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Autonomous Underwater Vehicle (AUV) trajectory planning for oceanographic

surveys is challenging and requires comprehensive and efficient data collection

for enhanced mission success. By strategically navigating and targeting high-

value data points, the AUV can operate longer and gather more essential

information for numerical ocean model calibration. Here, we propose a

geostatistical modelling workflow with two complementary objectives. First, to

jointly predict ocean temperature and spatial uncertainty maps, representing

regions with limited knowledge about the ocean properties of interest, from

where optimized navigation paths can be devised and updated. Second, to

efficiently assimilate the collected data and update an ocean model with the

new data. An autonomous oceanographic survey performed off W. Portugal

illustrates the proposed modelling workflow. We use the CMEMS product of

Atlantic-Iberian-Biscay-Irish-Ocean Physics Analysis and Forecast as a priori and

conditioning data of the spatial predictions. During the survey, the data acquired

by the AUV are assimilated and used in new geostatistical predictions for the day

after the data acquisition. The results show that the proposed methodology

efficiently predicts daily ocean temperature and its spatial uncertainty, allowing

data assimilation from different sources (i.e., numerical models of ocean

dynamics and AUV sampling). This approach enables the assimilation of AUV

measurements and the model prediction to have higher value and

greater reliability.
KEYWORDS

AUV path planning, uncertainty mapping, geostatistical modeling, autonomous
underwater vehicles (AUVs), ocean, predictive models, data assimilation
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1 Introduction

Numerical models of ocean dynamics are essential tools for

predicting the spatiotemporal distribution of ocean properties such

as temperature and salinity. Accurate ocean predictions are

essential for different areas related to climate modelling and

forecasting, pollution monitoring, the blue economy, including

resource management, and predicting ocean behavior. However,

the quality and forecasting capabilities of numerical models of

ocean dynamics are highly dependent on the number, quality and

spatial distribution of in situ observations of ocean properties, as

these oceanographic measurements are assimilated during the

calibration of numerical models of ocean dynamics (Gould et al.,

2013; Sloyan et al., 2019). Knowing how often and where to the

sample the ocean is non-trivial due to the vastness and harsh

oceanographic environment, costs and complex logistics involved

during data acquisition.

Diverse technologies exist to sample the ocean. Traditionally, in

situ measurements are obtained using casts deployed from ships or

moored at buoys, and provide accurate high-resolution

measurements along the vertical direction for ocean model

calibration. However, they are logistically complex and costly to

operate and, while providing high-vertical resolution, they are

spatially sparsely distributed (Kite-Powell et al., 2008).

Complementary, Earth observation data are a great source of

information as they cover large extents of the ocean near-surface

but are subject to the first tenths of meters below the sea surface,

have low spatial resolution and depend on atmospheric conditions

(Minnett et al., 2019; O’Carroll et al., 2019; Mahdavi et al., 2021).

In recent years, the use of autonomous underwater vehicles

(AUVs) for ocean sampling has brought significant benefits and

garnered attention. These vehicles can carry various sensors that take

quasi-synoptic high-resolution measurements in continuous time of

several ocean properties in large areas at a relatively low-cost.

However, AUVs have endurance limitations, depending on the size

of the vehicle and navigation and ocean conditions. On average, the

endurance of the AUVs used in the field application shown herein is

up to 8 hours sailing at 3 knots. Due to these operational limitations

the AUV’s paths should be concentrated within areas of greater

relevance for numerical ocean model calibration and validation (e.g.,

areas of high spatial variability and/or uncertainty) (Gafurov and

Klochkov, 2015). Besides, the high variability of ocean dynamics and

the continuous influx of measured data by AUVs require the vehicle

to perform near-real-time intelligent trajectory planning (i.e.,

adaptive sampling) (Petillo et al., 2010; Yu et al., 2022). In adaptive

sampling, the objective is to predict the types and spatiotemporal

locations of new sampling locations that are expected to be the most

useful (i.e., informative) given previously acquired data and the

vehicles’ characteristics in terms of navigation and autonomy

capabilities. Adaptive sampling strategies depend on the objectives

of the surveys, such as mine countermeasures (Hwang et al., 2019),

sampling for water mass classification (Paull et al., 2012), numerical

model solutions (Lermusiaux, 2007), and tracking coastal upwelling
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and river plume fronts (Zhang et al., 2012; Pinto et al., 2018; Mendes

et al., 2021; Teixeira et al., 2021; Ge et al., 2023; Mo-Bjørkelund et al.,

2025), and the number and type of vehicles used. Various types of

multi-variable optimization algorithms can be used to plan intelligent

AUV trajectories (Yu et al., 2022).

Here, we do not focus on the optimization algorithm applied for

adaptive sampling (Bernacchi et al., 2025), but on building near-

real-time relevant information regarding the spatial uncertainty of

ocean modelling when performing AUVs’ path planning. As for the

adaptive ocean sampling strategy, we use a lightweight multi-vehicle

path planning algorithm based on the Prize-Collecting Vehicle

Routing Problem (PCVRP) (Toth and Vigo, 2002; Toth and Vigo,

2014) capable of considering practical constraints typical of real-

world oceanographic surveys, such as endurance limitations for

each vehicle, distinct deployment and recovery locations and

known obstacles within the operational area. As adaptive

sampling requires near-real-time information about the spatial

distribution of ocean properties, the use of conventional

numerical models of ocean dynamics is challenging, as these

simulators are computationally expensive and their execution is

slow, hampering their usability in real-time planning tools.

Alternatively, we propose a computationally efficient proxy to

generate spatial uncertainty models and assimilate new data

through geostatistical simulation (Deutsch and Journel, 1998).

The multi-vehicle path planning is applied over three-

dimensional models of spatial uncertainty of ocean temperature

generated by computing the pointwise standard deviation distance

of a set of ocean temperature models predicted with geostatistical

simulation (i.e., geostatistical realizations). The pointwise standard

deviation model allows the identification of areas with high

uncertainty when forecasting the model’s behavior (i.e., grid

locations are considered uncertain if they exhibit within the entire

ensemble of geostatistical simulations high variability). The

geostatistical realizations are generated based on calibrated

models of ocean dynamics up to a given day and existing direct

ocean observations. The use of geostatistical simulation alleviates

the computational burden of conventional numerical ocean models

(i.e., they act as a proxy of the full numerical model of ocean

dynamics), allowing for the easy assimilation of new direct

observations obtained during oceanographic surveys. This

approach provides good approximations for short-term ocean

temperature predictions and the corresponding spatial uncertainty.

The proposed methodology was subjected to real-world

conditions, where it was thoroughly tested and validated by a fleet

of Light Autonomous Underwater Vehicles (LAUVs) in an

oceanographic survey located offshore Nazaré (Portugal)

(Figure 1), in the context of the FRESNEL (Field expeRiments for

modEling, aSsimilatioN, and adaptive sampLing, https://

lsts.fe.up.pt/project/fresnel) field campaign conducted in late

October 2024. In this oceanography survey, the AUV’s path is

daily planned based on ocean temperature predictions constrained

by the data acquired on that day. The experimental results obtained

using the proposed methodology demonstrate its effectiveness in
frontiersin.org
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operational contexts, the benefits of integrating it with adaptive

ocean sampling strategies and potential future implementation on

board the AUVs.

In the next section, we describe in detail the proposed

methodology to assimilate direct observations of ocean

temperature acquired by AUVs and how to update spatial

uncertainty maps. Then, in Section 3, we show the results

obtained in the FRESNEL survey. Section 4 presents the results

obtained and discusses and explores potential pathways for the

proposed methodology. The last section summarizes the main

conclusions of this work.
2 Methodology

The proposed methodology uses geostatistical simulation (i.e.,

direction sequential simulation (Soares, 2001) to predict three-

dimensional models of ocean temperature and corresponding

spatial uncertainty. The predictions are short-term, for a relatively

small number of consecutive days, but they use limited

computational resources and avoid running full numerical models

of ocean dynamics. The temperature predictions are based on pre-

existing, calibrated deterministic numerical models of ocean

dynamics, which extend up to a certain day before the survey

starts (or the day of interest). Figure 2 summarizes the proposed

methodology, described in the subsequent sub-sections.
Frontiers in Marine Science 03
2.1 Geostatistical prediction of ocean
temperature

In stochastic sequential simulation (Deutsch and Journel, 1998)

all cells of a numerical model, represented by a grid, are sequentially

visited following a random path. At each location along the random

path, the kriging estimate and variance computed jointly from

observed data (i.e., in situ measurements) and previously

simulated grid cell locations within a neighborhood are used to

define a probability distribution function of the variable of interest

from which a value is drawn. As each run considers a different

random path, and therefore the conditioning data is modified along

the simulation path, it results in diverse predictions (i.e.,

geostatistical realizations). Different stochastic sequential

simulation methods exist and differ in their a priori assumptions

(Deutsch and Journel, 1998). In the proposed methodology, we use

direct sequential simulation (Soares, 2001) (detailed in Appendix I)

due to its flexibility and the ability to use the observed data directly

without any Gaussian transform. In direct sequential simulation,

the kriging estimate and kriging variance are computed following a

spatiotemporal covariance matrix represented by a variogram

model fitted to the experimental variogram, often computed from

observations. In the field application show below we use a

variogram model fitted to the CMEMS data due to their spatially

exhaustive nature. The imposed spatiotemporal continuity model

(i.e., covariance matrix) is an a priori assumption about the natural
FIGURE 1

Location of the oceanographic survey, offshore Nazaré (Portugal): (a) regional sea surface temperature extracted from Copernicus Marine Service
(CMEMS), model Atlantic-Iberian Biscay Irish- Ocean Physics Analysis and Forecast (European Union-Copernicus Marine Service, 2017); and (b) the
grid refinement through uniform resampling of the original sea surface temperature model (a)); (c) the bathymetry of the region of interest.
Coordinate reference system: WGS 84/UTM zone 29N.
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phenomena being modelled and exactly reproduced in all

geostatistical realizations within a given ensemble of models.

The proposed methodology starts by retrieving the expected

spatiotemporal continuity pattern for ocean temperature based on

the a priori information provided by a deterministic calibrated

ocean model for the study area over a long period (Figure 3a). These

data are used to explore and model the spatiotemporal continuity

pattern (i.e., directions of maximum spatiotemporal continuity). In

the proposed methodology, the horizontal dimension represents the

geographical coordinates of the numerical model of ocean dynamics

(i.e., a deterministic model), while the vertical direction represents

the temporal evolution of the model at a given depth. Specifically,

the long-term calibrated ocean temperature is collated at each depth

of the ocean numerical model (Figure 3a). Then, the three-

dimensional experimental variogram is computed and fitted with

a model. The range of the fitted variogram model along the vertical

direction represents the maximum temporal continuity expected at

that specific depth, and the horizontal range its spatial extent. The

spatial analysis continues by repeating this process for the next

depth of the numerical model of ocean dynamics (or down to the

depth of interest). The independent variogram model per depth

sample simultaneously capture of the spatiotemporal distribution of

ocean temperature.
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To forecast ocean temperature at a given depth, we use a set of

fourteen previous days from the deterministic calibrated ocean

model as observations while predicting the subsequent day

(Figure 3b). Hence, the simulation grid is composed of a given

number of layers as represented by the a priori data (i.e., the

calibrated ocean model), followed by the layer corresponding to

the forecasting day. Alternatively, additional a priori days might be

considered depending on the oceanographic complexity of the

study area. The selection of the grid size will mainly affect the

computational cost of the simulation. After trial and error, and

considering the study area specification, we opted for fourteen days,

as this number allows for an efficient prediction of the subsequent

day within a reasonable computational cost that could eventually be

supported on-board by an AUV. Due to computational limitations,

each depth of the numerical model is independently simulated. The

described procedure is then applied to each depth of interest.

Multiple runs of the geostatistical simulation generate multiple

geostatistical realizations of ocean temperature. The ensemble of

geostatistical realizations approximates the posterior distribution of

the predictions. It can be analyzed to assess the spatial uncertainty

and variability of ocean temperature predictions. The spatial

uncertainty maps can be obtained by computing the pointwise

inter-quartile distance, or standard deviation, within the ensemble
FIGURE 2

Schematic representation of the proposed methodology.
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of geostatistical realizations. The predicted uncertainty maps enable

the identification of areas that are more complex and/or less

characterized, and can be used for intelligent path planning

algorithms where high-uncertainty regions have higher rewards.
2.2 Data assimilation and stochastic model
update

Besides predicting spatial uncertainty models for AUV path

planning, the proposed geostatistical framework allows the seamless

integration of direct measurements acquired by an AUV during an

oceanography campaign. The data acquired on a given day of the

oceanographic survey updates the ocean temperature forecast for

the subsequent day. At this stage, we aim to predict the ocean

temperature for the next day by combining previous predictions

with newly measured data. In this case, the simulation grid is

defined with only two layers (i.e., time steps). The first layer

corresponds to the direct measurements of the AUV at its

corresponding spatial location, and the second layer comprises

the time step at which the new prediction will occur. As the

spatial sampling of the AUV is frequently larger than the spatial
Frontiers in Marine Science 05
resolution of the simulation grid, the data values that fall into the

same cell are averaged to accommodate for resolution differences. In

other words, we use a simple arithmetic upscaling between the AUV

measurements and the grid cell value. Alternative methods could be

applied depending on the objectives of the oceanographic survey

(e.g., select the most extreme measurement for the upscaling). In

highly heterogeneous areas (e.g., front regions) gradient-aware

upscaling methods might produce more robust results. To

incorporate the spatiotemporal patterns of the predictions for the

day when the direct measurements were obtained, we use stochastic

sequential simulation with local means (Soares, 2001) at the time

step corresponding to the data acquisition. In direct sequential

simulation with local means, the simulated value is based on its

conditional distribution, considering previously simulated values,

sample data and the local expected value as represented by the local

mean model. This approach enables the update of the entire ocean

model while simultaneously incorporating direct AUV

measurements and previous a priori knowledge.

By incorporating these data sources, the simulation captures

spatial trends and patterns that might otherwise be overlooked. It

allows us to integrate new measurements without losing the overall

spatial features obtained during the first step. The uncertainty of
FIGURE 3

(a) Ocean temperature predicted from a calibrated deterministic temperature model for a given depth considering a long temporal window (i.e., one
year). Each layer represents a given day in the long-term prediction; (b) for the same depth, zoom-in of the most recent fourteen consecutive days
predicted by the deterministic model. This information is used to predict the subsequent one in the application example shown herein.
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these predictions can be assessed as previously described (e.g., by

computing the pointwise inter-quartile distance, or standard

deviation, from a set of geostatistical realizations).

The temperature and spatial uncertainty predictions, obtained

with the proposed methodology, are then used for intelligent path

planning of AUVs and are sequentially updated based on the direct

measurements acquired by AUVs during the oceanographic survey.

The adaptive sampling algorithm (Bernacchi et al., 2025)

concentrates measurements on locations with higher uncertainty

as predicted by the ensemble of geostatistical realizations (i.e.,

spatial uncertainty maps). The use of this geostatistical simulation

method allows to assimilate the direct observations and

stochastically update the a priori models.
3 Field demonstration

The proposed methodology was tested and validated in a field

oceanographic survey off W. Portugal (Figure 1) during the

FRESNEL campaign for the last two weeks in October of 2024.

The campaign aimed to test the autonomous maritime robots’

capacity to sample the ocean water, adapting their path based on

the predictive models’ outputs, and to assimilate the acquired data

for the subsequent predictions. The campaign involved the

simultaneous deployment of multiple assets, including three Light

Autonomous Underwater Vehicles (LAUVs) developed and

operated by the Underwater Systems and Technology Laboratory

(LSTS), University of Porto. The AUVs were equipped with

conductivity, temperature, and depth (CTD) sensors that sampled

the water from the surface until a depth of approximately 40 meters

(to a maximum of 100 meters in specific cases where the bathymetry

allows) following a “yo-yo” descending-ascending movement.
3.1 Data

The deterministic numerical model of ocean dynamics used to

conditioning the geostatistical simulation was downloaded from the

Copernicus Marine Service (CMEMS), model Atlantic-Iberian

Biscay Irish- Ocean Physics Analysis and Forecast (European

Union-Copernicus Marine Service, 2017), covering an area from

11.75°W to 8.43°W and from 39.00°N to 41.16°N with horizontal

resolution of 0.028° in both directions, approximately 2.37km and

3.09km in x and y, respectively (Figure 1a), at Nazaré latitude.

Vertically, the model has 17 depth samples, with decreasing vertical

resolution with depth, covering from the sea surface to a depth of 40

meters. Temperature prediction is performed for each of these

depth samples individually and independently. Since the spatial

resolution of the AUV measurements is much higher than the

deterministic CMEMS model, we increased the model grid spatial

resolution eight times, by uniformly resampling the original grid, to

better discretize the data to be assimilated throughout the grid

model (Figure 1b). We applied the proposed methodology

considering October 29th, 2024 as acquisition day, to predict the

next day (i.e., October 30th, 2024).
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3.2 Results

On the first survey data (October 29th, 2024), ocean

temperature predictions and spatial uncertainty models were

generated using information from the 14 previous days of the

CMEMS product for the study area. This step yields seventeen 3-

D datasets (i.e., one per depth sample considered), where the

horizontal dimensions represent the x and y coordinates of the

study area, and the vertical dimension represents the time step (i.e.,

a day). The CMEMS information was used as experimental data to

model the three-dimensional variogram models at each depth

sample and to constrain the geostatistical simulation of 100

realizations per depth. Figure 4 shows the resulting temperature

and corresponding spatial uncertainty represented by the pointwise

median (Figure 4a) and standard deviation (Figure 4b) computed

from the ensemble of 100 geostatistical realizations, respectively.

This information was used to select the deployment location and to

define the AUVs’ path planning (Bernacchi et al., 2025) on the first

day of the survey (Figure 4c).

After deployment and AUV recovery, the measured

temperature values at their corresponding coordinates and depths

were upscaled to fit into the refined model grid. In general, the

CMEMS model over predicts the ocean temperature measurements

acquired by the AUV, with its performance decreasing with depth

(Figure 5). Also, the range of AUV temperature measurements per

grid cell increases with depth. This effect is expected as the vertical

size of the CMEMS model grid cells increases with depth, allowing

for more AUV samples per grid cell.

The upscaled temperature values were then assimilated into the

models as conditioning data for predicting ocean temperature and

spatial uncertainty for the next day.
3.3 Assimilation of temperature values and
prediction

To highlight the importance of data assimilation and model

update in obtaining more reliable short-term predictions, we begin

by illustrating the temperature and spatial uncertainty predictions

without AUV data assimilation for the next day (October 30th,

2024). Figure 6 illustrates temperature predictions based exclusively

on the 14 days prior to the prediction day, CMEMS data, and does

not consider any in-situ data. The pointwise median of 100

geostatistical realizations of temperature (Figure 6a) shows higher

temperature values to the west of the model than in the opposite

direction. The same region is characterized by high spatial

uncertainty values (Figure 6b).

The next day’s predictions after assimilation of the temperature

values measured by the AUV are shown in Figure 7. The main

spatial patterns of temperature are similar to those obtained without

the assimilation (Figure 6), as the geostatistical simulation includes

the a priori information provided by the calibrated oceanographic

model for the survey area and the in situ measurements. However,

the spatial uncertainty map (Figure 7b) changes considerably,

illustrating the update of the a priori information with the data
frontiersin.org
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acquired during the survey. The highest temperatures (i.e., ~18°C)

are located in the western part of the model. Still, the uncertainty

values are low for the area surveyed by the AUV and larger in the

opposite direction. Additionally, the predictions obtained from the

CMEMS model are corrected to include colder water for the region

sampled by the AUV (Figure 5).

On October 30th, 2024, two different AUVs measured ocean

temperature within the study area. One AUV followed a hand-

planned navigation path, while the other used an automatically

defined path planning over the three-dimensional spatial

uncertainty model (Figures 8a, d). As we are not focused on the

benefits and limitations of manual versus automatic AUV path

planning, we assess the robustness of the data assimilation

capabilities of the proposed methodology. Figure 8 shows the

match between the direct measurements of both AUV versus the

original CMEMS model and the updated one with the information

collected on the previous day. The model update allows better

predictions with higher match rates between the model and actual
Frontiers in Marine Science 07
observations, allowing for compensation for the cold waters missing

in the original CMEMS model.
4 Discussion

We proposed herein a geostatistical framework with a threefold

objective. The first approach is to incorporate uncertainty into

short-term predictions by utilizing full numerical models of ocean

dynamics as conditioning data. The second objective is to assimilate

direct measurements of ocean properties and update the initial

ocean model. The third is to be computationally efficient, requiring

low computational power aiming at the deployment of the proposed

methodology in an autonomous vehicle for real-near-time data

assimilation and model update.

The field application example demonstrates the capability of the

predicted spatial uncertainty model to serve as input for an

automatic AUV path planner. Areas associated with high spatial
FIGURE 4

(a) Predicted pointwise median temperature models for the deployment day; (b) the corresponding uncertainty represented by the pointwise standard
deviation. The red rectangle represents the refined grid location for deployment and study area; and (c) AUV path projection (black trajectory) at the sea
surface (green circle representing start and red star the end of the path). Coordinate reference system: WGS 84/UTM zone 29N.
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uncertainty are those where the calibrated deterministic numerical

model of ocean dynamics exhibits more temporal variability, and

therefore, mismatches between actual observations and predictions

are expected. The application example illustrates an AUV

navigation path through uncertain areas (Figure 4) and an

overestimation of ocean temperature (Figure 5). The assimilation

of the acquired data results in a change in the spatial uncertainty

pattern (Figure 6, Figure 7), illustrating the impact of data

assimilation on the prediction. Additionally, the data assimilation
Frontiers in Marine Science 08
produces predictions that are closer to the actual observations

(Figure 8), even for navigation paths that do not depend on the

predicted spatial uncertainty.

While the geostatistical approach does not include any physical

constraints in terms of oceanographic behavior, its computational

costs are negligible when compared with full numerical models of

ocean dynamics. The computational cost of a geostatistical

realization depends exclusively on the number of grid cells that

comprise the model covering area of interest. This aspect opens the
FIGURE 5

Comparison between temperature values from the CMEMS numerical model and the in-situ measurements from the AUV. Filled squares represent
the mean of all AUV measurements within a model grid cell. The gray lines represent the range of measurements taken by the AUV. Depth in meters.
FIGURE 6

Next day prediction without assimilation of the AUV measured data, coordinate reference system: WGS 84/UTM zone 29N. (a) Pointwise median
model predicted temperature, (b) uncertainty calculated with pointwise standard deviation, (c) one geostatistical realization of temperature.
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door for the deployment of these methods in the AUV’s on-board

processing unit, as well as for automatic data assimilation, model

update, and spatial uncertainty prediction in near-real-time and

data cycles shorter than those illustrated herein.

On the other hand, the quality of the prediction depends on the

quality of the existing a priori ocean model and its resolution, as this

information will be used as constraining data, as well as the ability

to retrieve reliable variogram models from the existing historical
Frontiers in Marine Science 09
data. Using an incorrect variogram model will decrease the quality

of predictions and the usefulness of the proposed methodology, and

a lower resolution may cause problems when identifying sub-

mesoscale structures. Additionally, the independent prediction at

each depth sample is a disadvantage, as it may overlook existing

vertical dependencies. This aspect might be addressed with

dimensionality reduction techniques as proposed in prediction

problems related to geophysics (Azevedo, 2022) or with the
FIGURE 7

Next day prediction with assimilation of the AUV measured data. (a) Pointwise median model of predicted temperature, (b) uncertainty calculated
with pointwise standard deviation, (c) one realization of temperature.
FIGURE 8

(a) LAUV-Xplore 5 path from the 30th of Oct., and geostatistical temperature prediction for the same day after assimilation (green circle representing
start and red star the end of the path). (b) Comparison of measurements and geostatistical model prediction for LAUV-Xplore 5 data location.
(c) Comparison of measurements and geostatistical model prediction with AUV data assimilation from LAUV-Xplore 5 data location. (d) LAUV-Xplore
3 path from the 30th of Oct., and geostatistical temperature prediction for the same day after assimilation (green circle representing start and red
star the end of the path). (e) Comparison of measurements and geostatistical model prediction for LAUV-Xplore 3 data location. (f) Comparison of
measurements and geostatistical model prediction with AUV data assimilation from LAUV-Xplore 3 data location.
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development of a full spatiotemporal model. With the proposed

approach the vertical dependencies are implicitly modelled by the a

priori information used as data conditioning during the prediction.

Finally, the geostatistical framework enables a flexible approach.

While the application example shown herein deals with ocean

temperature, the property of interest could be any biogeochemical

property if there are historical data for this property in the study

area and sensors to measure it in the field. Given its low

computational cost, the geostatistical model can also be

implemented on-board the AUVs, allowing it to be updated more

frequently with in situ data and to optimize operations on the fly

using as priors to adaptive sampling algorithms.
5 Conclusions

In this work, we introduced a geostatistical modelling approach

designed to support smart data collection and efficient trajectory

planning for AUVs. By predicting ocean temperature and spatial

uncertainty, the method qualifies AUVs to identify and prioritize

regions where data collection would be most valuable. This targeted

approach increases knowledge while reducing unnecessary

exploration, ultimately enhancing the scientific return of

oceanographic missions.

Although, this methodology can be applied as is to an

oceanographic campaign, it would benefit from some upgrades

such as using an a priori model with higher resolution, overcoming

the necessity of increasing the resolution by interpolation. This will

allow to better capture sub-mesoscale structures and interesting

features to sample.

Due to the method’s ability to work with lightweight

computations, making it well suited for real-time decision making

in the field, the integration of the algorithm into the AUV during

the deployment also brings autonomy to the sampling, and makes

use of a more efficient path planning that have previous

measurements in consideration and accommodates real-time

conditions and unexpected changes in the environment.
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