., 2018; Koutnik et al., 2021), road

runoff (Sundt et al., 2014; Kole et al., 2017; Tamis et al., 2021; Worek
Frontiers in Marine Science 12
et al., 2022), riverine inputs (Meijek et al., 2021), wastewater

(Ziajahromi et al., 2017b), abrasives, paint from vessels (Sundt

et al., 2014), textile fibers shed during use, washing and drying

(Napper and Thompson, 2016; Reed et al., 2018; O’Brien et al.,

2020), and atmospheric fallout (Dris et al., 2016, 2017).

Microplastics may be shed from apparatus used in aquaculture,

with farmed mussels often more contaminated than wild mussels

(Ding et al., 2022; Vandermeersch et al., 2015). The use of mussels

as a sentinel species for microplastics could be used for monitoring

at source or in regions of interest to capture changes in inputs and

quantify mitigation strategy success. Caged mussels can be utilized

to monitor specific inputs of interest, especially those associated

with mitigation strategies and policy changes. These would allow

governments to rapidly assess the effectiveness of the interventions.

Additionally, caged mussels could be deployed on buoys to provide

estimates of microplastic contamination offshore. Klasios et al.

(2021) compared caged and resident mussels and found similar

concentrations in both. Thus, this is a suitable strategy to extend the

reach of monitoring programs.

Whilst there is an agreed need for a sentinel species, there is

some disagreement around the requirements of sentinel species.

According to Ward et al. (2019), who investigated limitations of

mussels as a sentinel species, a microplastic indicator should

“ingest, without bias, the majority of plastic particles”. However,

monitoring with sentinel species may not always be designed to act

as a proxy for other environmental matrices. Biota can provide

insight into the bioavailable fraction of litter in the environment

and can be used to evidence risk, or the lack thereof. Shumway et al.

(2023) noted that future studies utilizing bivalves as a sentinel for

microplastics need to address specific questions. The authors of the
TABLE 3 Pro-Con list for proposed sentinel species.

Suggested
Sentinel

Bivalves Benthic/Demersal Fish Small Pelagic Fish Decapods

Pros - Wide geographical range
- Not endangered
- Already a sentinel species
- Can ingest particles <1 mm
- Filter large quantities of water and are
important for water remediation, linking
to risk to ecosystem services (e.g., carbon
sequestration, food provision, water
remediation and habitat provision; Van
der Schatte Olivier et al., 2018)
- Easy and cost-effective sampling
- No seasonal variation in MP uptake
(Rosa et al., 2024)

- Wide geographical range
- Not endangered
- Already a sentinel species
- Can ingest all sizes of
microplastics
- Used in existing monitoring
programs

- Wide geographical range
- Not endangered
- Can ingest all sizes of
microplastics

- Wide geographical range
- Not endangered
- Can ingest all sizes of
microplastics
- Plastic accumulation can act
as an early warning system

Cons - Cannot ingest >1 mm
- Populations oversampled
- Selective feeding
- Particle capture and ingestion highly
dependent on size which will bias
retention to microplastics >2-3 mm in size
and bias ingestion to particles 2-400 mm
in size (Rosa et al., 2018, 2024)

- Mobile
- Stomach not consumed, reduced
link to human health
- Need access to a vessel to sample
- Locations may vary seasonally
- Seasonal variation in MP uptake
(McGoran et al., 2025b)

- Highly migratory (Van der
Kooij et al., 2024)
- Stomach not consumed,
reduced link to human health
- Need access to a vessel to
sample
- Locations may vary seasonally

- Some decapods shred plastic,
some form tangles
- Mobile
- Stomach not consumed,
reduced link to human health
- Accumulation of plastic for
long periods may be less likely
to show fluctuations in plastic
levels
- Need access to a vessel to
sample
- Locations may vary seasonally
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present study agree with this sentiment and argue that the

development of a sentinel species-based monitoring program

should tackle policy needs, such as how microplastics in the

environment link to risk.

The present study utilized an existing mollusk monitoring

scheme to complete a multi-stressor analysis. However, other

monitoring programs can be used and other sentinel species for

microplastics should be explored. Table 3 explores the positives and

negatives associated with other proposed groups for microplastic

monitoring. Limitations of using suspension feeding bivalves

include particle rejection and species-specific differences

(Mladinich et al., 2022; Shumway et al., 2023). The latter,

however, applies to any indicator that is not species specific,

which is challenging on a global scale.

Owing to their selective ingestion and rejection of particles

(Ward et al., 2019; Mladinich et al., 2022), mussels generally contain

low numbers of particles (Shumway et al., 2023). Selection depends

on physiochemical properties and size, with a higher proportion

larger particles rejected (Ward et al., 2019; Mladinich et al., 2022).

Ward et al. (2019) noted with tests using microbeads (19-1000 mm)

only 10-30% of small microbeads were rejected but 98% of 1000 mm
beads were rejected. The authors also noted that similar proportions

of filaments were ingested regardless of size (75-1075 mm).

Mladinich et al. (2022), however, observed a stricter size-based

selection with more 65 mm filaments consumed than 500 mm
filaments, and similarly more 500 mm filaments ingested

compared to those 970 mm long. The study concluded that

overall, more particles were ingested than rejected. Less selective

suspension feeders have been recommended for use as microplastic

sentinels (Mladinich et al., 2025).

At the OSPAR Working Group on Monitoring and on Trends

and Effects of Substances in the Marine Environment (MIME),

several countries have raised concerns over mussel population levels

and the increased impact of using them as a sentinel species (Jon

Barber, Cefas, Personal communication). Other mollusks have been

suggested as alternatives (Ribeiro et al., 2024). Commercial species

are useful to understand risks to human health and socio-economic

factors but offer a challenge to collect as there is competition with

commercial fisherfolk (Manuel Nicolaus, Cefas, Personal

communications). As a result, commercial and non-commercial

species have been proposed for monitoring. Alternative sentinel

species for microplastic have been suggested, including seabirds,

fish and crustaceans (Biamis et al., 2021; Truchet et al., 2022;

Bruschi et al., 2023; Taurozzi and Scalici, 2024). Dab (Limanda

limanda) were selected as a chemical contaminant sentinel species

for the Clean Seas Environmnetal Monitoring Programme, a UK

multi-agency program organized by the Clean, Safe Seas Evidence

Group who report to the Department for Environment, Food and

Rural Affairs (Defra) (National Oceanographic Centre, 2025). The

species was chosen due to its close association with the sediment

where chemical contaminants accumulate (Jon Barber, Cefas,

Personal communication). At Cefas, fish are being explored as

another potential sentinel species for microplastics, utilizing small

pelagic fishes as an estimate of floating bioavailable microplastics

and dab for the benthic habitat. Nephrops norvegicus have been
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suggested as an indicator (Hara et al., 2020). Decapods could pose a

useful indicator for risk as they can accumulate large quantities of

microplastics (Murray and Cowie, 2011; Welden and Cowie, 2016a,

b; Cau et al., 2019; McGoran et al., 2020). Whilst contamination is

higher than that generally observed in fish, the group may act as an

early warning system for wider environmental impacts. A

combination of sentinel species may be needed to address all

knowledge gaps. Indeed, Biamis et al. (2021) recommend multiple

species with disparate ingestion levels to help determine risk, with a

focus on high-trophic level species, such as seabirds, when

considering human health risks.

A holistic approach to research and monitoring would allow a

better understanding of microplastic present in all compartments

and the pathway between them, improving our understanding of

sources, and highlighting the area’s most at risk and in need of

further monitoring. Indeed, there are calls for a “One Health”,

multidisciplinary approach to plastic monitoring (Biamis et al.,

2021; Multisanti et al., 2022). But given Government budgets, this is

not possible. Indicators should be selected to address major

knowledge gaps, which include sources and transport of

microplastics, and the risks associated with plastic in the

environment. Mobile species, such as fish or decapod crustaceans,

may be less helpful when addressing spatial patterns, identifying

sources and hotspots. Certainly, small pelagic fish are highly

migratory, with anchovies migrating from the North Sea and

Biscay to overwinter in the English Channel (Van der Kooij et al.,

2024). However, some species such as sprat have a far smaller range

(Jeroen van der Kooij, Cefas, Personal communications). But sized-

based particle selection in mussels may result in less plastic being

consumed and inhibiting conclusions around risk. They can,

however, be collected along a transect or stored in cages to better

understand microplastic sources. Shumway et al. (2023) noted that

bivalves contain very low concentrations of microplastics and

Mladinich et al. (2023) observed that the polymers present in

bivalves did not align with those in water, marine snow and

sediment. However, Ferguson et al. (2024) found that suspension

feeding mussels ingested a greater diversity of microplastics than

grazing and scavenging invertebrates, which suggests they may be

the least selective of researched invertebrates.
4.5 Future recommendations

Whilst isolated risk from plastic exposure might be minimal, in

the environment mussels and other biota are exposed to multiple

stressors and pollutants simultaneously. Indeed, as plastics

fragment in the environment the release of additives and

impurities increases, creating a “toxicity debt” for the large items

presently in the environment (Rillig et al., 2021). Certainly, mussels

have been recovered containing trace metals and microplastics

(Alomar et al., 2025). When exposed to microplastics in the

environment, plastic additives and hydrophobic organic

compounds persist in the tissue of mussels and cockles

(Hermabessiere et al., 2019). Additionally, exposure to pesticides

in combination with microplastics leads to cumulative negative
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effects compared to single exposure (Shi et al., 2024). In laboratory

conditions, oysters have been found to exhibit no physiological

responses to virgin microbead ingestion, but oxygen consumption

and respiration rate increased, likely due to a triggered immune

response, when exposed to microplastics coated in Escherichia coli

bacteria (Fabra et al., 2021). It should be noted that Fabra et al.

(2021) used a high dose not environmentally relevant for

their study.

Harmful algal bloom monitoring was selected for the present

study as a cost-effective way of collecting samples for microplastics,

piggybacking off an existing program. The presence of harmful algal

blooms has increased significantly worldwide in recent decades (Do

Prado Leite et al., 2022). This increase has been recently attributed

to the increase in monitoring efforts around the world, but with

some regions including Europe, appearing to see an increase in

harmful algal bloom impacts (Hallegraeff et al., 2021). In the coastal

waters of Great Britain, the lipophilic toxin groups and specifically

those compounds responsible for Diarrhetic Shellfish Poisoning are

the most prevalent in shellfish, annually (Bresnan et al., 2021).

Plastics can be colonized by several species of microalgae and can

act as a vector for harmful algal species and can increase exposure to

benthic pathogens or their toxic excretions which are limited by the

amount of substrate available for colonization (Do Prado Leite et al.,

2022). Indeed, polyethylene has been shown to accumulate

neurotoxins from dinoflagellate Karenia brevis on its surface

(Shea et al., 2006). Additionally, plastic covered in biofilm can be

up to ten times more likely to be ingested by suspension feeders

(e.g., oysters) than virgin plastic (Fabra et al., 2021). Plastic can

make these benthic threats available on suspended microplastics,

increasing their bioavailability. UK waters are, however, predicted

to be at less risk of this transport of harmful bacteria or algae than

other regions including the Mediterranean Sea and the coasts of

North America and East Asia (Do Prado Leite et al., 2022).

Ingesting microplastics makes mussels more susceptible to toxic

algae (Yuan et al., 2024). In addition to oxidative stress, the mussels

experienced aggravated hemocyte apoptosis, reduced hemocyte

viability and a reduction in cellular energy. As a result, these

mussels experienced more intense deleterious effects .

Susceptibility to toxic algae could lead to an outbreak of infection

disease or a mass fatality in mussels (Zannella et al., 2017; Lassudrie

et al., 2020) and is a potential human health risk. Thus, multi-

stressor monitoring is vital to understand and mitigate risk. Thus, it

is vital that pollutants are not monitored and assessed in isolation,

with sentinel species selected for suitability in multi-stressor

risk analysis.

Beyond neurotoxins, to truly assess risk in an environmental

context, more cross-field studies are required. Collaboration

between microplastic researchers, ecotoxicologists, chemists,

climate scientists and more is lacking and vital for establishing

risk thresholds and to make the best use of monitoring data.

Threshold values are mandatory within the EU (Werner et al.,

2020; Van Loon et al., 2020) for marine litter monitoring and enable

monitoring programs to determine a set of measurable

characteristics for good environmental status (GES) and allow

governments to assess whether policy is progressing towards this
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achievement. Whilst independent of the EU, the UK Marine

Strategy outlines commitments to achieve GES across the four

devolved governments. Additionally, it is key for monitoring to

be harmonized regionally and globally where possible. The risks

associated with microplastics, especially in combination with other

stressors, highlighted above demonstrate the need for monitoring.

Whilst some OSPAR indicators cover large microplastics (>1 mm),

the abundance of smaller items justifies a designated sentinel

species. In the present study, microplastic concentrations were

unknown and, as such, sample sites were selected to provide a

wide geographical spread. Coincidently, these sites had a low

frequency of algal blooms. Future studies should amend site

selection to allow comparison between sites more frequently or

intensely affected by harmful algal blooms whilst maintaining a

broad spread around the coast of England and Wales, which are

included in the survey. A similar strategy should be considered by

other microplastic monitoring schemes globally.

With the above discussions in mind, mussels could be employed

as a sentinel species for microplastics and multi-stressor assessments.

Given the uncertainty surrounding microplastic associated risk, an

indicator already established for chemical pollutant and harmful algal

bloom monitoring is the logical choice. Mussels can be used to

indicate potential risk to the ecosystem, potential transfer to

humans from contaminated seafood and as a proxy for water

contamination. The latter is especially significant given the temporal

and spatial variability of microplastics in surface water and the lack of

defined sampling volumes to ensure samples are representative of the

environment (Danopoulos et al., 2023). Mussels are widely distributed

and as suspension feeders are highly susceptible to microplastic

ingestion. Of all bivalves, mussels are the ideal group for use as an

indicator. There is a clear distinction in contamination levels between

bivalves with clams containing on average more microplastics than

mussels, scallops and oysters (Danopoulos et al., 2020; Ding et al.,

2022). Greenwood et al. (2025) noted that, in these review studies,

contamination in mussels was closest to the mean concentration

across all bivalve species, making them the most suitable

representative. In addition, their long-standing as an indicator for

other hazards (Beyer et al., 2017; Afbi, 2023; Environment Agency,

2023; Leung et al., 2024) makes harvesting easier as new monitoring

programs do not need to be developed from scratch. It also enables

multi-stressor risk assessments to understand the cumulative effects of

anthropogenic factors on biota. Additionally, as sessile organisms,

mussels provide an estimate of local contamination unlike mobile

organisms which could cover a large range. It has been suggested that,

to improve the distribution of monitoring locations, caged mussels be

utilized (Digka et al., 2024; Kazour and Amara, 2024; Weir et al.,

2024). This powerful tool could be used to fill knowledge gaps, such as

addressing riverine inputs to the marine environment by placing

caged mussels along a transect (Greenwood et al., 2025).
4.6 Validation of method and limitations

In this study, the Nile red screening method for microplastics

was applied for a fast and cost-effective assessment of the
frontiersin.org

https://doi.org/10.3389/fmars.2025.1673482
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


McGoran et al. 10.3389/fmars.2025.1673482
occurrence of microplastics in biota. Nile red has been previously

applied for the detection and quantification of microplastics in biota

(Catarino et al., 2018; Bakir et al., 2020a, 2020b; Nalbone et al., 2021;

Shruti et al., 2022). The presence of false positives has been

previously identified as a source of error when applying the Nile

red screening method (Maes et al., 2017). The introduction of an

optimized chemical digestion step (i.e., a mixture of KOH and

NaClO) did limit the fluorescence of biological and natural items

Bakir et al. (2023). Previous work carried out by Wang et al. (2021)

also reported a lower fluorescence intensity of biogenic materials

following a digestion step using hydrogen peroxide. Thus, reducing

these false positives. Additionally, the Nile red dye is not effective on

all polymers at all wavelengths (Wang et al., 2021) and fails to detect

semi-synthetic materials, such as rayon. In the present study rayon

was the most common material (37% of items), but when non-

fluorescent items are excluded, only 17% of items are rayon

(Gerigny et al., 2023). It can also fail to affect materials already

containing dark dye. For this reason, a search under white light was

also included. This prevented an underestimation of microplastics

in the samples.

There is a lack of standardized methods for microplastic analysis.

To combat this challenge, Gerigny et al. (2023) quantified

microplastic abundance in locations from three countries (UK,

France, Spain) in the North Atlantic using harmonized techniques

between laboratories (KOH digestion and Nile red staining followed

by single particle analysis using m-FTIR). The assessment found

similar levels of contamination across all sites and between the

three countries, with some evidence of potential spatial

accumulation zones for microplastics. The reported concentrations

were, however, relatively low in a global context, possibly due to the

exclusion of non-fluorescent items. The present study is an extension

of the UK data presented in Gerigny et al. (2023) with the addition of

non-fluorescent items otherwise missed by Nile red analysis. Our

work demonstrates the importance of including these non-

fluorescent items, as concentrations increased from 0.00– 0.68 to

0.60– 2.84 (mean) items individual-1. The present study and Gerigny

et al. (2023) utilized strong contamination controls including rinsing

tissue prior to digestion, as recommended by Kolandhasamy et al.

(2018). Many studies globally do not record whether mussels were

washed prior to microplastic extraction to remove external adhered

particles (Greenwood et al., 2025). As a result, the low values

presented in the present study may be a more accurate

representation of environmental loading in mussels.

Translocation of microplastics is considered one of the major

risks of microplastic ingestion but primarily occurs with particles

smaller than 10 mm (Li et al., 2021). This is currently below the

detection limit of commonly available analytical tools, such as

micro FTIR and LDIR. It is hoped that as technology advances,

identifying these smaller microplastics will become more accurate

and reliable. Currently monitoring is limited to a minimum size of

20 mm, but reporting is only mandatory down to 100 mm (OSPAR

MicroPlastics Expert Group (MPEG), 2024).
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The present study is a proof of concept for multi-stressor

assessments. Whilst harmful algae toxins are monitored

throughout the year at frequencies between monthly and weekly

dependent on local risk, microplastic analysis could only be

conducted as a one off. Thus, further spatial and temporal

analysis could not be conducted. A wider range of sites and data

collected over several months or years would allow for more

powerful statistical analysis. Additionally, further analysis of

samples would allow for the selection of sites known to be high in

neurotoxins as a comparison to the sites in the present study which

exhibited concentrations below the limit of detection.

For neurotoxin analysis, mussels were homogenized, as is the

standard approach. This meant it was not possible to compare per

individual contamination of microplastics and neurotoxins, only

per gram. This highlights the importance of reporting both units for

microplastics analysis.
5 Conclusion

Sentinel species are vital to assessing the quality of the environment

and how it changes over time. This directly relates to human health and

socioeconomic factors, with sentinel species acting as an early warning

sign for risks to consumers and environmental hazards. They should be

selected based on their abundance and distribution but also their

ecology and how they might feed into our ecotoxicological

understanding. It is essential to understand how the animal feeds

and may selectively accept or reject microplastics when interpreting the

data. There is a knowledge gap between observed environmental

microplastic contamination of biota and ecotoxicological studies that

needs to be filled to ensure that effective risk assessments can be

conducted. The authors recommend that a sentinel species for

microplastic be developed in conjunction with multi-stressor

evaluations, which are essential for understanding real world

complexities. These evaluations can then further be developed into

effective risk assessments for risk management and avoidance, an area

that can be improved upon in the field of marine litter.We suggest that:

1) as microplastic abundance in biota varies, investigation is needed to

inform the frequency of sample collection. This could be done at a few

sites of interest before implementing a wider monitoring scheme; 2)

environmental scientists, ecologists, ecotoxicologists and chemists

collaborate on a systems approach to better inform risk management

of microplastics and allowing for the development of multi-stressor

monitoring. This should compare sites of low and high stress.
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Alomar, C., Capó, X., Rios-Fuster, B., Bernárdez, P., Santos-Echeandıá, J., and
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and Castro, Í.B. (2024). Microplastics in rocky shore mollusks of different feeding
habitats: an assessment of sentinel performance. Environ. pollut. 346, 123571.
doi: 10.1016/j.envpol.2024.123571

Rillig, M. C., Kim, S. W., Kim, T.-Y., and Waldman, W. R. (2021). The global plastic
toxicity debt. Environ. Sci Technol. 55, 2717–2719. doi: 10.1021/acs.est.0c07781

Roman, L., Schuyler, Q., Wilcox, C., and Hardesty, B. D. (2020). Plastic pollution is
killing megafauna, but how do we prioritize policies to reduce mortality? Conserv. Lett.
14, e12781. doi: 10.1111/conl.12781

Rosa, M., Capriotti, M., Austin, K., Shumway, S. E., and Ward, J. E. (2024). Effect of
seasonal changes in temperature on capture efficiency in the blue mussel,Mytilus edulis,
fed seston and microplastics. Invertebrate Biol. 143, e12446. doi: 10.1111/ivb.12446

Rosa, M., Ward, J. E., and Shumway, S. E. (2018). Selective capture and ingestion of
particles by suspension-feeding bivalve molluscs: a review. J. Shellfish Res. 37, 727–746.
doi: 10.2983/035.037.0405

Sadri, S. S., and Thompson, R. C. (2014). On the quantity and composition offloating
debris entering and leaving the Tamar Estuary, Southwest England. Mar. pollut. Bull.
81, 55–60. doi: 10.1016/j.marpolbul.2014.02.020

Saeed, A. F., Awan, S. A., Ling, S., Wang, R., and Wang, S. (2017). Domoic acid:
Attributes, exposure risks, innovative detection techniques and therapeutics. Algal Res.
24, 97–110. doi: 10.1016/j.algal.2017.02.007

Santana, M. F. M., Moreira, F. T., Pereira, C. D. S., Abessa, D. M. S., and Turra, A.
(2018). Continuous exposure to microplastics does not cause physiological effects in the
cultivated mussel Perna perna. Arch. Environ. Contamination Toxicol. 74, 594–604.
doi: 10.1007/s00244-018-0504-3

Scott, N., Porter, A., Santillo, D., Simpson, H., Lloyd-Williams, S., and Lewis, C. (2019).
Particle characteristics of microplastics contaminating the mussel Mytilus edulis and their
surrounding environments. Mar. pollut. Bull. 146, 125–133. doi: 10.1016/
j.marpolbul.2019.05.041

Shea, D., Tester, P., Cohen, J., Kibler, S., and Varnam, S. (2006). Accumulation of
brevetoxins by passive sampling devices. Afr. J. Mar. Sci 28, 379–381. doi: 10.2989/
18142320609504182
frontiersin.org

https://doi.org/10.1098/rsta.2025.0040
https://doi.org/10.1098/rsta.2025.0040
https://doi.org/10.1021/acs.est.1c02922
https://doi.org/10.1126/sciadv.aaz5803
https://doi.org/10.7717/peerj.19518
https://doi.org/10.1021/acs.est.2c06402
https://doi.org/10.1016/j.marenvres.2023.106040
https://setac.confex.com/setac/sna2025/meetingapp.cgi/Paper/30208
https://setac.confex.com/setac/sna2025/meetingapp.cgi/Paper/30208
https://doi.org/10.1016/j.envres.2008.07.025
https://doi.org/10.1016/j.envres.2008.07.025
https://doi.org/10.1016/j.marpolbul.2019.110723
https://doi.org/10.1016/j.ecoind.2022.109587
https://doi.org/10.1016/j.marpolbul.2011.03.032
https://doi.org/10.1016/j.marpolbul.2011.03.032
https://doi.org/10.1016/j.marpolbul.2019.01.024
https://doi.org/10.1016/j.marpolbul.2021.112888
https://doi.org/10.1016/j.marpolbul.2016.09.025
https://doi.org/10.1016/j.envpol.2024.123327
https://www.bodc.ac.uk/resources/portals_and_links/merman/project_overview/
https://www.bodc.ac.uk/resources/portals_and_links/merman/project_overview/
https://coastalscience.noaa.gov/news/noaa-tests-mussel-watch-program-to-monitor-microplastics/
https://coastalscience.noaa.gov/news/noaa-tests-mussel-watch-program-to-monitor-microplastics/
https://doi.org/10.1016/j.scitotenv.2020.141175
https://doi.org/10.1016/j.marpolbul.2020.111.834
https://doi.org/10.1007/s10311-023-01593-3
https://doi.org/10.3390/md6020073
https://doi.org/10.1016/j.envpol.2020.113964
https://doi.org/10.1186/s43591-021-00022-y
https://doi.org/10.1186/s43591-021-00022-y
https://doi.org/10.1016/j.marpolbul.2017.10.054
https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2024/
https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2024/
https://doi.org/10.3390/md11082829
https://doi.org/10.1016/j.ecolind.2022.109212
https://doi.org/10.1016/j.chemosphere.2019.07.065
https://doi.org/10.1016/j.chemosphere.2019.07.065
https://doi.org/10.1016/j.scitotenv.2017.11.284
https://doi.org/10.1093/jaoac/78.2.543
https://doi.org/10.1016/j.marpolbul.2018.03.022
https://doi.org/10.1016/j.scitotenv.2021.146045
https://doi.org/10.1016/j.marpolbul.2018.05.068
https://doi.org/10.3989/scimar.04927.05A
https://doi.org/10.1021/acs.est.5b02005
https://doi.org/10.1016/j.envpol.2024.123571
https://doi.org/10.1021/acs.est.0c07781
https://doi.org/10.1111/conl.12781
https://doi.org/10.1111/ivb.12446
https://doi.org/10.2983/035.037.0405
https://doi.org/10.1016/j.marpolbul.2014.02.020
https://doi.org/10.1016/j.algal.2017.02.007
https://doi.org/10.1007/s00244-018-0504-3
https://doi.org/10.1016/j.marpolbul.2019.05.041
https://doi.org/10.1016/j.marpolbul.2019.05.041
https://doi.org/10.2989/18142320609504182
https://doi.org/10.2989/18142320609504182
https://doi.org/10.3389/fmars.2025.1673482
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


McGoran et al. 10.3389/fmars.2025.1673482
Shi, X., Xu, T., Gao, M., Bi, Y., Wang, J., Yin, Y., et al. (2024). Combined exposure of
emamectin benzoate and microplastics induces tight junction disorder, immune
disorder and inflammation in carp midgut via lysosome/ROS/ferroptosis pathway.
Water Res. 257, 121660. doi: 10.1016/j.watres.2024.121660

Shruti, V. C., Pérez-Guevara, F., Roy, P. D., and Kutralam-Muniasamy, G. (2022).
Analyzing microplastics with Nile Red: emerging trends, challenges, and prospects. J.
Hazardous Materials 423, 127171. doi: 10.1016/j.jhazmat.2021.127171

Shumway, S., Mladinich, K., Blaschik, N., Holohan, B. A., and Ward, J. E. (2023). A
critical assessment of microplastics in molluscan shellfish with recommendations for
experimental protocols, animal husbandry, publication, and future research. Rev.
Fisheries Sci Aquaculture, 1–133. doi: 10.1080/23308249.2023.2216301

Sipe, J. M., Bossa, N., Berger, W., von Windheim, N., Gall, K., and Wiesner, M. R.
(2022). From bottle to microplastics: can we estimate how our plastic products are
breaking down? Sci Total Environ. 814, 152460. doi: 10.1016/j.scitotenv.152460

Sparks, C. (2020). Microplastics in mussels along the coast of Cape Town, South
Africa. Bull. Environ. Contamination Toxicol. 104, 423–431. doi: 10.1007/s00128-020-
02809-w

Sparks, C., Awe, A., and Maneveld, J. (2021). Abundance and characteristics of
microplastics in retail mussels from Cape Town, South Africa. Mar. pollut. Bull. 166,
112186. doi: 10.1016/j.marpolbul.2021.112186

Sundt, P., Schulze, P. E., and Syversen, F. (2014). Sources of microplastic pollution to the
marine environment. Report no: M-321|2015 (Norwegian Environmental Agency), 1–86.

Tamis, J. E., Koelmans, A. A., Dröge, R., Kaag, N. H. B. M., Keur, M. C., Tromp, P. C.,
et al. (2021). Environmental risks of car tire microplastic particles and other road runoff
pollutants. Microplastics Nanoplastics 1, 10. doi: 10.1186/s43591-021-00008-w

Taurozzi, D., and Scalici, M. (2024). Seabirds from the poles: microplastics pollution
sentinels. Front. Mar. Sci 11. doi: 10.3389/fmars.2024.1343617

Teng, J., Zhao, J., Zhu, X., Shan, E., Zhang, C., Zhang, W., et al. (2021). Toxic effects
of exposure to microplastics with environmentally relevant shapes and concentrations:
accumulation, energy metabolism and tissue damage in oyster Crassostrea gigas.
Environ. pollut. 269, 116169. doi: 10.1016/j.envpol.2020.116169

Thompson, R. C., Courtene-Jones, W., Boucher, J., Pahl, S., Raubenhimer, K., and
Koelmans, A. A. (2024). Twenty years of microplastic pollution research – what have
we learned? Science 386, 2746. doi: 10.1016/1126/science.adl27746
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