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Northeastern Fuqing Bay is crucial for the marine ecosystem in Fujian Province

and plays an important role in regional economic development and ecological

balance. However, rapid economic and population growth has led to severe

heavy metal (HM) pollution from anthropogenic sources and atmospheric

deposition. This study comprehensively assessed HMs in surface sediments,

surface seawater, and marine organisms in northeastern Fuqing Bay, Fujian

Province. A total of 37 surface seawater samples, 22 surface sediment samples,

and 4marine organism samples were collected. The results indicated that certain

HMs, such as Hg and Cd, exhibited high coefficients of variation in surface

sediments. The concentrations of HMs in both surface seawater and sediments

met Class I standards; however, some sediment samples were contaminated

with Cd, As, and Hg, and the Cr levels in marine organisms exceeded the

permissible limits at certain sampling sites. Analysis of various indices revealed

that the mean potential ecological risk index (RI) value was 193.12, indicating

moderate ecological risk, primarily influenced by Cd and Hg, whereas seawater

was classified as having a low ecological risk, with mean RI value of 13.52. Marine

organisms demonstrated a strong bioaccumulation capacity for certain HMs in

seawater. Principal component analysis indicated that HM sources in sediments

were mainly wastewater discharge from chemical enterprises, port operations,

rock weathering, metal smelting, and agricultural activities. In contrast, HM

sources in seawater were partly natural and partly related to anthropogenic

activities, such as urban and rural sewage discharge. This study provides an

important reference for the ecological restoration of this region.
KEYWORDS

heavy metal pollution, Fuqing Bay, sediments, seawater, marine organisms, ecological
risk assessment
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1 Introduction

As a crucial part of the marine ecosystem in Fujian Province,

northeastern Fuqing Bay plays a significant role in the regional

economic development and maintenance of ecological balance (Liu

et al., 2025). This area is rich in fishery resources and serves as a

habitat and breeding ground for numerous marine organisms (Fan

et al., 2022). It is also an important area for economic activities such

as maritime transportation and coastal tourism (Lv et al., 2019).

However, with rapid economic development and continuous

population growth in coastal areas, large amounts of heavy metal

(HM) pollutants enter the area through various channels, including

industrial wastewater discharge, agricultural non-point source

pollution, urban domestic sewage discharge, and atmospheric

deposition. Consequently, it is facing an increasingly severe HM

pollution problem (Lv et al., 2019).

HMs, such as Hg, Cd, Pb, Cr, and As, are characterized by high

toxicity, difficult degradation, and easy accumulation (Avvari et al.,

2022). Once they enter the marine environment, they not only

migrate and transfer to seawater, but also continuously accumulate

in sediments. Biological magnification of HMs in the food chain

poses a serious threat to marine life and human health (Feng et al.,

2023; Qiu et al., 2019). Research shows that HM pollution can

interfere with the physiological functions of marine organisms,

affecting their growth, development, reproduction, and immune

processes, thereby leading to a decline in biodiversity and damage to

the structure and function of ecosystems (Nour et al., 2022). In

seawater, the existing forms and concentrations of HMs are affected

by various factors such as pH, redox potential, salinity, and

particulate matter content. Changes in these factors can alter the

migration and transformation of HMs, as well as their

bioavailability (Madadi et al., 2023). As an important reservoir of

HMs, the composition, structure, and physicochemical properties of

sediments play key roles in HM adsorption, desorption,

precipitation, and dissolution. In addition, microbial activity in

sediments affects the morphological transformation and

bioavailability of HMs (Leung et al., 2021). HM absorption,

accumulation, and metabolism in organisms are not only related

to the physiological characteristics of the organisms themselves but

are also closely related to the concentration and form of HMs in the

environment and food chain relationships (Zhang et al., 2023).

Although the ecological status of Fuqing Bay and its adjacent

areas has garnered increasing research attention in recent years (Li

et al., 2008; Ruan et al., 2000), most previous studies have focused

primarily on HM distribution and contamination in surface

sediments (Luo et al., 2004; Li et al., 2010; Lin, 2012). Few have

provided an integrated assessment across multiple environmental

compartments, particularly simultaneous evaluations in seawater

columns and marine biota. Moreover, there remains a limited

understanding of the transport mechanisms and biogeochemical

cycling of HMs within this ecosystem. These knowledge gaps

highlight the need for a more holistic approach to HM pollution

assessment in the region.

In response, this study presents a comprehensive evaluation of

HM pollution in northeastern Fuqing Bay by examining three
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interlinked compartments: surface sediments, seawater, and

marine organisms. The main objectives are: (1) to analyze the

spatial distribution and variability of HMs across these media; (2)

to identify and apportion potential contamination sources using

multivariate statistical methods; (3) to assess ecological risks

through established sediment and water quality indices; and (4)

to provide a scientific foundation for designing targeted ecological

restoration and pollution control strategies. By integrating multiple

environmental matrices and applying advanced analytical

techniques, this research aims to offer novel insights into the fate,

transport, and impacts of HMs in Fuqing Bay, thereby addressing

critical gaps in existing literature and supporting informed

environmental management.
2 Materials and methods

2.1 Sample collection and analytical
methods

In April 2022, 37 surface seawater samples, 22 surface sediment

samples, and 4 marine organism samples were collected from

northeastern Fuqing Bay (Figure 1). The procedures for

collecting, preserving, and transporting these samples adhered to

the guidelines outlined in the “Specifications for Marine Surveys”

(GB/T12763-2007).

2.1.1 Seawater sampling and pretreatment
Surface seawater samples (~0.5 m depth) were collected using a

plexiglass water sampler. Prior to storage, sample bottles were

rinsed twice with the sampled seawater to minimize

contamination. Polyethylene bottles were used to preserve Zn, Cu,

Cr, Cd, Pb, and As samples, whereas Hg samples were stored in pre-

cleaned glass bottles. All samples were immediately stored under

dark, chilled conditions during transportation.

For stabilization, 2 mL of HNO3 (ultrapure grade) was added to

samples designated for Zn, Cu, Cr, Cd, and Pb analysis, whereas 2

mL of H2SO4 was used for As and Hg preservation. Filtration was

performed using 0.45 mm glass fiber membranes to remove

particulate matter. Digestion involved adding 10 mL HNO3 to

500 mL seawater, followed by heating on an electric hotplate until

concentrated to ~10 mL. The digestate was diluted to 25 mL with

1% HNO3 and homogenized prior to instrumental analysis.

Procedural blanks and certified reference materials were

processed simultaneously to ensure quality. The accuracy and

repeatability of the analytical procedures were verified through

elemental recovery rates, which fell within the acceptable range of

90% to 110% for all measured elements. To evaluate reproducibility,

10% of the samples were analyzed in three replicates, yielding

relative standard deviations (RSD) between 0.05% and 2.5% for

the determined heavy metal concentrations.

2.1.2 Sediment sampling and pretreatment
Surface sediments were obtained using a grab sampler, and

approximately 200 g of surface mud was collected using a
frontiersin.org
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polyethylene spoon. Samples were sealed in polyethylene bags,

stored in the dark, and refrigerated until laboratory processing.

Freeze-drying was conducted for 40 h to eliminate moisture,

followed by manual homogenization using an agate mortar. The

dried sediment was sieved through a 160-mesh nylon screen to

ensure a uniform particle size.

For acid digestion, 1.0 g of sediment was treated with a 9:3 (v/v)

mixture of HNO3 and HCl (aqua regia) in Teflon vessels.

2.1.3 Biological sample collection and processing
Marine organisms were collected using a single-vessel trawl net

(40 × 94 m/49.3 m) with wing and cod-end configuration. Sampling

was conducted during daylight, accounting for variables such as

vessel speed (3–4 knots), current direction, and wind conditions.

Trawling was performed 2–4 nautical miles from the designated

stations to ensure representative sampling.

Organisms were taxonomically identified, and biometric data

(length and mass) were recorded. The samples were categorized

into crustaceans (Parapenaeopsis hardwickii and Metapenaeus

joyneri) and fish (Cynoglossus abbreviates and Collichthys lucidus).

Muscle tissues from the pectoral fins (fish) and abdominal segments

(crustaceans) were excised, rinsed with ultrapure water, and stored

in pre-weighed 10 mL centrifuge tubes at –20°C.

Digestion followed the HY/T132–2010 protocols, where 0.1 g of

tissue was treated with 9 mL HNO33 and 3 mL H2O2 in a

microwave-assisted digestion system.

2.1.4 Instrumental analysis and quality control
Cu, Pb, Zn, and Cd in seawater were quantified using graphite

furnace atomic absorption spectrometry. The sediment and

biological samples were analyzed similarly, except for Zn, which
Frontiers in Marine Science 03
was determined using flame atomic absorption spectrometry.

A Varian 240 FS AAS (USA) was used for the measurements.

As and Hg were detected using an XGY-1011A atomic

fluorescence spectrometer.

Method validation included reagent blanks, duplicate samples,

and certified reference materials, with recovery rates of 90–110%.

Precision was assessed via triplicate analysis (10% of samples),

yielding relative standard deviations of 0.05–2.5%, confirming

method reproducibility.
2.2 Analytical assessments

Several indices were employed to evaluate HM pollution risks

and identify the sources, including the geoaccumulation index

(Igeo), pollution load index (PLI), potential ecological risk index

(RI), single factor pollution index (Cf), water quality index (WQI),

single pollution index (Pi), bioaccumulation factor (BAF), and

principal component analysis (PCA).

The Igeo was first proposed by Muller in 1969 and was

determined using the following formula (Equation 1):

Igeo = log2(Ci=(1:5� Bi)), (1)

where Ci represents the HM concentration in the sediments and

Bi denotes the background values from Fujian Province, China (Chen

et al., 1992). The Igeo scale ranges from uncontaminated (Igeo ≤ 0) to

severely contaminated (Igeo > 5), as defined by Muller (1981).

The PLI, which was initially proposed by Tomlinson et al.

(1980), is a comprehensive indicator of the integrated

contamination status of multiple HMs. The calculation followed

the following expression (Equations 2 and 3):
FIGURE 1

Geographical locations and the sampling stations in northeastern Fuqing Bay.
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CFi = Ci=C0, (2)

PLI =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CF1 � CF2 �⋯�CFn

n
p

(3)

where CFi is the contamination coefficient of the ith metallic

element, Ci is the measured concentration, and C0 is the natural

geochemical baseline concentration. According to the classification

established by Chakravarty and Patgiri (2009), PLI values below 1

indicate uncontaminated conditions, whereas values exceeding 1

indicate varying degrees of pollution.

The RI, originally developed by Hakanson (1980), provides a

quantitative framework for evaluating potential ecological hazards

by incorporating metal-specific toxicity coefficients and regional

background concentration. It is calculated as (Equation 4):

Ci
r = Ci

f =C
i
n, Ei

r = Ti
r � Ci

r , RI =oEi
r (4)

where Ci
r is the contamination factor for element i, calculated as

the ratio of the measured concentration (Ci
f ) to the background

level (Ci
n). The parameter Ti

r   represents the toxic response factor

specific to each metal, with established values for common HMs,

such as Zn (1), Cr (2), Cu, Pb (5), As (10), Cd (30), and Hg (40)

(Hakanson, 1980). This index provides a cumulative assessment of

the ecological risks from multiple metallic contaminants.

Individual metal risks (Ei
r) were classified into five progressive

categories: minimal risk (<40), moderate (40-79), substantial (80-

159), severe (160-319), and extreme (≥320). Similarly, the composite

RI was categorized into four tiers: low (RI< 105), intermediate (105 ≤

RI< 210), significant (210 ≤ RI< 420), and very high (RI ≥ 420), as per

the classification system updated by Xu et al. (2021).

For marine water quality assessment, Cf and WQI have been

widely adopted (Küikrer and Mutlu, 2019) and were calculated as

follows (Equations 5 and 6):

Cf = Ci=Cs, (5)

WQI =
1
no

n
i=1Cf =

1
no

n
i=1

Ci

Cs
, (6)
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where Cf quantifies the pollution magnitude of individual

metals, Ci is the analytical measurement, and Cs represents the

regulatory limit of China’s Seawater Quality Standard (GB 3097-

1997). The variable n indicates the number of monitored elements.

The interpretive framework correlating Cf and WQI values and

contamination levels has been comprehensively documented in

previous studies (Baltas et al., 2017; Macdonald et al., 1996), as

summarized in Table 1.

Pi was implemented to evaluate HM bioaccumulation in marine

organisms and was calculated using the following expression

(Equation 7):

Pi = Ci=Si (7)

This index compares the measured tissue concentrations (Ci)

against biological reference standards (Si) derived from China’s

“Coastal and Marine Resource Comprehensive Survey Guidelines

(Table 2).” Current evaluation protocols, as described by Zhou et al.

(2022), consider Pi values below 1.0 as compliant with biological

quality standards, whereas values above this threshold indicate

excessive contamination.

BAF was employed to quantify HM transfer from

environmental matrices to biota. Specifically, this study calculated

two variants, BWAF and BSAF, which were determined as follows

(Equations 8 and 9):

BWAF = Ci=Cw (8)

BSAF = Ci=Cs (9)

These metrics relate organismal metal concentrations (Ci) to

their corresponding levels in seawater (Cw) and sedimentary

compartments (Cs).

Spatial distribution patterns of the data were visualized through

planar maps created with Surfer 23.0. Statistical evaluations, such as

principal component analysis and Pearson correlation, were

conducted using SPSS 27.0 (IBM Corp.). Preliminary data

organization and descriptive statistics were carried out in

Microsoft Excel 2016 (Microsoft Corp.).

The use of varimax rotation and the Kaiser criterion (eigenvalues

>1) is a standard and widely accepted practice in environmental

source apportionment studies using PCA. Varimax rotation was

chosen because it maximizes the variances of the squared loadings

within each factor, thereby enhancing the interpretability of the

factors by making high loadings higher and low loadings lower for

each component, which helps in clearer source identification.
3 Results and discussion

3.1 Concentration of HMs in sediments,
surface seawater, and organisms

Surface sediment analysis in northeastern Fuqing Bay revealed

the following HM concentration ranges (mg/g dry weight): Cu (14.6-

31.8), Pb (19.1-40.9), Zn (32.6-77.9), Cr (17.4-39.2), Cd (0.08-0.43),
TABLE 1 Relationship between Cf, WQI and pollution level in surface
seawater.

Cf Pollution level WQI Pollution level

<1 Low ≤1 Clean

1-3 Medium 1-2 Slight

3-6 High 2-3 Medium

>6 Serious >3 Serious
TABLE 2 Various types of biological evaluation standards (units: mg/g).

Species Cu Pb Zn Cr Cd As Hg

Fish 20 2 40 1.5 0.6 5 0.3

Crustaceans 100 2 150 1.5 2 8 0.2
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As (5.4-11.5), and Hg (0.009-0.122), with corresponding mean values

of 22.36, 28.33, 56.40, 25.56, 0.23, 9.04, and 0.08 mg/g (Table 3),

respectively. All the measured concentrations complied with the Class

I standards specified in China’s Marine Sediment Quality (GB 18668-

2002) (Administration of quality supervision, inspection and

quarantine of the People’s Republic of China (AQSIQ), 2002).

Variation coefficients were calculated to assess the

anthropogenic influence on metal distribution. The metals

exhibited the following order of variability: Hg (47.09%) > Cd

(43.59%) > Zn > Cu > Pb > As > Cr (18.66-26.04%). Notably, Hg

and Cd demonstrated substantial variation (exceeding 35%),

suggesting significant external influences and a heterogeneous

spatial distribution. The other elements showed moderate

variability, indicating relatively uniform distribution patterns

across the sampling sites.

In the water column, dissolved metal concentrations (mg/L)
ranged as follows: Cu (0.03–0.69), Pb (0.01–0.22), Zn (0.15–2.13),

Cr (0.025–0.277), Cd (0.001–0.011), As (0.013–0.193), and Hg

(0.001–0.033), with mean values of 0.33, 0.12, 1.31, 0.13, 0.01,

0.07, and 0.02 mg/L respectively. All measurements satisfied Class

I seawater quality criteria (GB 3097–1997).
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Biological samples exhibited species-specific metal accumulation

patterns (mg/g wet weight): Cu (0.3–2.7), Pb (0.51–1.56), Zn (4.4–13),

Cr (0.1–0.4), Cd (0.01–0.05), As (0.15–0.9), and Hg (0.01–0.02), with

mean concentrations of 1.35, 0.88, 7.48, 0.22, 0.03, 0.49, and 0.01

respectively (Table 4). Maximum concentrations of Zn, Cr, As, and

Hg were found in C. lucidus, whereas C. abbreviatus accumulated the

highest Cu and Cd levels. M. joyneri showed the highest Pb and Cd

concentrations in crustaceans, whereas P. hardwickii showed

minimal accumulation of Pb, Cr, and Cd.

The spatial patterns of HMs in the surface sediments from

northeastern Fuqing Bay are shown in Figure 2. High

concentrations of Cu, Zn, Cd, and As were observed in the central

region, in contrast to the lower levels of Pb, Cr, and Hg in the same

area. Notably, higher accumulations of Zn, Cr, and As were detected

near Changle City, likely attributable to anthropogenic influences.

Figure 3 illustrates the spatial variability of dissolved HMs in

surface waters across the study area. The distributions of Pb, Zn,

and Cd exhibited similar trends, with peak concentrations clustered

in the central zone. Cu, Cr, As, and Hg also displayed elevated levels

at mid-region stations, although their distributions were more

spatially dispersed.
TABLE 4 Heavy metal concentration in marine organism in northeastern Fuqing Bay.

Species Value Cu Pb Zn Cr Cd As Hg

All species
Range 0.3-2.7 0.51-1.56 4.4-13 0.1-0.4 0.01-0.05 0.15-0.9 0.01-0.02

Average 1.35 0.88 7.48 0.22 0.03 0.49 0.01

Fish

S4 (C. lucidus) 0.3 0.9 13 0.4 0.02 0.9 0.02

S6
(C.abbreviatus)

2.7 0.54 7.2 0.1 0.05 0.63 0.01

Crustaceans

S27 (M. joyneri) 0.6 1.56 4.4 0.26 0.05 0.15 0.01

S35 (P.
hardwickii)

1.8 0.51 5.3 0.1 0.01 0.26 0.01
TABLE 3 Heavy metal concentrations in the surface sediments and surface seawater in northeast Fuqing Bay.

Heavy metals Cu Pb Zn Cr Cd As Hg

Surface sediments (unit: mg/g)

Range 14.6-31.8 19.1-40.9 32.6-77.9 17.4-39.2 0.08-0.43 5.4-11.5 0.009-0.122

Average 22.36 28.33 56.40 25.56 0.23 9.04 0.08

Variation coefficient/
%

22.91 22.71 26.04 18.66 43.59 18.89 47.09

MSQ-1 35 60 150 80 0.5 20 0.2

Surface seawaters (unit: mg/L)

Range 0.03-0.69 0.01-0.22 0.15-2.13 0.025-0.277 0.001-0.011 0.013-0.193 0.001-0.033

Average 0.33 0.12 1.31 0.13 0.01 0.07 0.02

Variation coefficient/
%

44.87 43.25 42.63 41.85 41.41 46.38 50.92

SQS-1 5 1 20 50 1 20 0.05
MSQ-1 represents the first-class standard concentration of heavy metals according to the Chinese Marine Sediment Quality Standard Criteria (GB 18668-2002).
SQS-1 is the first-class standard for the concentration of heavy metals in seawater (GB 3097-1997).
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3.2 Assessment of sediment pollution using
ecological risk indices

The mean and range of the Igeo values for the seven HMs in the

sediments in northeast Fuqing Bay are presented in Table 5. The

mean degree of contamination was the highest for Cd, followed by

As, Cu, Hg, Pb, Zn, and Cr. The Igeo values of Cd, As, and Hg were

greater than zero in 95.5%, 63.6%, and 4.5% of the samples,
Frontiers in Marine Science 06
respectively (Figure 4). More than half of the sediments in the

middle of the study area were slightly contaminated (0–1) by As.

Evidently, the majority of the area was slightly to strongly

contaminated (0–3) by Cd (Muller, 1981).

The PLI analysis revealed considerable spatial variation across the

study area, with values ranging from 0.03 to 1.73 (mean = 0.35) at the

22 sampling stations (Table 5). Spatial mapping (Figure 5) identified

three northern stations (S4, S11, and S29) with PLI values > 1,
FIGURE 2

Spatial distributions of seven heavy metals in the surface sediments.
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suggesting a significant anthropogenic influence on HM

accumulation at these locations.

The ecological risk assessment demonstrated distinct patterns

among the measured metals. The risk coefficients followed the

order: Cd (highest) > Hg > As > Cu > Pb > Cr > Zn (lowest)

(Table 5). While most metals exhibited low ecological risk (average

Ei
r< 40), Cd showed moderate–high risk potential (Ei

r range: 42.22-
Frontiers in Marine Science 07
239.44). Hg is of particular concern, with 59.1% of the stations

showing moderate ecological risk despite relatively low

concentrations, reflecting its exceptionally high toxicity (Tam and

Wong, 2000).

The RI values ranged from118.77 to 328.1 (mean = 193.12),

indicating a moderate ecological risk across the study area (Table 5).

Five stations in the eastern and western sectors exceeded RI value of
frontiersin.or
FIGURE 3

Spatial distributions of seven heavy metals in the surface seawaters.
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210, reaching the significant risk category (Figure 6). Source

apportionment analysis identified Cd (65.43%) and Hg (20.69%)

as the primary risk contributors (Table 5), highlighting their

disproportionate ecological impact relative to their concentration

levels (Di Bella et al., 2024). This phenomenon reflects the enhanced

biological toxicity of these elements compared with that of the other

measured metals. The RI values in Luoyuan Bay in northern eastern

coast of Fujian Province ranged from 43.96 to 182.73, with mean
Frontiers in Marine Science 08
level of 68 (Fan et al., 2022), which were lower than those in

study area.
3.3 Assessment of HM contamination in
surface waters

The Cf analysis revealed the following HM concentration ranges

in the surface waters of northeastern Fuqing Bay: Cu (0.006–0.14),

Pb (0–0.22), Zn (0.01–0.11), Cr (0.001–0.006), Cd (0–0.01), As (0–

0.01), and Hg (0.02–0.66). The corresponding mean values were

0.07, 0.12, 0.07, 0.003, 0.01, 0.004, and 0.31, respectively (Table 5).

WQI values across sampling stations varied between 0.02 and 0.14,

consistently below the threshold value of 1. This demonstrated

compliance with Class I seawater quality standards for all

monitored HMs throughout the study period, reflecting good

water quality conditions (Ramadan et al., 2021).

The ecological risk assessment results followed the order of

single-element potential ecological risk coefficients as follows:

Hg > Pd > Cu > Cd > Zn > As > Cr (Table 5). All individual risk

coefficients remained below 40 at every sampling location, suggesting

minimal ecological concern. The comprehensive potential ecological

risk index (RI) values ranged from 1.49 to 28.03 (mean = 13.52,

Table 5 and Figure 6), confirming an overall low ecological risk status

in the study area (Küikrer and Mutlu, 2019).
TABLE 5 Background value, Igeo, E
i
r, RI, PLI values for surface sediments and Cf, WQI, RI values for surface seawaters of heavy metals in northeast

Fuqing Bay.

Parameters Cu Pb Zn Cr Cd As Hg

Surface sediments

Mbackground
a(mg/g) 21.6 34.9 82.7 41.3 0.054 5.78 0.081

Igeo Range -1.15 to -0.03 -1.45 to -0.36 -1.93 to -0.67 -1.83 to -0.66 -0.09-2.41 -0.68-0.41 -3.75-0.01

Average -0.57 -0.92 -1.19 -1.30 1.35 0.03 -0.88

Ei
r   Range 3.38-7.36 2.74-5.86 0.39-0.94 0.84-1.9 42.22-239.44 9.34-19.9 4.44-60.25

Average 5.18 4.06 0.68 1.24 126.36 15.64 39.96

RI (average) 118.77-328.10 (193.12)

Contributions to RI 2.68% 2.10% 0.35% 0.64% 65.43% 8.10% 20.69%

PLI (average) 0.03-1.73 (0.35)

Surface seawaters

Cf Range 0.006-0.14 0-0.22 0.01-0.11 0.001-0.006 0-0.01 0-0.01 0.02-0.66

Average 0.07 0.12 0.07 0.003 0.01 0.004 0.31

WQI (average) 0.02-0.14 (0.108)

Ei
r   Range 0.03-0.69 0-1.1 0.01-0.11 0-0.01 0.03-0.33 0.01-0.1 0.8-26

Average 0.33 0.60 0.07 0.01 0.20 0.04 12.28

RI (average) 1.49-28.03 (13.52)

Contributions to RI 2.45% 4.42% 0.49% 0.04% 1.48% 0.26% 90.87 %
aBackground values of heavy metals are the elemental baseline in the soil of Fujian, China (Chen et al., 1992).
FIGURE 4

The Igeo of seven heavy metals in the sediments in northeast Fuqing
Bay.
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3.4 Accumulation of HMs in organisms

Statistical analysis revealed distinct distribution patterns of HM

concentrations in the two marine organism groups in northeastern

Fuqing Bay. The descending order of metal concentrations in fish was

Cr > Hg > Pb > Cu > Cd > Zn > As, with crustaceans also showing a

similar pattern. Notably, elevated levels of Cr and Hg in both groups

suggest potential environmental contamination. When evaluated

against the biological quality criteria established in China’s Coastal

Zone and Marine Resource Comprehensive Survey Guidelines, the

standardized indices presented in Table 6 demonstrate that Cr

concentrations exceeded the permissible limits at four sampling

locations. Among the measured metals, Cr exhibited the highest

standardized indices in both fish (6.74) and crustaceans (3.23). Other

HMs remained within the acceptable thresholds according to the

national standards. Cr, particularly in its hexavalent form (Cr(VI)), is

highly toxic to aquatic organisms. Studies have indicated that

chromium exposure can induce various adverse physiological

effects in aquatic invertebrates and fish, including but not limited
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to: triggering oxidative stress, causing damage to tissues such as gills

and hepatopancreas, inhibiting growth and development, and

impairing immune and reproductive functions.

The bioaccumulation potential was assessed using two key

indicators: BWAF and BSAF. Values exceeding unity for BSAF

signify significant metal accumulation capacity, whereas BWAF > 1

indicates pronounced bioaccumulation in aqueous environments.

As shown in Table 7, all BSAF measurements remained below 1,

suggesting limited HM uptake from sedimentary sources (Dean

et al. , 2007). This finding contrasts with the aqueous

bioaccumulation pattern, where despite generally low dissolved

metal concentrations in seawater, most BWAF values exceeded 1

(excluding Cr at S35 and Hg at S4/S6). This demonstrates the

efficient biological concentration of metals from the aqueous phase

through trophic transfer, which is consistent with the findings of

previous studies (Harada, 2016; Hoai et al., 2020; Islam and Tanaka,

2004). The observed differential accumulation patterns between the

sedimentary and aqueous sources highlight the complex dynamics

of metal transfer in marine ecosystems.
FIGURE 5

Spatial distribution of pollution load index (PLI) for heavy metals in surface sediments.
FIGURE 6

Spatial distributions of RI values in the surface sediment and surface seawater.
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3.5 Source identification of HMs

To identify the potential HM sources in the environment, PCA

was performed using SPSS software. For surface sediments, three

principal components (PCs) with eigenvalues >1 were extracted,

which collectively explained 77.94% of the total variance (Table 8),

thereby capturing most of the variability in the dataset (Waykar and

Petare, 2016).

PC1 accounted for 34.29% of the variance and exhibited strong

loadings for Pb (0.81), Cd (0.56), and Hg (0.70), thereby implying a

shared origin for these elements. The spatial distribution of Cd

indicates slight to moderate contamination (0–3) across most of

the study area (Table 5 and Figure 6). Potential anthropogenic

sources include industrial effluents from chemical plants that often

discharge wastewater containing Cd and Hg into rivers and coastal

waters. Additionally, port operations, machinery maintenance, and

related industrial activities generate metal-laden dust and wastewater,

and Pb is a notable contaminant in these maintenance processes.

PC2 explained 27.03% of the variance, and was dominated by Cu

(0.83), Cr (0.60), and As (0.43). These metals may originate from the

natural weathering of local geological formations, such as granite and

basalt, which release Cu, Cr, and Zn into aquatic systems via surface

runoff and atmospheric deposition. Furthermore, metal smelting

activities in Fuqing contribute to Cu and Zn emissions from

industrial wastewater and airborne particulates.

PC3 contributed 16.62% of the variance with notable loadings

for Zn (0.57) and Cd (0.52). Agricultural runoff is another plausible

source, as pesticides (containing As) and fertilizers (containing Zn)

can be introduced into marine sediments via rainwater erosion and

riverine transport.
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For surface seawater in northeastern Fuqing Bay, two principal

components were extracted, which explained 62.79% of the total

variance (Table 8).

PC1 (46.5% variance) showed high positive loadings (>0.7) for

Cu, Cr, Cd, and As, suggesting a natural origin because their

concentrations remained below background levels and showed

minimal anthropogenic influence. However, Pb, Zn, and Hg also

exhibited moderate loadings on PC1, indicating partial

contributions from these components.
TABLE 6 Standard index (Pi) of heavy metal content in organisms in the study area.

Species Stations Value Cu Pb Zn Cr Cd As Hg

All 4
Range 0.01-0.14 0.08-0.45 0.003-0.02 2.93-8.67 0.01-0.08 0.001-0.004 0.33-1.33

Average 0.05 0.25 0.01 4.98 0.04 0.002 0.87

Crustaceans 2
Range 0.01-0.02 0.08-0.13 0.003-0.01 2.93-3.53 0.01-0.03 0.001-0.001 0.5-1.3

Average 0.02 0.11 0.01 3.23 0.02 0.001 0.90

Fish 2
Range 0.02-0.14 0.32-0.45 0.01-0.02 4.8-8.67 0.03-0.08 0.002-0.004 0.33-1.33

Average 0.08 0.39 0.02 6.74 0.06 0.003 0.83
TABLE 7 BAF of heavy metals in northeast Fuqing Bay.

Species Station
BSAF BWAF

Cu Pb Zn Cr Cd As Hg Cu Pb Zn Cr Cd As Hg

Fish
S4 0.01 0.024 0.28 0.015 0.05 0.1 0.16 1.25 5.00 6.25 3.54 3.33 1.55 0.95

S6 0.13 0.024 0.14 0.004 0.15 0.07 0.08 1.50 5.40 6.92 1.45 5.00 1.26 0.67

Crustaceans
S27 0.04 0.046 0.11 0.01 0.23 0.03 0.09 1.25 4.00 2.24 1.70 4.55 1.28 1.11

S35 0.09 0.027 0.07 0.003 0.04 0.03 0.71 4.19 1.70 5.89 0.85 5.00 5.10 1.01
fr
ontiers
TABLE 8 Extracted three principal components in surface sediments and
two principal components for surface seawater.

Parameter

Surface
sediments

Surface
seawaters

PC1 PC2 PC3 PC1 PC2

Cu 0.05 0.83 0.45 0.74 -0.36

Pb 0.81 0.30 0.07 0.58 0.53

Zn -0.57 -0.38 0.57 0.60 0.05

Cr 0.03 0.60 -0.57 0.79 -0.16

Cd 0.56 0.35 0.52 0.77 0.12

As -0.78 0.43 0.14 0.72 -0.51

Hg 0.70 -0.54 0.14 0.52 0.65

Eigenvalues 2.4 1.89 1.16 3.26 1.14

Percentage of variance 34.29 27.03 16.62 46.5 16.29

Cumulative % eigenvector 34.29 61.32 77.94 46.5 62.79
in.org

https://doi.org/10.3389/fmars.2025.1684021
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2025.1684021
PC2 (21.44% variance) was strongly associated with Pb (0.53) and

Hg (0.65), likely reflecting anthropogenic input. Domestic

wastewater, particularly that from urban and rural sewage systems,

often contains Hg (from cosmetics, batteries, and electronic waste)

and Pb (from industrial and household sources). Inadequate

wastewater treatment may lead to the discharge of residual HMs

into coastal waters, ultimately accumulating in sediments.

While PCA provides valuable insights into potential pollution

sources, several limitations should be considered. Firstly, the results

are dependent on the initial selection of variables and data

normalization techniques. Secondly, the extracted factors require

subjective interpretation based on loading patterns and ancillary

knowledge of the study area, which introduces an element of expert

judgment. Furthermore, PCA assumes linear relationships among

variables and may not fully capture complex interactions or minor

sources. Lastly, unlike absolute receptor models, PCA does not

directly quantify the mass contribution from each identified source.

Therefore, the findings presented here should be viewed as a

preliminary identification of major source categories rather than

an exact quantification of their contributions.
4 Conclusion

This study focused on the evaluation of surface sediments,

seawater, and HMs in organisms in northeastern Fuqing Bay, Fujian

Province. Results revealed that the concentrations of HMs in surface

sediments and seawater in the area were consistent with the relevant

standard classes. However, spatial variations in the distributions of

certain HMs were also observed. In the sediments, Cd, As, andHg were

present in some samples, posing potential moderate ecological risk

primarily due to Cd and Hg. The ecological risk posed by seawater was

determined to be low, with fairly uncontaminated water quality.

Regarding marine organisms, Cr levels exceeded the standard at

some stations, and organisms exhibited a significant enrichment

capacity for most HMs in seawater. PCA indicated wastewater

discharge from chemical enterprises, port operations, rock

weathering, metal smelting, and agricultural activities as the principal

sources of HMs in the sediments. Notably, a proportion of the HMs

detected in seawater has a natural origin, whereas others are

attributable to anthropogenic activities, including urban and rural

domestic sewage discharge. This study provides a fundamental

foundation for research on regional ecological environments. To

effectively mitigate the identified pollution, future efforts should

translate these findings into concrete actions. For key anthropogenic

sources identified by PCA, such as chemical industries and ports, we

recommend implementing technology-based effluent standards that

mandate the installation of advanced wastewater treatment systems

(e.g., electrocoagulation, membrane filtration) and establishing a real-

time online monitoring network for their discharges to ensure

continuous compliance.

Regarding agricultural non-point source pollution, the

promotion of Best Management Practices (BMPs) is essential,

including precision farming to reduce pesticide and fertilizer use,
Frontiers in Marine Science 11
the construction of riparian buffer zones to intercept runoff, and

incentives for adopting organic alternatives.

Furthermore, policy makers should consider enacting stricter

discharge limits for heavy metals, imposing stronger penalties for

violations, and incorporating heavy metal pollution control metrics

into the environmental performance assessments of local

authorities. Continued monitoring, coupled with these targeted

regulatory and management measures, will provide essential

scientific support for the effective restoration and protection of

the ecological environment in Fuqing Bay.
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