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The Asia-Pacific Region (APR) encompasses a vast geographical area rich in
marine biodiversity that plays critical roles in global ecological stability and
climate regulation, but it also faces daunting challenges in maintaining these
roles under global change. Environmental dynamics in the APR manifest regularly
over a range of timescales, including storms, earthquakes, floods, and extreme
heat events. Further, coastal and marine ecosystems, including extensive
commercial fisheries and coral reefs, are under threat from intense resource
extraction and increasingly frequent marine heatwaves. Knowledge gaps for
understanding these complex systems are aggravated by substantial barriers to
cross-national efforts caused by the region’s vast diversity of cultures, languages,
socioeconomics, politics, and management practices. Effective management of
marine resources in the APR will necessitate multidisciplinary research based on
continuous, region-wide observations supported by robust collaborations. In
2023, we gathered APR researchers across disciplines to discuss these issues and
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find solutions during a thematic seminar and workshop program at Tohoku
University in Japan. Based on the results of this program, we present a review of
the current state of APR marine ecosystems, raise key questions addressable
through multidisciplinary approaches, and identify future priorities for the region.
We conclude that sustaining biodiversity, ecosystem functions, and climate
resilience in the APR will depend on stronger interdisciplinary collaboration,
better integration of biological and geophysical data, and broader access to
marine observations. These efforts are both urgent and essential for supporting
better science-based policy decisions to address the escalating effects of global

change on marine systems across the region.
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1 Introduction

The Asia-Pacific Region (APR, as defined in this study to
include Northeast and Southeast Asia and the Pacific; Institute for
Global Environmental Strategies, 2008) spans an area that occupies
nearly one-third of our planet’s surface (Figure 1), hosts major
hotspots of marine biodiversity (Cohen and Steenbergen, 2015;
Gonzales et al,, 2019), and supports biogenic habitats including
coral reefs, mangrove forests, and seagrass beds (Williams et al.,
2016; Dang et al, 2021; Devlin et al, 2021). Healthy ocean
ecosystems are critically linked to the economies of APR
countries, which depend heavily on fisheries, tourism, and other
marine-related activities (Devlin et al., 2021). Furthermore, local
communities rely on coastal and offshore ecosystem services for
their livelihoods and cultural practices (Ross et al., 2019). As a
result, there are unique challenges to ocean resource management
and ecosystem conservation in the APR that require not only
broader awareness but also immediate attention and action.

For one, the APR is particularly vulnerable to environmental
fluctuations such as synoptic storms, seasonal typhoons and
monsoons, major ocean current shifts, tsunamis, and extreme
heat events that manifest at varied timescales ranging from intra-
annual to decadal (Arthurton, 1998; Mimura, 2008; Pakoksung
et al., 2022). The region has been significantly affected by climate
change, with sea-surface height and temperature increases
exceeding global averages at 3.52 + 1.75 cm and 0.205 + 0.08 °C
per decade (Figures 1A, B) (Hens et al.,, 2018; Khalil et al., 2016).
Furthermore, future projections under CO, emissions scenarios
suggest further increases in sea surface temperature, precipitation,
ocean acidification, and the intensity of tropical cyclones in the APR
with the potential to impact marine ecosystems and socioeconomic
frameworks (Heenan et al., 2015).

Furthermore, the APR, an area rich in marine biodiversity, is
disproportionately threatened by both anthropogenic and
environmental pressures, given that 60% of Earth’s human
population resides there (Gietel-Basten, 2023). Yet, a 10-year
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average (2012-2023) of the Ocean Health Index (OHI), a
comprehensive framework for assessing ocean health based on
the sustainable provisioning of benefits and services (e.g., food,
cultural and social value, jobs) (Halpern et al., 2012), revealed high
biodiversity scores in the APR indicating more non-threatened
species and less degradation of critical habitats relative to other
components at both the global and regional scales (Figures 1C, E).
However, an examination of OHI data on a year-to-year basis over
the last decade reveals a steady decrease in the biodiversity
component at both scales (Figures 1D, F), highlighting growing
pressures on marine ecosystems. Anthropogenic causes of
biodiversity loss in the APR include commodity-driven
deforestation, dam construction, land-based marine pollution,
and overexploitation through unregulated fishing and coastal
development (Gonzales et al., 2019, Takeuchi et al, 2021; Tan
et al., 2022). Furthermore, recent studies indicate that climate
change is likely to increase the frequency of marine heat waves
and natural disasters (e.g., Emanuel, 2013; Fischer and Knutti,
2015). Drastic changes to marine environments in the future will
likely accelerate biodiversity loss. For example, sea surface
temperature in Southeast Asia is predicted to rise by 1.1-2.9 °C
and dissolved oxygen levels to decline by 5-13 mmol m™ over the
21st century (Kay et al,, 2023). Such rapid shifts will impact
sensitive biogenic habitats, alter species distribution, and threaten
the food security and livelihoods of millions reliant on
coastal resources.

Addressing discrete challenges necessitates sustained regional
observational platforms for detecting trends and elucidating
processes. International efforts have made much progress to foster
this effort, including the development of the Essential Ocean
Variables (EOVs) system by the Global Ocean Observing System
(GOOS) to facilitate standardization of data collection worldwide.
By monitoring EOVs at national and regional scales, we can better
assess marine system dynamics, responses to environmental
stresses, and the accuracy of forecasts (Miloslavich et al., 2018).
The “Decade of Ocean Science for Sustainable Development”
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FIGURE 1

Trends of (A) sea surface height from 1993 to 2022 and (B) sea surface temperature from 1982 to 2023. (C) Average scores of Ocean Health Index
(OHI) components in the APR. The error bars indicate one standard deviation of the annual mean. (D) Trends of OHI components in the APR from
2012 to 2023. (E) Average scores of the biodiversity component of the OHI. (F) Trend of the biodiversity component from 2012 to 2023. The trends
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are calculated by using linear regression. The black box (93°E-120°W, 60°S-45°N) indicates the APR.

(2021-2030) designated by the United Nations (UN) aims to
enhance ocean resilience and sustainability, which also aligns with
the broader goals of the 2030 Sustainable Development Agenda
(Ryabinin et al., 2019; Venkatesan et al,, 2021). Though valiant
objectives, cross-national data-sharing efforts in the APR to address
regional maritime issues are multifaceted due to the diversity of
cultures, languages, socioeconomics, politics, and management
practices (Beeson and Murray, 2020; Dang et al., 2021). The
result is a general lack of publicly available regional ocean data in
the APR, which can undermine the trust of both academics and
policymakers (Chung, 2010; Costello et al., 2012), further hindering
a comprehensive assessment of the status of those
marine ecosystems.

To call attention to these particular challenges and assess the
state of ocean ecosystems in this rapidly changing region, we
formed an international working group of interdisciplinary early-
career researchers and faculty mentors based primarily on the APR.
Our aim is to foster collaboration and harness diverse perspectives
from different countries, academic career levels, and research fields,
including biology, ecology, oceanography, climatology, and
engineering. The group convened for a thematic seminar and
workshop program entitled “Integrated Understanding of Marine
Environment and Marine Ecosystems” held in October-December
2023 as part of the Tohoku Forum for Creativity (TFC) Programs at
Tohoku University in Japan. Here we present the core challenges
and opportunities we have identified for interdisciplinary marine
science opportunities in the APR. We first discuss how the adoption
and proliferation of innovative and improved data sources (e.g., in
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the biological and geophysical fields) are essential for developing a
comprehensive understanding of marine ecosystems, and how the
use of these data can help forge new research directions. We then
raise key questions about the future sustainability of marine
ecosystems in the APR and propose strategies to address them in
light of new types of data resources made available in recent years.

2 Adoption and proliferation of varied
marine data sources

Measuring EOVs and indicators at high spatial and temporal
resolutions from local to regional scales is necessary to adequately
monitor marine systems. Marine biodiversity monitoring has
traditionally relied on direct sampling and observations of
organisms, which has made regional estimates difficult in the
APR. However, advances in data and monitoring technology have
helped the research community to reduce costs and transcend the
boundaries imposed by the complex network of exclusive economic
zones (EEZs) in this region.

2.1 Automated marine geophysical and
biogeochemical monitoring

Beginning in 1999, the Argo program effectively utilized

autonomous floats to address regional sampling biases that lead
to persistent geographical data gaps for marine variables. Argo
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profiling floats measure temperature and salinity from 2000 m to
the ocean surface every 10 days (Core-Argo; Riser et al., 2016;
Figure 2A). These data have been used for many applications
including investigations of subsurface ocean dynamics under
climate change (Lyu et al., 2021) and impacts on typhoon
intensity (Oka et al., 2023). BGC-Argo, which includes
biogeochemical and optical sensors, was developed over the last
decade to collect data on oxygen, nitrate, pH, and chlorophyll-a, as
well as downwelling irradiance for deep and remote areas (Claustre
et al, 2020; Figure 2B). These data have been used to monitor
seasonal net primary production (Yang et al., 2021), the influence of
oceanic eddies on subsurface biogeochemistry (Xiu and Chai, 20205
Chen et al., 2021), and the timing of seasonal phytoplankton blooms
(Mignot et al.,, 2018). Both Core and BGC-Argo have transformed
in situ marine data collection in the APR by enabling consistent
subsurface monitoring of physical and biogeochemical properties
across previously undersampled regions (e.g., He et al, 2022;
Chamberlain et al., 2023).

However, data coverage remains limited in regions with shallow
waters (<2000 meters) and near continental shelves, such as the
Gulf of Thailand, the Indonesian seas, and waters north of Australia
(Figure 2A). One example of addressing this gap is the deployment
of floats specialized for shallow waters such as those in the Natuna
Sea, Karimata Strait, and Java Sea in Indonesia (24th Argo Steering
Meeting; https://argo.ucsd.edu/organization/argo-meetings/).
Furthermore, BGC-Argo coverage remains extremely limited in
the APR, particularly in Southeast Asia, where observations are
sparse or entirely absent (Figure 2B). One practical pathway to
improve data availability in the APR is through OneArgo (Owens
et al., 2022), a global initiative to unify and expand coverage by
incorporating Core, Deep (reaching 6000 meters), and BGC-Argo
floats into one integrated system, which should support more
comprehensive monitoring of ocean dynamics and ecosystem
change in the APR. However, OneArgo deployments in this
region must also navigate legal and diplomatic considerations,
particularly regarding the deployment of floats that may drift into
EEZs (Belbeoch, 2006). The process of deploying Argo floats in or
near EEZs requires advance notification to coastal states, which can
present challenges for achieving full regional coverage.

2.2 Biodiversity surveys and environmental
DNA

There is a pressing need for more in situ biodiversity data on
marine organisms in the APR to fill knowledge gaps that cannot be
addressed solely with remotely sensed data. The APR contains
many marine biodiversity hotspots for varied taxonomic groups
(Roberts et al., 2002; Von Rintelen et al., 2017), but compared to the
terrestrial realm, many of these marine groups remain poorly
described, and some of the most data-deficient groups are the
most diverse in the APR (Allen, 2008). For example, zooplankton
are ecologically important but remain understudied due to their
complex life cycles, diel and seasonal migrations, and limited
taxonomic expertise (Bandara et al, 2021; Pappalardo et al,
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2021). Coral species boundaries also remain unclear, particularly
in the Coral Triangle, hindering our ability to assess the full
diversity of associated marine fauna (Hoeksema, 2017). Although
recent advances in metabarcoding techniques offer promising tools
to improve species detection, their effectiveness in the APR is still
limited by sparse regional reference libraries and a lack of
comprehensive specimen records (Moutinho et al., 2024; Jintsu-
Uchifune and Yamamoto, 2016). This has resulted in extreme
underrepresentation of APR marine species in large genomic,
biogeographic, and taxonomic databases (e.g., NCBI, GBIF, OBIS,
FishBase, SeaLifeBase, WoRMS). Described marine species are also
in dire need of updates, as many are known only from perfunctory
descriptions and sparse museum specimens from decades ago.
These issues are caused in large part by a decline in active
taxonomists who can identify species new to science (Engel et al.,
2021). Thus, many resident species known to local communities
and fisheries remain invisible to science and conservation
assessment protocols like the ITUCN Red List. However, new
taxonomic efforts in the APR over the last 20 years have
contributed to the description of hundreds of new fish species at
a steady pace per year, resulting in over 4,500 new descriptions from
2010 to 2024 (Eschmeyer et al,, 2010; Fricke et al., 2024).

Environmental DNA (eDNA) analysis has helped us assess
biodiversity from communities using seawater and other indirect
samples to identify resident organisms, including species that
cannot be easily observed during field work (Beng and Corlett,
2020; Othman et al.,, 2023; Cahyani et al., 2024). These data have
been used to track ecosystem responses to climate anomalies (Berry
et al,, 2019) and improve management of rare and invasive species
(Eva etal., 2016; Madduppa et al., 2021), thus having both economic
and biomonitoring significance (Moutinho et al., 2024). In addition,
metabarcoding surveys targeting universal gene markers and
metagenome skimming facilitate the detection and identification
of many organisms (Porter and Hajibabaei, 2018; Garlapati et al.,
2019; Hidaka et al., 2024), and these techniques can be adapted for
eDNA to enhance taxon detection with time and cost efficiency,
even for samples taken from sediment for deceased organisms
(Takahashi et al., 2023). It must be noted that reference libraries
are essential for detecting species from eDNA samples, especially
for poorly known groups, but genomic data on marine species is
sparse throughout the APR besides in Australia and New Zealand
(De Jong et al., 2024). Therefore, while eDNA approaches can be
useful for tracking the presence and possible range of known species
and identifying the relative abundance of DNA from unknown
sources, they will not be sufficient for reconstructing full
communities until genomic sampling and taxonomic deficiencies
noted above are fully addressed.

Regional efforts to develop streamlined eDNA collection
protocols, expand sampling targets and reference databases,
reduce sample processing and data sharing times, and implement
long-term archiving practices are all essential for facilitating efforts
that can fill baseline knowledge gaps regarding biodiversity in the
APR. Examples of large-scale projects in the region include the
OceanOmics project (minderoo.org/resources/oceanomics/), which
focuses on advancing eDNA analysis techniques and developing
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genomic reference libraries for Australia, and ANEMONE (All
Nippon eDNA Monitoring Network), which maintains an open
database of eDNA data for fish species in Japan and is now also
expanding to include other partners in the APR and beyond
(oceandecade.org/actions/anemone-global/). Continued efforts to
accumulate and share eDNA data publicly for the APR will help
accelerate consistent monitoring, resulting in more accurate
biodiversity assessments of the region and the discovery of
new species.

2.3 High-resolution remote sensing data
for coastal ecosystem monitoring

In the APR, where remote and complex coastal areas often lack
sustained programs for in situ sampling, high-resolution satellite
data provide essential, repeatable observations. These data include
ocean surface variables such as sea-surface temperature,
chlorophyll-a concentration, turbidity, and ocean color, providing
critical insights into the conditions of key ecosystems. For example,
high-resolution satellite data can reveal changes in mangrove health
over time in the APR, aiding national reporting on carbon stocks
and supporting coastal climate mitigation strategies (Sakti et al.,
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2020; Roy et al,, 2024). Satellite data have also been used to map
coral resilience and forecast temperature anomalies for the APR,
crucial for anticipating and managing bleaching events (Knudby
etal., 2013; Smith and Spillman, 2019). Using the Allen Coral Atlas,
a global database of high-resolution reef habitat maps developed
using satellite imagery, Lyons et al. (2024) demonstrated that the
APR contains the largest global extent of shallow coral reefs, with
Indonesia, the Philippines, and Papua New Guinea at the top of
the list.

To support evidence-based management and biodiversity
conservation across the APR, satellite observations should be
integrated into regional monitoring systems, ideally using
machine learning workflows. In addition, strategies should be
explored to link satellite-derived indicators to local measurements
from management efforts such as fisheries, mangrove restoration,
and coral reef protection.

2.4 Incorporating geophysical data into
biodiversity models

Despite growing access to ecological and environmental data,
biodiversity models still rarely incorporate geophysical processes
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that play critical roles in shaping marine ecosystems, particularly in
the APR. While variables such as sea surface temperature or salinity
are commonly included, more complex physical dynamics such as
ocean currents, eddy activity, and upwelling are overlooked but
could prove important to biodiversity models. For example, Santora
etal. (2021) combined long-term biodiversity data for the California
coast with physical drivers such as upwelling variability, source
water changes, and marine heatwaves to enhance species
distribution models and inform ecosystem forecasting. Ackiss
et al. (2013) provided a rare example for the APR, showing how
geophysical processes, such as the Mindanao and Halmahera
eddies, can shape biodiversity by creating genetic breaks in reef
fish populations through limited larval dispersal, thus highlighting
how physical oceanographic processes shape marine biodiversity
patterns. While the value of such integrative approaches is clear, the
scarcity of related studies for the APR highlights opportunities to fill
significant research gaps through interdisciplinary research.

Future progress will depend on bold new research initiatives
featuring collaboration between physical oceanographers and
ecologists to integrate geophysical variables into biodiversity
models. Development of dynamic models that mechanistically
link geophysical forcings to biodiversity and ecosystem function
and their application to generate specific testable hypotheses could
stimulate targeted oceanic observations to obtain the geophysical
data needed. Given the dynamic nature of the physical marine
environment in the APR, such research is expected to help answer
lingering questions about spatiotemporal patterns of biodiversity in
the region.

3 Key questions addressed by new
data opportunities

Here we identify key questions concerning the rapidly changing
APR that, while being crucial to address, can only be effectively
solved by integrating insights from multiple disciplines.

3.1 How do changing oceanic physical
processes impact the diversity and
dynamics of marine life?

Oceanic physical processes, influenced by climate change, are
reshaping marine life in the APR. Decadal modes of climate
variability, such as the Pacific Decadal Oscillation (PDO) and
Atlantic Multidecadal Oscillation (AMO) have been shown to
alter sea-surface temperature, salinity, and ocean circulation,
which in turn shift the distributions and abundance patterns of
key commercial species across the Indo-Pacific region (Wu et al,
2022). The increasing frequencies of marine heatwaves and harmful
algal blooms are also leading to habitat degradation and species
redistribution around the APR (Oliver et al, 2018; Kang et al,
2021). Marine species are closely tracking shifting temperatures,
particularly in warm tropical waters like the Central Pacific Basin,
raising the risk of local extirpations where species already live near
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their thermal limits (Lenoir et al., 2020). Moreover, the impacts of
climate change in the APR are highly variable—different regions
have exhibited vastly different levels of coral bleaching that vary
based on climate extremes but also geography, disturbance history,
and water movement, making predictions challenging
(McClanahan et al., 2019).

In addition, it is becoming clear that APR reefs respond
differently to climate change than those in other parts of the
world, with inconsistent bleaching patterns across depth and
weak or absent correlations with thermal stress variability. This
variability is likely influenced by the region’s high coral richness and
genetic diversity, as well as complex environmental conditions,
which can mask or alter expected responses to warming and other
stressors (Schlesinger and van Woesik, 2023). Together, these
observations highlight the need for a more regionally informed
understanding of how climate-driven ocean changes are affecting
marine ecosystems in the APR. The variability in responses suggests
that global trends may not hold uniformly in this highly diverse and
dynamic region. Addressing this complexity will require greater
integration of biological and physical data, expanded long-term
monitoring, and a stronger focus on local environmental and
ecological contexts. As marine ecosystems across the APR
continue to face rapid change, improving our ability to detect,
interpret, and respond to these shifts will be essential for effective

conservation and management.

3.2 Which intensifying extreme events in
the marine realm are most concerning?

As the climate continues to warm, the APR has experienced an
increasing number of climate-related disasters, which may reflect a
rise in the frequency and intensity of extreme events, combined
with increased human exposure and vulnerability (Thomas et al.,
2014). Understanding whether these events are accelerating and
which types pose the greatest risk is critical for anticipating the
region’s ecological and socio-economic vulnerabilities. The
frequency and intensity of extreme weather events across the APR
have been increasing, including heatwaves (Fischer and Knutti,
2015), heavy rainfall (Kharin et al., 2013), and severe droughts
(Dong et al., 2024). This also includes events that directly threaten
coastal infrastructure and livelihoods such as tropical cyclones
(Webster et al., 2005; Emanuel, 2013), tsunamis (Suppasri et al.,
20115 2018; Pakoksung et al., 2022), and sea-level rise (Dasgupta
et al., 2009; Hoeke et al., 2013). The rise in extreme marine weather
events poses serious and often compounding risks to biodiversity
and ecosystem dynamics in the APR. Marine heatwaves can cause
widespread coral bleaching and mortality, which in turn destabilizes
reef-associated food webs and reduces habitat complexity (Leggat
et al., 2019; Fordyce et al., 2019). Similarly, increased frequency of
flooding and cyclones can lead to physical damage to critical
habitats like mangroves and seagrass beds, disrupt reproductive
cycles of marine species, and favor opportunistic or invasive
organisms over long-established communities (Biswas et al., 2012;
Asbridge et al., 2018). These stressors may also accelerate shifts in
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species distributions and traits, selecting for faster-growing, more
heat-tolerant species while driving local declines or extinctions of
more specialized organisms (Mellin et al., 2024).

As these extremes become more common, the resilience of
ecosystems may erode, making recovery slower and less predictable,
which highlights the urgent need to factor extreme event dynamics
into conservation planning and marine management strategies. In
our view, failing to integrate the growing frequency and severity of
extreme events into conservation and management strategies risks
weakening marine ecosystem stability in the APR, which will
detrimentally affect food security, coastal protection, and
livelihoods for millions (Vinke et al., 2017). Without urgent and
coordinated efforts to build resilience through ecosystem-based
adaptation, early-warning systems, and environmentally
sustainable development, the APR may face cascading socio-
ecological crises that severely threaten its future sustainability.

4 Discussion

The APR hosts some of the world’s marine biodiversity hotspots,
including the Coral Triangle, that support ecosystem services critical to
both regional and global human wellbeing. Uniquely, the impacts of
climate change on the APR often diverge from global patterns due to its
complex oceanography and high biodiversity. This calls for region-
specific approaches to marine research and conservation that go
beyond global models and are tailored to the APR’s distinctive
ecological and environmental dynamics.

Inconsistent data sharing remains a cross-cutting problem that
hinders efforts to understand and manage marine ecosystems in the
APR. Differences in scientific culture, technical capacity, and
political sensitivities around sovereignty and resource control all
limit collaboration and access to ecological data. Even when data
exists, they are often fragmented or siloed within national
institutions. Many key questions about ecosystem change, species
responses, and climate resilience in the APR can only be answered
through the integration of diverse datasets across disciplines, from
physical oceanography to molecular ecology. Without shared, high-
quality data, our ability to detect patterns, predict outcomes, and
guide effective action remains severely constrained. New
approaches to data-sharing aided by technology can help (e.g.,
Pendleton et al., 2019), but resolving data limitation issues in the
APR will also require coordinated action among scientists and
policymakers to strengthen existing channels for sharing data and
building new ones. One example of how these challenges can be
addressed is the international Argo program, which coordinates the
deployment and management of ocean-observing floats across
more than 30 countries (Wong et al., 2020). The program ensures
that data collected by these floats are rapidly checked and made
publicly available within about 24 hours, followed by more
thorough quality control procedures carried out over the floats’
operational lifespans to ensure long-term reliability. Argo follows
FAIR (Findable, Accessible, Interoperable, and Reusable) data
principles and is supported by regular international meetings that
align standards and practices. This combination of coordination,
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open data sharing, and ongoing quality assurance provides a useful
model for strengthening data systems and regional cooperation in
the APR.

A productive way forward is to build on regional initiatives that
are already redefining how marine science is approached in the
Asia-Pacific. This effort aligns with the goals of the World Premier
International Research Centre Initiative-Advanced Institute for
Marine Ecosystem Change (WPI-AIMEC), recently established at
Tohoku University and Japan Agency for Marine-Earth Science and
Technology (JAMSTEC), and a satellite campus at the University of
Hawai’i, Manoa. WPI-AIMEC brings together researchers across
disciplines to better understand and forecast marine ecosystem
responses to environmental change, with a global scope but a
particular focus on the Northwest Pacific. As part of WPI-
AIMEC’s activities, our group contributes to an international,
interdisciplinary effort to understand marine biodiversity and
ecosystem change, where rapid environmental shifts demand
regionally focused, fusion science approaches. Institutes like WPI-
AIMEC illustrate the power of integrated marine ecosystem
approaches that bring together oceanographers, climate scientists,
and ecologists to address complex challenges from multiple angles.
By combining physical and biological data across disciplines and
borders, such efforts help generate more comprehensive insights
into ecosystem change and resilience. Collaborative frameworks like
this are essential for turning fragmented observations into
coordinated action and for ensuring that science meaningfully
supports the long-term health of marine ecosystems and human
wellbeing across the APR.
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