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Autonomous Underwater Vehicle (AUV) trajectory planning for oceanographic
surveys is challenging and requires comprehensive and efficient data collection
for enhanced mission success. By strategically navigating and targeting high-
value data points, the AUV can operate longer and gather more essential
information for numerical ocean model calibration. Here, we propose a
geostatistical modelling workflow with two complementary objectives. First, to
jointly predict ocean temperature and spatial uncertainty maps, representing
regions with limited knowledge about the ocean properties of interest, from
where optimized navigation paths can be devised and updated. Second, to
efficiently assimilate the collected data and update an ocean model with the
new data. An autonomous oceanographic survey performed off W. Portugal
illustrates the proposed modelling workflow. We use the CMEMS product of
Atlantic-lberian-Biscay-lrish-Ocean Physics Analysis and Forecast as a priori and
conditioning data of the spatial predictions. During the survey, the data acquired
by the AUV are assimilated and used in new geostatistical predictions for the day
after the data acquisition. The results show that the proposed methodology
efficiently predicts daily ocean temperature and its spatial uncertainty, allowing
data assimilation from different sources (i.e., numerical models of ocean
dynamics and AUV sampling). This approach enables the assimilation of AUV
measurements and the model prediction to have higher value and
greater reliability.

KEYWORDS

AUV path planning, uncertainty mapping, geostatistical modeling, autonomous
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1 Introduction

Numerical models of ocean dynamics are essential tools for
predicting the spatiotemporal distribution of ocean properties such
as temperature and salinity. Accurate ocean predictions are
essential for different areas related to climate modelling and
forecasting, pollution monitoring, the blue economy, including
resource management, and predicting ocean behavior. However,
the quality and forecasting capabilities of numerical models of
ocean dynamics are highly dependent on the number, quality and
spatial distribution of in situ observations of ocean properties, as
these oceanographic measurements are assimilated during the
calibration of numerical models of ocean dynamics (Gould et al.,
2013; Sloyan et al.,, 2019). Knowing how often and where to the
sample the ocean is non-trivial due to the vastness and harsh
oceanographic environment, costs and complex logistics involved
during data acquisition.

Diverse technologies exist to sample the ocean. Traditionally, in
situ measurements are obtained using casts deployed from ships or
moored at buoys, and provide accurate high-resolution
measurements along the vertical direction for ocean model
calibration. However, they are logistically complex and costly to
operate and, while providing high-vertical resolution, they are
spatially sparsely distributed (Kite-Powell et al., 2008).
Complementary, Earth observation data are a great source of
information as they cover large extents of the ocean near-surface
but are subject to the first tenths of meters below the sea surface,
have low spatial resolution and depend on atmospheric conditions
(Minnett et al., 2019; O’Carroll et al., 2019; Mahdavi et al., 2021).

In recent years, the use of autonomous underwater vehicles
(AUVs) for ocean sampling has brought significant benefits and
garnered attention. These vehicles can carry various sensors that take
quasi-synoptic high-resolution measurements in continuous time of
several ocean properties in large areas at a relatively low-cost.
However, AUVs have endurance limitations, depending on the size
of the vehicle and navigation and ocean conditions. On average, the
endurance of the AUVs used in the field application shown herein is
up to 8 hours sailing at 3 knots. Due to these operational limitations
the AUV’s paths should be concentrated within areas of greater
relevance for numerical ocean model calibration and validation (e.g.,
areas of high spatial variability and/or uncertainty) (Gafurov and
Klochkov, 2015). Besides, the high variability of ocean dynamics and
the continuous influx of measured data by AUVs require the vehicle
to perform near-real-time intelligent trajectory planning (ie.,
adaptive sampling) (Petillo et al,, 2010; Yu et al,, 2022). In adaptive
sampling, the objective is to predict the types and spatiotemporal
locations of new sampling locations that are expected to be the most
useful (i.e., informative) given previously acquired data and the
vehicles’ characteristics in terms of navigation and autonomy
capabilities. Adaptive sampling strategies depend on the objectives
of the surveys, such as mine countermeasures (Hwang et al., 2019),
sampling for water mass classification (Paull et al., 2012), numerical
model solutions (Lermusiaux, 2007), and tracking coastal upwelling
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and river plume fronts (Zhang et al., 2012; Pinto et al., 2018; Mendes
et al,, 2021; Teixeira et al., 2021; Ge et al., 2023; Mo-Bjerkelund et al.,
2025), and the number and type of vehicles used. Various types of
multi-variable optimization algorithms can be used to plan intelligent
AUV trajectories (Yu et al,, 2022).

Here, we do not focus on the optimization algorithm applied for
adaptive sampling (Bernacchi et al., 2025), but on building near-
real-time relevant information regarding the spatial uncertainty of
ocean modelling when performing AUVs’ path planning. As for the
adaptive ocean sampling strategy, we use a lightweight multi-vehicle
path planning algorithm based on the Prize-Collecting Vehicle
Routing Problem (PCVRP) (Toth and Vigo, 2002; Toth and Vigo,
2014) capable of considering practical constraints typical of real-
world oceanographic surveys, such as endurance limitations for
each vehicle, distinct deployment and recovery locations and
known obstacles within the operational area. As adaptive
sampling requires near-real-time information about the spatial
distribution of ocean properties, the use of conventional
numerical models of ocean dynamics is challenging, as these
simulators are computationally expensive and their execution is
slow, hampering their usability in real-time planning tools.
Alternatively, we propose a computationally efficient proxy to
generate spatial uncertainty models and assimilate new data
through geostatistical simulation (Deutsch and Journel, 1998).
The multi-vehicle path planning is applied over three-
dimensional models of spatial uncertainty of ocean temperature
generated by computing the pointwise standard deviation distance
of a set of ocean temperature models predicted with geostatistical
simulation (i.e., geostatistical realizations). The pointwise standard
deviation model allows the identification of areas with high
uncertainty when forecasting the model’s behavior (i.e., grid
locations are considered uncertain if they exhibit within the entire
ensemble of geostatistical simulations high variability). The
geostatistical realizations are generated based on calibrated
models of ocean dynamics up to a given day and existing direct
ocean observations. The use of geostatistical simulation alleviates
the computational burden of conventional numerical ocean models
(i.e., they act as a proxy of the full numerical model of ocean
dynamics), allowing for the easy assimilation of new direct
observations obtained during oceanographic surveys. This
approach provides good approximations for short-term ocean
temperature predictions and the corresponding spatial uncertainty.

The proposed methodology was subjected to real-world
conditions, where it was thoroughly tested and validated by a fleet
of Light Autonomous Underwater Vehicles (LAUVs) in an
oceanographic survey located offshore Nazaré (Portugal)
(Figure 1), in the context of the FRESNEL (Field expeRiments for
modEling, aSsimilatioN, and adaptive sampLing, https://
Ists.fe.up.pt/project/fresnel) field campaign conducted in late
October 2024. In this oceanography survey, the AUV’s path is
daily planned based on ocean temperature predictions constrained
by the data acquired on that day. The experimental results obtained
using the proposed methodology demonstrate its effectiveness in
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Location of the oceanographic survey, offshore Nazaré (Portugal): (a) regional sea surface temperature extracted from Copernicus Marine Service
(CMEMS), model Atlantic-Iberian Biscay Irish- Ocean Physics Analysis and Forecast (European Union-Copernicus Marine Service, 2017); and (b) the
grid refinement through uniform resampling of the original sea surface temperature model (a)); (c) the bathymetry of the region of interest.

Coordinate reference system: WGS 84/UTM zone 29N.

operational contexts, the benefits of integrating it with adaptive
ocean sampling strategies and potential future implementation on
board the AUVs.

In the next section, we describe in detail the proposed
methodology to assimilate direct observations of ocean
temperature acquired by AUVs and how to update spatial
uncertainty maps. Then, in Section 3, we show the results
obtained in the FRESNEL survey. Section 4 presents the results
obtained and discusses and explores potential pathways for the
proposed methodology. The last section summarizes the main
conclusions of this work.

2 Methodology

The proposed methodology uses geostatistical simulation (i.e.,
direction sequential simulation (Soares, 2001) to predict three-
dimensional models of ocean temperature and corresponding
spatial uncertainty. The predictions are short-term, for a relatively
small number of consecutive days, but they use limited
computational resources and avoid running full numerical models
of ocean dynamics. The temperature predictions are based on pre-
existing, calibrated deterministic numerical models of ocean
dynamics, which extend up to a certain day before the survey
starts (or the day of interest). Figure 2 summarizes the proposed
methodology, described in the subsequent sub-sections.
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2.1 Geostatistical prediction of ocean
temperature

In stochastic sequential simulation (Deutsch and Journel, 1998)
all cells of a numerical model, represented by a grid, are sequentially
visited following a random path. At each location along the random
path, the kriging estimate and variance computed jointly from
observed data (i.e., in situ measurements) and previously
simulated grid cell locations within a neighborhood are used to
define a probability distribution function of the variable of interest
from which a value is drawn. As each run considers a different
random path, and therefore the conditioning data is modified along
the simulation path, it results in diverse predictions (i.e.,
geostatistical realizations). Different stochastic sequential
simulation methods exist and differ in their a priori assumptions
(Deutsch and Journel, 1998). In the proposed methodology, we use
direct sequential simulation (Soares, 2001) (detailed in Appendix I)
due to its flexibility and the ability to use the observed data directly
without any Gaussian transform. In direct sequential simulation,
the kriging estimate and kriging variance are computed following a
spatiotemporal covariance matrix represented by a variogram
model fitted to the experimental variogram, often computed from
observations. In the field application show below we use a
variogram model fitted to the CMEMS data due to their spatially
exhaustive nature. The imposed spatiotemporal continuity model
(i.e., covariance matrix) is an a priori assumption about the natural
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Schematic representation of the proposed methodology

phenomena being modelled and exactly reproduced in all
geostatistical realizations within a given ensemble of models.

The proposed methodology starts by retrieving the expected
spatiotemporal continuity pattern for ocean temperature based on
the a priori information provided by a deterministic calibrated
ocean model for the study area over a long period (Figure 3a). These
data are used to explore and model the spatiotemporal continuity
pattern (i.e., directions of maximum spatiotemporal continuity). In
the proposed methodology, the horizontal dimension represents the
geographical coordinates of the numerical model of ocean dynamics
(i.e., a deterministic model), while the vertical direction represents
the temporal evolution of the model at a given depth. Specifically,
the long-term calibrated ocean temperature is collated at each depth
of the ocean numerical model (Figure 3a). Then, the three-
dimensional experimental variogram is computed and fitted with
a model. The range of the fitted variogram model along the vertical
direction represents the maximum temporal continuity expected at
that specific depth, and the horizontal range its spatial extent. The
spatial analysis continues by repeating this process for the next
depth of the numerical model of ocean dynamics (or down to the
depth of interest). The independent variogram model per depth
sample simultaneously capture of the spatiotemporal distribution of
ocean temperature.
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To forecast ocean temperature at a given depth, we use a set of
fourteen previous days from the deterministic calibrated ocean
model as observations while predicting the subsequent day
(Figure 3b). Hence, the simulation grid is composed of a given
number of layers as represented by the a priori data (i.e., the
calibrated ocean model), followed by the layer corresponding to
the forecasting day. Alternatively, additional a priori days might be
considered depending on the oceanographic complexity of the
study area. The selection of the grid size will mainly affect the
computational cost of the simulation. After trial and error, and
considering the study area specification, we opted for fourteen days,
as this number allows for an efficient prediction of the subsequent
day within a reasonable computational cost that could eventually be
supported on-board by an AUV. Due to computational limitations,
each depth of the numerical model is independently simulated. The
described procedure is then applied to each depth of interest.

Multiple runs of the geostatistical simulation generate multiple
geostatistical realizations of ocean temperature. The ensemble of
geostatistical realizations approximates the posterior distribution of
the predictions. It can be analyzed to assess the spatial uncertainty
and variability of ocean temperature predictions. The spatial
uncertainty maps can be obtained by computing the pointwise
inter-quartile distance, or standard deviation, within the ensemble
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(a) Ocean temperature predicted from a calibrated deterministic temperature model for a given depth considering a long temporal window (i.e., one
year). Each layer represents a given day in the long-term prediction; (b) for the same depth, zoom-in of the most recent fourteen consecutive days
predicted by the deterministic model. This information is used to predict the subsequent one in the application example shown herein.

of geostatistical realizations. The predicted uncertainty maps enable
the identification of areas that are more complex and/or less
characterized, and can be used for intelligent path planning
algorithms where high-uncertainty regions have higher rewards.

2.2 Data assimilation and stochastic model
update

Besides predicting spatial uncertainty models for AUV path
planning, the proposed geostatistical framework allows the seamless
integration of direct measurements acquired by an AUV during an
oceanography campaign. The data acquired on a given day of the
oceanographic survey updates the ocean temperature forecast for
the subsequent day. At this stage, we aim to predict the ocean
temperature for the next day by combining previous predictions
with newly measured data. In this case, the simulation grid is
defined with only two layers (i.e., time steps). The first layer
corresponds to the direct measurements of the AUV at its
corresponding spatial location, and the second layer comprises
the time step at which the new prediction will occur. As the
spatial sampling of the AUV is frequently larger than the spatial
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resolution of the simulation grid, the data values that fall into the
same cell are averaged to accommodate for resolution differences. In
other words, we use a simple arithmetic upscaling between the AUV
measurements and the grid cell value. Alternative methods could be
applied depending on the objectives of the oceanographic survey
(e.g., select the most extreme measurement for the upscaling). In
highly heterogeneous areas (e.g., front regions) gradient-aware
upscaling methods might produce more robust results. To
incorporate the spatiotemporal patterns of the predictions for the
day when the direct measurements were obtained, we use stochastic
sequential simulation with local means (Soares, 2001) at the time
step corresponding to the data acquisition. In direct sequential
simulation with local means, the simulated value is based on its
conditional distribution, considering previously simulated values,
sample data and the local expected value as represented by the local
mean model. This approach enables the update of the entire ocean
model while simultaneously incorporating direct AUV
measurements and previous a priori knowledge.

By incorporating these data sources, the simulation captures
spatial trends and patterns that might otherwise be overlooked. It
allows us to integrate new measurements without losing the overall
spatial features obtained during the first step. The uncertainty of
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these predictions can be assessed as previously described (e.g., by
computing the pointwise inter-quartile distance, or standard
deviation, from a set of geostatistical realizations).

The temperature and spatial uncertainty predictions, obtained
with the proposed methodology, are then used for intelligent path
planning of AUVs and are sequentially updated based on the direct
measurements acquired by AUVs during the oceanographic survey.
The adaptive sampling algorithm (Bernacchi et al., 2025)
concentrates measurements on locations with higher uncertainty
as predicted by the ensemble of geostatistical realizations (i.e.,
spatial uncertainty maps). The use of this geostatistical simulation
method allows to assimilate the direct observations and
stochastically update the a priori models.

3 Field demonstration

The proposed methodology was tested and validated in a field
oceanographic survey off W. Portugal (Figure 1) during the
FRESNEL campaign for the last two weeks in October of 2024.
The campaign aimed to test the autonomous maritime robots’
capacity to sample the ocean water, adapting their path based on
the predictive models’ outputs, and to assimilate the acquired data
for the subsequent predictions. The campaign involved the
simultaneous deployment of multiple assets, including three Light
Autonomous Underwater Vehicles (LAUVs) developed and
operated by the Underwater Systems and Technology Laboratory
(LSTS), University of Porto. The AUVs were equipped with
conductivity, temperature, and depth (CTD) sensors that sampled
the water from the surface until a depth of approximately 40 meters
(to a maximum of 100 meters in specific cases where the bathymetry
allows) following a “yo-yo” descending-ascending movement.

3.1 Data

The deterministic numerical model of ocean dynamics used to
conditioning the geostatistical simulation was downloaded from the
Copernicus Marine Service (CMEMS), model Atlantic-Iberian
Biscay Irish- Ocean Physics Analysis and Forecast (European
Union-Copernicus Marine Service, 2017), covering an area from
11.75°W to 8.43°W and from 39.00°N to 41.16°N with horizontal
resolution of 0.028° in both directions, approximately 2.37km and
3.09km in x and y, respectively (Figure la), at Nazaré latitude.
Vertically, the model has 17 depth samples, with decreasing vertical
resolution with depth, covering from the sea surface to a depth of 40
meters. Temperature prediction is performed for each of these
depth samples individually and independently. Since the spatial
resolution of the AUV measurements is much higher than the
deterministic CMEMS model, we increased the model grid spatial
resolution eight times, by uniformly resampling the original grid, to
better discretize the data to be assimilated throughout the grid
model (Figure 1b). We applied the proposed methodology
considering October 29th, 2024 as acquisition day, to predict the
next day (i.e., October 30th, 2024).
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3.2 Results

On the first survey data (October 29th, 2024), ocean
temperature predictions and spatial uncertainty models were
generated using information from the 14 previous days of the
CMEMS product for the study area. This step yields seventeen 3-
D datasets (i.e., one per depth sample considered), where the
horizontal dimensions represent the x and y coordinates of the
study area, and the vertical dimension represents the time step (i.e.,
a day). The CMEMS information was used as experimental data to
model the three-dimensional variogram models at each depth
sample and to constrain the geostatistical simulation of 100
realizations per depth. Figure 4 shows the resulting temperature
and corresponding spatial uncertainty represented by the pointwise
median (Figure 4a) and standard deviation (Figure 4b) computed
from the ensemble of 100 geostatistical realizations, respectively.
This information was used to select the deployment location and to
define the AUVS’ path planning (Bernacchi et al., 2025) on the first
day of the survey (Figure 4c).

After deployment and AUV recovery, the measured
temperature values at their corresponding coordinates and depths
were upscaled to fit into the refined model grid. In general, the
CMEMS model over predicts the ocean temperature measurements
acquired by the AUV, with its performance decreasing with depth
(Figure 5). Also, the range of AUV temperature measurements per
grid cell increases with depth. This effect is expected as the vertical
size of the CMEMS model grid cells increases with depth, allowing
for more AUV samples per grid cell.

The upscaled temperature values were then assimilated into the
models as conditioning data for predicting ocean temperature and
spatial uncertainty for the next day.

3.3 Assimilation of temperature values and
prediction

To highlight the importance of data assimilation and model
update in obtaining more reliable short-term predictions, we begin
by illustrating the temperature and spatial uncertainty predictions
without AUV data assimilation for the next day (October 30th,
2024). Figure 6 illustrates temperature predictions based exclusively
on the 14 days prior to the prediction day, CMEMS data, and does
not consider any in-situ data. The pointwise median of 100
geostatistical realizations of temperature (Figure 6a) shows higher
temperature values to the west of the model than in the opposite
direction. The same region is characterized by high spatial
uncertainty values (Figure 6b).

The next day’s predictions after assimilation of the temperature
values measured by the AUV are shown in Figure 7. The main
spatial patterns of temperature are similar to those obtained without
the assimilation (Figure 6), as the geostatistical simulation includes
the a priori information provided by the calibrated oceanographic
model for the survey area and the in situ measurements. However,
the spatial uncertainty map (Figure 7b) changes considerably,
illustrating the update of the a priori information with the data
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FIGURE 4

(a) Predicted pointwise median temperature models for the deployment day; (b) the corresponding uncertainty represented by the pointwise standard
deviation. The red rectangle represents the refined grid location for deployment and study area; and (c) AUV path projection (black trajectory) at the sea
surface (green circle representing start and red star the end of the path). Coordinate reference system: WGS 84/UTM zone 29N.
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acquired during the survey. The highest temperatures (i.e., ~18°C)
are located in the western part of the model. Still, the uncertainty
values are low for the area surveyed by the AUV and larger in the
opposite direction. Additionally, the predictions obtained from the
CMEMS model are corrected to include colder water for the region
sampled by the AUV (Figure 5).

On October 30th, 2024, two different AUVs measured ocean
temperature within the study area. One AUV followed a hand-
planned navigation path, while the other used an automatically
defined path planning over the three-dimensional spatial
uncertainty model (Figures 8a, d). As we are not focused on the
benefits and limitations of manual versus automatic AUV path
planning, we assess the robustness of the data assimilation
capabilities of the proposed methodology. Figure 8 shows the
match between the direct measurements of both AUV versus the
original CMEMS model and the updated one with the information
collected on the previous day. The model update allows better
predictions with higher match rates between the model and actual

Frontiers in Marine Science

observations, allowing for compensation for the cold waters missing
in the original CMEMS model.

4 Discussion

We proposed herein a geostatistical framework with a threefold
objective. The first approach is to incorporate uncertainty into
short-term predictions by utilizing full numerical models of ocean
dynamics as conditioning data. The second objective is to assimilate
direct measurements of ocean properties and update the initial
ocean model. The third is to be computationally efficient, requiring
low computational power aiming at the deployment of the proposed
methodology in an autonomous vehicle for real-near-time data
assimilation and model update.

The field application example demonstrates the capability of the
predicted spatial uncertainty model to serve as input for an
automatic AUV path planner. Areas associated with high spatial
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uncertainty are those where the calibrated deterministic numerical
model of ocean dynamics exhibits more temporal variability, and
therefore, mismatches between actual observations and predictions
are expected. The application example illustrates an AUV
navigation path through uncertain areas (Figure 4) and an
overestimation of ocean temperature (Figure 5). The assimilation
of the acquired data results in a change in the spatial uncertainty
pattern (Figure 6, Figure 7), illustrating the impact of data
assimilation on the prediction. Additionally, the data assimilation

produces predictions that are closer to the actual observations
(Figure 8), even for navigation paths that do not depend on the
predicted spatial uncertainty.

While the geostatistical approach does not include any physical
constraints in terms of oceanographic behavior, its computational
costs are negligible when compared with full numerical models of
ocean dynamics. The computational cost of a geostatistical
realization depends exclusively on the number of grid cells that
comprise the model covering area of interest. This aspect opens the
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FIGURE 6

Next day prediction without assimilation of the AUV measured data, coordinate reference system: WGS 84/UTM zone 29N. (a) Pointwise median
model predicted temperature, (b) uncertainty calculated with pointwise standard deviation, (c) one geostatistical realization of temperature.
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FIGURE 7

Next day prediction with assimilation of the AUV measured data. (a) Pointwise median model of predicted temperature, (b) uncertainty calculated

with pointwise standard deviation, (c) one realization of temperature.

door for the deployment of these methods in the AUV’s on-board
processing unit, as well as for automatic data assimilation, model
update, and spatial uncertainty prediction in near-real-time and
data cycles shorter than those illustrated herein.

On the other hand, the quality of the prediction depends on the
quality of the existing a priori ocean model and its resolution, as this
information will be used as constraining data, as well as the ability
to retrieve reliable variogram models from the existing historical
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data. Using an incorrect variogram model will decrease the quality
of predictions and the usefulness of the proposed methodology, and
a lower resolution may cause problems when identifying sub-
mesoscale structures. Additionally, the independent prediction at
each depth sample is a disadvantage, as it may overlook existing
vertical dependencies. This aspect might be addressed with
dimensionality reduction techniques as proposed in prediction
problems related to geophysics (Azevedo, 2022) or with the
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FIGURE 8

(a) LAUV-Xplore 5 path from the 30" of Oct., and geostatistical temperature prediction for the same day after assimilation (green circle representing
start and red star the end of the path). (b) Comparison of measurements and geostatistical model prediction for LAUV-Xplore 5 data location.

(c) Comparison of measurements and geostatistical model prediction with AUV data assimilation from LAUV-Xplore 5 data location. (d) LAUV-Xplore
3 path from the 30™ of Oct., and geostatistical temperature prediction for the same day after assimilation (green circle representing start and red
star the end of the path). (e) Comparison of measurements and geostatistical model prediction for LAUV-Xplore 3 data location. (f) Comparison of
measurements and geostatistical model prediction with AUV data assimilation from LAUV-Xplore 3 data location.
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development of a full spatiotemporal model. With the proposed
approach the vertical dependencies are implicitly modelled by the a
priori information used as data conditioning during the prediction.

Finally, the geostatistical framework enables a flexible approach.
While the application example shown herein deals with ocean
temperature, the property of interest could be any biogeochemical
property if there are historical data for this property in the study
area and sensors to measure it in the field. Given its low
computational cost, the geostatistical model can also be
implemented on-board the AUVs, allowing it to be updated more
frequently with in situ data and to optimize operations on the fly
using as priors to adaptive sampling algorithms.

5 Conclusions

In this work, we introduced a geostatistical modelling approach
designed to support smart data collection and efficient trajectory
planning for AUVs. By predicting ocean temperature and spatial
uncertainty, the method qualifies AUVs to identify and prioritize
regions where data collection would be most valuable. This targeted
approach increases knowledge while reducing unnecessary
exploration, ultimately enhancing the scientific return of
oceanographic missions.

Although, this methodology can be applied as is to an
oceanographic campaign, it would benefit from some upgrades
such as using an a priori model with higher resolution, overcoming
the necessity of increasing the resolution by interpolation. This will
allow to better capture sub-mesoscale structures and interesting
features to sample.

Due to the method’s ability to work with lightweight
computations, making it well suited for real-time decision making
in the field, the integration of the algorithm into the AUV during
the deployment also brings autonomy to the sampling, and makes
use of a more efficient path planning that have previous
measurements in consideration and accommodates real-time
conditions and unexpected changes in the environment.
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