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The Asia-Pacific Region (APR) encompasses a vast geographical area rich in

marine biodiversity that plays critical roles in global ecological stability and

climate regulation, but it also faces daunting challenges in maintaining these

roles under global change. Environmental dynamics in the APRmanifest regularly

over a range of timescales, including storms, earthquakes, floods, and extreme

heat events. Further, coastal and marine ecosystems, including extensive

commercial fisheries and coral reefs, are under threat from intense resource

extraction and increasingly frequent marine heatwaves. Knowledge gaps for

understanding these complex systems are aggravated by substantial barriers to

cross-national efforts caused by the region’s vast diversity of cultures, languages,

socioeconomics, politics, and management practices. Effective management of

marine resources in the APR will necessitate multidisciplinary research based on

continuous, region-wide observations supported by robust collaborations. In

2023, we gathered APR researchers across disciplines to discuss these issues and
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find solutions during a thematic seminar and workshop program at Tohoku

University in Japan. Based on the results of this program, we present a review of

the current state of APR marine ecosystems, raise key questions addressable

through multidisciplinary approaches, and identify future priorities for the region.

We conclude that sustaining biodiversity, ecosystem functions, and climate

resilience in the APR will depend on stronger interdisciplinary collaboration,

better integration of biological and geophysical data, and broader access to

marine observations. These efforts are both urgent and essential for supporting

better science-based policy decisions to address the escalating effects of global

change on marine systems across the region.
KEYWORDS

Asia-Pacific, marine science, interdisciplinary, climate change, data observations
1 Introduction

The Asia-Pacific Region (APR, as defined in this study to

include Northeast and Southeast Asia and the Pacific; Institute for

Global Environmental Strategies, 2008) spans an area that occupies

nearly one-third of our planet’s surface (Figure 1), hosts major

hotspots of marine biodiversity (Cohen and Steenbergen, 2015;

Gonzales et al., 2019), and supports biogenic habitats including

coral reefs, mangrove forests, and seagrass beds (Williams et al.,

2016; Dang et al., 2021; Devlin et al., 2021). Healthy ocean

ecosystems are critically linked to the economies of APR

countries, which depend heavily on fisheries, tourism, and other

marine-related activities (Devlin et al., 2021). Furthermore, local

communities rely on coastal and offshore ecosystem services for

their livelihoods and cultural practices (Ross et al., 2019). As a

result, there are unique challenges to ocean resource management

and ecosystem conservation in the APR that require not only

broader awareness but also immediate attention and action.

For one, the APR is particularly vulnerable to environmental

fluctuations such as synoptic storms, seasonal typhoons and

monsoons, major ocean current shifts, tsunamis, and extreme

heat events that manifest at varied timescales ranging from intra-

annual to decadal (Arthurton, 1998; Mimura, 2008; Pakoksung

et al., 2022). The region has been significantly affected by climate

change, with sea-surface height and temperature increases

exceeding global averages at 3.52 ± 1.75 cm and 0.205 ± 0.08 °C

per decade (Figures 1A, B) (Hens et al., 2018; Khalil et al., 2016).

Furthermore, future projections under CO2 emissions scenarios

suggest further increases in sea surface temperature, precipitation,

ocean acidification, and the intensity of tropical cyclones in the APR

with the potential to impact marine ecosystems and socioeconomic

frameworks (Heenan et al., 2015).

Furthermore, the APR, an area rich in marine biodiversity, is

disproportionately threatened by both anthropogenic and

environmental pressures, given that 60% of Earth’s human

population resides there (Gietel-Basten, 2023). Yet, a 10-year
02
average (2012-2023) of the Ocean Health Index (OHI), a

comprehensive framework for assessing ocean health based on

the sustainable provisioning of benefits and services (e.g., food,

cultural and social value, jobs) (Halpern et al., 2012), revealed high

biodiversity scores in the APR indicating more non-threatened

species and less degradation of critical habitats relative to other

components at both the global and regional scales (Figures 1C, E).

However, an examination of OHI data on a year-to-year basis over

the last decade reveals a steady decrease in the biodiversity

component at both scales (Figures 1D, F), highlighting growing

pressures on marine ecosystems. Anthropogenic causes of

biodiversity loss in the APR include commodity-driven

deforestation, dam construction, land-based marine pollution,

and overexploitation through unregulated fishing and coastal

development (Gonzales et al., 2019, Takeuchi et al., 2021; Tan

et al., 2022). Furthermore, recent studies indicate that climate

change is likely to increase the frequency of marine heat waves

and natural disasters (e.g., Emanuel, 2013; Fischer and Knutti,

2015). Drastic changes to marine environments in the future will

likely accelerate biodiversity loss. For example, sea surface

temperature in Southeast Asia is predicted to rise by 1.1–2.9 °C

and dissolved oxygen levels to decline by 5–13 mmol m-3 over the

21st century (Kay et al., 2023). Such rapid shifts will impact

sensitive biogenic habitats, alter species distribution, and threaten

the food security and livelihoods of millions reliant on

coastal resources.

Addressing discrete challenges necessitates sustained regional

observational platforms for detecting trends and elucidating

processes. International efforts have made much progress to foster

this effort, including the development of the Essential Ocean

Variables (EOVs) system by the Global Ocean Observing System

(GOOS) to facilitate standardization of data collection worldwide.

By monitoring EOVs at national and regional scales, we can better

assess marine system dynamics, responses to environmental

stresses, and the accuracy of forecasts (Miloslavich et al., 2018).

The “Decade of Ocean Science for Sustainable Development”
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(2021–2030) designated by the United Nations (UN) aims to

enhance ocean resilience and sustainability, which also aligns with

the broader goals of the 2030 Sustainable Development Agenda

(Ryabinin et al., 2019; Venkatesan et al., 2021). Though valiant

objectives, cross-national data-sharing efforts in the APR to address

regional maritime issues are multifaceted due to the diversity of

cultures, languages, socioeconomics, politics, and management

practices (Beeson and Murray, 2020; Dang et al., 2021). The

result is a general lack of publicly available regional ocean data in

the APR, which can undermine the trust of both academics and

policymakers (Chung, 2010; Costello et al., 2012), further hindering

a comprehens ive assessment of the s ta tus of those

marine ecosystems.

To call attention to these particular challenges and assess the

state of ocean ecosystems in this rapidly changing region, we

formed an international working group of interdisciplinary early-

career researchers and faculty mentors based primarily on the APR.

Our aim is to foster collaboration and harness diverse perspectives

from different countries, academic career levels, and research fields,

including biology, ecology, oceanography, climatology, and

engineering. The group convened for a thematic seminar and

workshop program entitled “Integrated Understanding of Marine

Environment and Marine Ecosystems” held in October-December

2023 as part of the Tohoku Forum for Creativity (TFC) Programs at

Tohoku University in Japan. Here we present the core challenges

and opportunities we have identified for interdisciplinary marine

science opportunities in the APR. We first discuss how the adoption

and proliferation of innovative and improved data sources (e.g., in
Frontiers in Marine Science 03
the biological and geophysical fields) are essential for developing a

comprehensive understanding of marine ecosystems, and how the

use of these data can help forge new research directions. We then

raise key questions about the future sustainability of marine

ecosystems in the APR and propose strategies to address them in

light of new types of data resources made available in recent years.
2 Adoption and proliferation of varied
marine data sources

Measuring EOVs and indicators at high spatial and temporal

resolutions from local to regional scales is necessary to adequately

monitor marine systems. Marine biodiversity monitoring has

traditionally relied on direct sampling and observations of

organisms, which has made regional estimates difficult in the

APR. However, advances in data and monitoring technology have

helped the research community to reduce costs and transcend the

boundaries imposed by the complex network of exclusive economic

zones (EEZs) in this region.
2.1 Automated marine geophysical and
biogeochemical monitoring

Beginning in 1999, the Argo program effectively utilized

autonomous floats to address regional sampling biases that lead

to persistent geographical data gaps for marine variables. Argo
FIGURE 1

Trends of (A) sea surface height from 1993 to 2022 and (B) sea surface temperature from 1982 to 2023. (C) Average scores of Ocean Health Index
(OHI) components in the APR. The error bars indicate one standard deviation of the annual mean. (D) Trends of OHI components in the APR from
2012 to 2023. (E) Average scores of the biodiversity component of the OHI. (F) Trend of the biodiversity component from 2012 to 2023. The trends
are calculated by using linear regression. The black box (93°E-120°W, 60°S-45°N) indicates the APR.
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profiling floats measure temperature and salinity from 2000 m to

the ocean surface every 10 days (Core-Argo; Riser et al., 2016;

Figure 2A). These data have been used for many applications

including investigations of subsurface ocean dynamics under

climate change (Lyu et al., 2021) and impacts on typhoon

intensity (Oka et al., 2023). BGC-Argo, which includes

biogeochemical and optical sensors, was developed over the last

decade to collect data on oxygen, nitrate, pH, and chlorophyll-a, as

well as downwelling irradiance for deep and remote areas (Claustre

et al., 2020; Figure 2B). These data have been used to monitor

seasonal net primary production (Yang et al., 2021), the influence of

oceanic eddies on subsurface biogeochemistry (Xiu and Chai, 2020;

Chen et al., 2021), and the timing of seasonal phytoplankton blooms

(Mignot et al., 2018). Both Core and BGC-Argo have transformed

in situ marine data collection in the APR by enabling consistent

subsurface monitoring of physical and biogeochemical properties

across previously undersampled regions (e.g., He et al., 2022;

Chamberlain et al., 2023).

However, data coverage remains limited in regions with shallow

waters (<2000 meters) and near continental shelves, such as the

Gulf of Thailand, the Indonesian seas, and waters north of Australia

(Figure 2A). One example of addressing this gap is the deployment

of floats specialized for shallow waters such as those in the Natuna

Sea, Karimata Strait, and Java Sea in Indonesia (24th Argo Steering

Meeting; https://argo.ucsd.edu/organization/argo-meetings/).

Furthermore, BGC-Argo coverage remains extremely limited in

the APR, particularly in Southeast Asia, where observations are

sparse or entirely absent (Figure 2B). One practical pathway to

improve data availability in the APR is through OneArgo (Owens

et al., 2022), a global initiative to unify and expand coverage by

incorporating Core, Deep (reaching 6000 meters), and BGC-Argo

floats into one integrated system, which should support more

comprehensive monitoring of ocean dynamics and ecosystem

change in the APR. However, OneArgo deployments in this

region must also navigate legal and diplomatic considerations,

particularly regarding the deployment of floats that may drift into

EEZs (Belbeoch, 2006). The process of deploying Argo floats in or

near EEZs requires advance notification to coastal states, which can

present challenges for achieving full regional coverage.
2.2 Biodiversity surveys and environmental
DNA

There is a pressing need for more in situ biodiversity data on

marine organisms in the APR to fill knowledge gaps that cannot be

addressed solely with remotely sensed data. The APR contains

many marine biodiversity hotspots for varied taxonomic groups

(Roberts et al., 2002; Von Rintelen et al., 2017), but compared to the

terrestrial realm, many of these marine groups remain poorly

described, and some of the most data-deficient groups are the

most diverse in the APR (Allen, 2008). For example, zooplankton

are ecologically important but remain understudied due to their

complex life cycles, diel and seasonal migrations, and limited

taxonomic expertise (Bandara et al., 2021; Pappalardo et al.,
Frontiers in Marine Science 04
2021). Coral species boundaries also remain unclear, particularly

in the Coral Triangle, hindering our ability to assess the full

diversity of associated marine fauna (Hoeksema, 2017). Although

recent advances in metabarcoding techniques offer promising tools

to improve species detection, their effectiveness in the APR is still

limited by sparse regional reference libraries and a lack of

comprehensive specimen records (Moutinho et al., 2024; Jintsu-

Uchifune and Yamamoto, 2016). This has resulted in extreme

underrepresentation of APR marine species in large genomic,

biogeographic, and taxonomic databases (e.g., NCBI, GBIF, OBIS,

FishBase, SeaLifeBase, WoRMS). Described marine species are also

in dire need of updates, as many are known only from perfunctory

descriptions and sparse museum specimens from decades ago.

These issues are caused in large part by a decline in active

taxonomists who can identify species new to science (Engel et al.,

2021). Thus, many resident species known to local communities

and fisheries remain invisible to science and conservation

assessment protocols like the IUCN Red List. However, new

taxonomic efforts in the APR over the last 20 years have

contributed to the description of hundreds of new fish species at

a steady pace per year, resulting in over 4,500 new descriptions from

2010 to 2024 (Eschmeyer et al., 2010; Fricke et al., 2024).

Environmental DNA (eDNA) analysis has helped us assess

biodiversity from communities using seawater and other indirect

samples to identify resident organisms, including species that

cannot be easily observed during field work (Beng and Corlett,

2020; Othman et al., 2023; Cahyani et al., 2024). These data have

been used to track ecosystem responses to climate anomalies (Berry

et al., 2019) and improve management of rare and invasive species

(Eva et al., 2016; Madduppa et al., 2021), thus having both economic

and biomonitoring significance (Moutinho et al., 2024). In addition,

metabarcoding surveys targeting universal gene markers and

metagenome skimming facilitate the detection and identification

of many organisms (Porter and Hajibabaei, 2018; Garlapati et al.,

2019; Hidaka et al., 2024), and these techniques can be adapted for

eDNA to enhance taxon detection with time and cost efficiency,

even for samples taken from sediment for deceased organisms

(Takahashi et al., 2023). It must be noted that reference libraries

are essential for detecting species from eDNA samples, especially

for poorly known groups, but genomic data on marine species is

sparse throughout the APR besides in Australia and New Zealand

(De Jong et al., 2024). Therefore, while eDNA approaches can be

useful for tracking the presence and possible range of known species

and identifying the relative abundance of DNA from unknown

sources, they will not be sufficient for reconstructing full

communities until genomic sampling and taxonomic deficiencies

noted above are fully addressed.

Regional efforts to develop streamlined eDNA collection

protocols, expand sampling targets and reference databases,

reduce sample processing and data sharing times, and implement

long-term archiving practices are all essential for facilitating efforts

that can fill baseline knowledge gaps regarding biodiversity in the

APR. Examples of large-scale projects in the region include the

OceanOmics project (minderoo.org/resources/oceanomics/), which

focuses on advancing eDNA analysis techniques and developing
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genomic reference libraries for Australia, and ANEMONE (All

Nippon eDNA Monitoring Network), which maintains an open

database of eDNA data for fish species in Japan and is now also

expanding to include other partners in the APR and beyond

(oceandecade.org/actions/anemone-global/). Continued efforts to

accumulate and share eDNA data publicly for the APR will help

accelerate consistent monitoring, resulting in more accurate

biodiversity assessments of the region and the discovery of

new species.
2.3 High-resolution remote sensing data
for coastal ecosystem monitoring

In the APR, where remote and complex coastal areas often lack

sustained programs for in situ sampling, high-resolution satellite

data provide essential, repeatable observations. These data include

ocean surface variables such as sea-surface temperature,

chlorophyll-a concentration, turbidity, and ocean color, providing

critical insights into the conditions of key ecosystems. For example,

high-resolution satellite data can reveal changes in mangrove health

over time in the APR, aiding national reporting on carbon stocks

and supporting coastal climate mitigation strategies (Sakti et al.,
Frontiers in Marine Science 05
2020; Roy et al., 2024). Satellite data have also been used to map

coral resilience and forecast temperature anomalies for the APR,

crucial for anticipating and managing bleaching events (Knudby

et al., 2013; Smith and Spillman, 2019). Using the Allen Coral Atlas,

a global database of high-resolution reef habitat maps developed

using satellite imagery, Lyons et al. (2024) demonstrated that the

APR contains the largest global extent of shallow coral reefs, with

Indonesia, the Philippines, and Papua New Guinea at the top of

the list.

To support evidence-based management and biodiversity

conservation across the APR, satellite observations should be

integrated into regional monitoring systems, ideally using

machine learning workflows. In addition, strategies should be

explored to link satellite-derived indicators to local measurements

from management efforts such as fisheries, mangrove restoration,

and coral reef protection.
2.4 Incorporating geophysical data into
biodiversity models

Despite growing access to ecological and environmental data,

biodiversity models still rarely incorporate geophysical processes
FIGURE 2

The total number of Argo profiles from 2000 to 2023 for temperature and salinity only (Core Argo; A) and additionally for biogeochemical
variables (BGC-Argo; B) at 2.5° resolution (~275 km at the equator). White areas indicate grid cells with no available profiles for this time frame.
As oxygen is the most consistently measured biogeochemical variable, only profiles that have quality-controlled (QC flags 1, 2, 5, and 8) oxygen
data are shown in (B).
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that play critical roles in shaping marine ecosystems, particularly in

the APR. While variables such as sea surface temperature or salinity

are commonly included, more complex physical dynamics such as

ocean currents, eddy activity, and upwelling are overlooked but

could prove important to biodiversity models. For example, Santora

et al. (2021) combined long-term biodiversity data for the California

coast with physical drivers such as upwelling variability, source

water changes, and marine heatwaves to enhance species

distribution models and inform ecosystem forecasting. Ackiss

et al. (2013) provided a rare example for the APR, showing how

geophysical processes, such as the Mindanao and Halmahera

eddies, can shape biodiversity by creating genetic breaks in reef

fish populations through limited larval dispersal, thus highlighting

how physical oceanographic processes shape marine biodiversity

patterns. While the value of such integrative approaches is clear, the

scarcity of related studies for the APR highlights opportunities to fill

significant research gaps through interdisciplinary research.

Future progress will depend on bold new research initiatives

featuring collaboration between physical oceanographers and

ecologists to integrate geophysical variables into biodiversity

models. Development of dynamic models that mechanistically

link geophysical forcings to biodiversity and ecosystem function

and their application to generate specific testable hypotheses could

stimulate targeted oceanic observations to obtain the geophysical

data needed. Given the dynamic nature of the physical marine

environment in the APR, such research is expected to help answer

lingering questions about spatiotemporal patterns of biodiversity in

the region.
3 Key questions addressed by new
data opportunities

Here we identify key questions concerning the rapidly changing

APR that, while being crucial to address, can only be effectively

solved by integrating insights from multiple disciplines.
3.1 How do changing oceanic physical
processes impact the diversity and
dynamics of marine life?

Oceanic physical processes, influenced by climate change, are

reshaping marine life in the APR. Decadal modes of climate

variability, such as the Pacific Decadal Oscillation (PDO) and

Atlantic Multidecadal Oscillation (AMO) have been shown to

alter sea-surface temperature, salinity, and ocean circulation,

which in turn shift the distributions and abundance patterns of

key commercial species across the Indo-Pacific region (Wu et al.,

2022). The increasing frequencies of marine heatwaves and harmful

algal blooms are also leading to habitat degradation and species

redistribution around the APR (Oliver et al., 2018; Kang et al.,

2021). Marine species are closely tracking shifting temperatures,

particularly in warm tropical waters like the Central Pacific Basin,

raising the risk of local extirpations where species already live near
Frontiers in Marine Science 06
their thermal limits (Lenoir et al., 2020). Moreover, the impacts of

climate change in the APR are highly variable—different regions

have exhibited vastly different levels of coral bleaching that vary

based on climate extremes but also geography, disturbance history,

and water movement, making predictions challenging

(McClanahan et al., 2019).

In addition, it is becoming clear that APR reefs respond

differently to climate change than those in other parts of the

world, with inconsistent bleaching patterns across depth and

weak or absent correlations with thermal stress variability. This

variability is likely influenced by the region’s high coral richness and

genetic diversity, as well as complex environmental conditions,

which can mask or alter expected responses to warming and other

stressors (Schlesinger and van Woesik, 2023). Together, these

observations highlight the need for a more regionally informed

understanding of how climate-driven ocean changes are affecting

marine ecosystems in the APR. The variability in responses suggests

that global trends may not hold uniformly in this highly diverse and

dynamic region. Addressing this complexity will require greater

integration of biological and physical data, expanded long-term

monitoring, and a stronger focus on local environmental and

ecological contexts. As marine ecosystems across the APR

continue to face rapid change, improving our ability to detect,

interpret, and respond to these shifts will be essential for effective

conservation and management.
3.2 Which intensifying extreme events in
the marine realm are most concerning?

As the climate continues to warm, the APR has experienced an

increasing number of climate-related disasters, which may reflect a

rise in the frequency and intensity of extreme events, combined

with increased human exposure and vulnerability (Thomas et al.,

2014). Understanding whether these events are accelerating and

which types pose the greatest risk is critical for anticipating the

region’s ecological and socio-economic vulnerabilities. The

frequency and intensity of extreme weather events across the APR

have been increasing, including heatwaves (Fischer and Knutti,

2015), heavy rainfall (Kharin et al., 2013), and severe droughts

(Dong et al., 2024). This also includes events that directly threaten

coastal infrastructure and livelihoods such as tropical cyclones

(Webster et al., 2005; Emanuel, 2013), tsunamis (Suppasri et al.,

2011; 2018; Pakoksung et al., 2022), and sea-level rise (Dasgupta

et al., 2009; Hoeke et al., 2013). The rise in extreme marine weather

events poses serious and often compounding risks to biodiversity

and ecosystem dynamics in the APR. Marine heatwaves can cause

widespread coral bleaching and mortality, which in turn destabilizes

reef-associated food webs and reduces habitat complexity (Leggat

et al., 2019; Fordyce et al., 2019). Similarly, increased frequency of

flooding and cyclones can lead to physical damage to critical

habitats like mangroves and seagrass beds, disrupt reproductive

cycles of marine species, and favor opportunistic or invasive

organisms over long-established communities (Biswas et al., 2012;

Asbridge et al., 2018). These stressors may also accelerate shifts in
frontiersin.org

https://doi.org/10.3389/fmars.2025.1680145
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Adiwira et al. 10.3389/fmars.2025.1680145
species distributions and traits, selecting for faster-growing, more

heat-tolerant species while driving local declines or extinctions of

more specialized organisms (Mellin et al., 2024).

As these extremes become more common, the resilience of

ecosystems may erode, making recovery slower and less predictable,

which highlights the urgent need to factor extreme event dynamics

into conservation planning and marine management strategies. In

our view, failing to integrate the growing frequency and severity of

extreme events into conservation and management strategies risks

weakening marine ecosystem stability in the APR, which will

detrimentally affect food security, coastal protection, and

livelihoods for millions (Vinke et al., 2017). Without urgent and

coordinated efforts to build resilience through ecosystem-based

adaptation, early-warning systems, and environmentally

sustainable development, the APR may face cascading socio-

ecological crises that severely threaten its future sustainability.
4 Discussion

The APR hosts some of the world’s marine biodiversity hotspots,

including the Coral Triangle, that support ecosystem services critical to

both regional and global human wellbeing. Uniquely, the impacts of

climate change on the APR often diverge from global patterns due to its

complex oceanography and high biodiversity. This calls for region-

specific approaches to marine research and conservation that go

beyond global models and are tailored to the APR’s distinctive

ecological and environmental dynamics.

Inconsistent data sharing remains a cross-cutting problem that

hinders efforts to understand and manage marine ecosystems in the

APR. Differences in scientific culture, technical capacity, and

political sensitivities around sovereignty and resource control all

limit collaboration and access to ecological data. Even when data

exists, they are often fragmented or siloed within national

institutions. Many key questions about ecosystem change, species

responses, and climate resilience in the APR can only be answered

through the integration of diverse datasets across disciplines, from

physical oceanography to molecular ecology. Without shared, high-

quality data, our ability to detect patterns, predict outcomes, and

guide effective action remains severely constrained. New

approaches to data-sharing aided by technology can help (e.g.,

Pendleton et al., 2019), but resolving data limitation issues in the

APR will also require coordinated action among scientists and

policymakers to strengthen existing channels for sharing data and

building new ones. One example of how these challenges can be

addressed is the international Argo program, which coordinates the

deployment and management of ocean-observing floats across

more than 30 countries (Wong et al., 2020). The program ensures

that data collected by these floats are rapidly checked and made

publicly available within about 24 hours, followed by more

thorough quality control procedures carried out over the floats’

operational lifespans to ensure long-term reliability. Argo follows

FAIR (Findable, Accessible, Interoperable, and Reusable) data

principles and is supported by regular international meetings that

align standards and practices. This combination of coordination,
Frontiers in Marine Science 07
open data sharing, and ongoing quality assurance provides a useful

model for strengthening data systems and regional cooperation in

the APR.

A productive way forward is to build on regional initiatives that

are already redefining how marine science is approached in the

Asia-Pacific. This effort aligns with the goals of the World Premier

International Research Centre Initiative-Advanced Institute for

Marine Ecosystem Change (WPI-AIMEC), recently established at

Tohoku University and Japan Agency for Marine-Earth Science and

Technology (JAMSTEC), and a satellite campus at the University of

Hawai’i, Manoa. WPI-AIMEC brings together researchers across

disciplines to better understand and forecast marine ecosystem

responses to environmental change, with a global scope but a

particular focus on the Northwest Pacific. As part of WPI-

AIMEC’s activities, our group contributes to an international,

interdisciplinary effort to understand marine biodiversity and

ecosystem change, where rapid environmental shifts demand

regionally focused, fusion science approaches. Institutes like WPI-

AIMEC illustrate the power of integrated marine ecosystem

approaches that bring together oceanographers, climate scientists,

and ecologists to address complex challenges from multiple angles.

By combining physical and biological data across disciplines and

borders, such efforts help generate more comprehensive insights

into ecosystem change and resilience. Collaborative frameworks like

this are essential for turning fragmented observations into

coordinated action and for ensuring that science meaningfully

supports the long-term health of marine ecosystems and human

wellbeing across the APR.
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