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The marine ecological economy has emerged as one of the most dynamic and
promising sectors for economic expansion in coastal nations and regions. lIts
development is vital for fostering sustained, balanced and resilient economic
growth. To enhance the precision of predictions and assessments of the marine
eco-economic system, thereby supporting sustainable marine economic
development, this study proposes a corrected discrete grey model (CDGM(1,1))
incorporating dynamic adjustment mechanisms. The model is further integrated
with the driving force-pressure-state-impact-response (DPSIR) framework to
establish a comprehensive forecasting and evaluation methodology. By
introducing the concept of “grey effective information” and refining the probability
accumulating generation operator (P-AGO), the approach effectively extracts critical
information from data sequences. For datasets containing periodic patterns, a
discrete GM(1,1) variant based on dynamic local accumulation is employed,
allowing for combined forecasting. Finally, with the DPSIR framework and using
the TOPSIS method, China’s marine economic data from 2010 to 2026 are analyzed.
The prediction accuracy improved by 84% compared with traditional GM(1,1). The
results demonstrate not only the effectiveness of marine ecological protection and
economic development strategies but also elucidate the synergistic interplay of
industrial growth, ecological feedback and policy regulation within the system.
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1 Introduction

The ocean is a critical spatial resource underpinning economic and societal
advancement, offering vast opportunities for future development. The high-quality
growth of the marine economy is pivotal for optimizing terrestrial spatial structures,
fostering emerging productive capacities and contributing to the formation of a modern
development paradigm. Currently, the marine economy is experiencing unprecedented
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opportunities, with entire industrial chains spanning deep-sea
energy exploration to offshore fisheries, expanding rapidly to
become major drivers of sustainable economic growth. In the
context of global carbon-emission reduction, accurately
identifying the key determinants of marine economic growth, as
well as forecasting and evaluating its developmental trajectory, has
become central to achieving integrated land-sea governance (Sun
et al,, 2022; Mao et al.,, 2023; Xu et al., 2025a). The formulation of
robust and scientifically rigorous prediction and evaluation models
is therefore essential for monitoring and forecasting the dynamic
evolution of marine ecological and economic systems, thereby
ensuring the long-term sustainability of ocean-based development.

Several challenges hinder the development of an evaluation
framework for the marine ecological-economic system. These include:
(1) Mechanistic ambiguity — the evolution of the marine environment
arises from the coupled interactions of physical, chemical and biological
processes, which traditional black box models struggle to represent in
terms of ecological mechanisms; (2) Dynamic adaptability - abrupt
system changes driven by climate variability and anthropogenic
activities, such as recurrent red tides, outbreaks, and demand models
capable of real-time adjustment. Current research has yet to establish a
unified framework that integrates data-driven methods with
mechanistic analysis, resulting in a threefold bottleneck: inaccurate
predictions from small datasets, poor interpretability of complex
relationships, and delayed responses to dynamic disturbances.

Existing predictive assessments of the marine ecological-economic
system predominantly rely on traditional statistical models, machine
learning algorithms and classical grey models (Cai et al,, 2023; Tao
et al, 2021; Wang et al, 2023). However, these approaches are
constrained when addressing the marine environment’s distinctive
features, small samples, high noise and strong dynamics. Statistical
models are limited by linearity assumptions and inadequate
adaptability to dynamic change, making them ill-suited to capture
the system’s nonlinear coupling relationships (Germano, 1999). While
machine learning models perform well with large datasets, they exhibit
poor generalization under small-sample conditions (Zhang et al., 2021)
and suffer from black-box opacity, which detaches them from their
underlying mechanisms (Yan et al, 2022). The static accumulation
operator in classical grey models is unable to effectively extract relevant
information from limited data or capture multifactor coupling (Yin
and Zeng, 2022). Furthermore, most existing studies lack an integrated
modelling framework encompassing the complete DPSIR chain,
thereby limiting the ability to analyze the co-evolutionary dynamics
of the marine ecological economy from a holistic perspective (Nielsen
et al., 2018).

Given the characteristics of marine environmental data, namely
small sample sizes, pronounced heterogeneity and multi-mechanism
coupling, this study proposes a dynamically corrected discrete GM(1,1)
model (CDGM(1,1)). It develops a comprehensive prediction—
evaluation framework that integrates the DPSIR and CDGM (1,1)
theoretical models (Patricio et al,, 2016; Li X. et al., 2023). First, the
model extracts the grey effective information from core indicators using
a discrete GM(1, 1) model based on probability accumulation (PDGM
(1,1)). The probability accumulation operator (P-AGO) is enhanced by
incorporating dynamic parameters and the RLinear model to address
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operator degradation (Zhou et al., 2023; Li Z. et al., 2023). In addition, it
is combined with the discrete GM(1,1) model based on dynamic local
accumulation generation (DPDGM(1,1)) for hybrid prediction,
thereby improving accuracy through a trend modelling-residual
fusion mechanism. The experimental results demonstrate that the
proposed method achieves high predictive performance.
Furthermore, the study examines the strengths and weaknesses of
current marine economic development by forecasting the future
marine economic and proposes strategic priorities for future growth
and development.
The principal contributions of this study are as follows:

1. For the marine economic system, key factors across the
chain, from driving forces to societal responses, are
identified, such as the marine circular gain industry and
marine fishing output. Development priorities and strategic
directions for the marine economy are analyzed
and forecasted.

2. The PDGM(1,1) model is enhanced through the
introduction of dynamic parameters, leading to the
formulation of the CDGM(1,1) model. Its integration
with the DPSIR framework addresses the limitations of
conventional approaches in capturing complex
interrelationships. The predictive outputs not only reflect
the system’s dynamic evolution but also offer clear policy
interpretability, thereby providing an effective solution to
the challenges of “small data” and “interpretability” in
marine environmental forecasting.

The rest of this paper is organized as follows: Section 2 reviews
research on marine ecological and economic evaluation. Section 3
introduces the marine ecological economic evaluation model. Section
4 analyzes the applicability and effectiveness of the model using
examples. Section 5 presents predicted results and offers management
recommendations for the future marine ecological economy. Section 6
concludes the article and suggests directions for future research.

2 Literature review

In recent years, the intensification of global climate change and the
escalating frequency of human marine activities have drawn increasing
international concern regarding marine environmental issues.
Phenomena such as ocean acidification, pollution and ecological
degradation have repeatedly prompted academic debate (Xu et al,
2025b, 2025). Research has progressively shifted from focusing on
individual pollutants and complex systems to describing dynamic
trends, rather than static conditions (Benavides et al., 2022). Against
this backdrop, the development of predictive models tailored to the
unique features of the marine environment has become a critical step
towards addressing modelling challenges associated with small datasets
and high uncertainty.

Early research in marine environment prediction predominantly
relied on traditional statistical approaches, including time series
analysis and regression models. However, these methods are
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inadequate for handling non-linear and non-stationary data. Recent
advances in machine learning and deep learning have revitalized the
field. Wen et al. (2020) developed a data-driven time series prediction
network to address the complex, dynamic characteristics of large-scale
marine environmental datasets. By incorporating spatiotemporal
correlation features and a fuzzy logic mechanism, their long-term
surface water temperature prediction errors in the South China Sea
were reduced by 12%, offering a refined tool for simulating ocean
current dynamics and issuing more accurate extreme weather
warnings. Using multi-source data from marine buoys and satellite
remote sensing, they constructed a training set that demonstrated a
strong representational capacity of deep learning in modelling high-
dimensional spatiotemporal data. Deng et al. (2021) tackled the
challenge of offshore water quality prediction by enhancing artificial
neural network (ANN) and support vector machine (SVM) algorithms.
Introducing an attention mechanism to dynamically optimize the
weighting of water quality features, their approach improves COD
concentration prediction accuracy by 8% in monitoring the Pearl] River
Estuary. The outcomes were applied directly to red tide early warning
systems, enabling real-time decision support for coastal ecological
management. Considerable progress was also reported by Ham et al.
(2019) in forecasting El Niflo events. They designed a deep learning
architecture that integrates convolutional neural networks (CNNs)
with long short-term memory networks (LSTMs) to capture the
spatiotemporal propagation of sea surface temperature anomalies,
achieving a six-month lead-time prediction accuracy of 78%, 23%
points higher than conventional statistical models.

Although machine learning and deep learning have demonstrated
notable success in predicting marine environments, the present study
focuses on forecasting and assessing the sustainable development of the
marine ecological economy. Small sample sizes, high noise levels and
strong dynamics often characterize marine environmental datasets.
Deep learning methods, such as the time series prediction network
proposed by Wen et al. (2020), typically require large-scale labelled
datasets and exhibit poor generalization in small-sample contexts, such
as polar ocean monitoring or deep-sea ecological surveys.
Consequently, in data-scarce regions, these models fail to deliver
reliable predictions and cannot adequately support local marine
ecological and economic development.

Regarding model interpretability and cross-regional adaptability,
Deng et al. (2021) proposed an enhanced machine learning model;
however, the persistent “black-box” dilemma remains unresolved. The
logic of underpinning the weight allocation in the attention mechanism
cannot be effectively linked to the physical processes governing water
quality evolution. At the same time, the adaptation cost in cross-regional
applications remains high. Consequently, rapid deployment across
diverse marine environments is hindered, limiting the model’s ability
to meet the varied requirements of predictive evaluation for global
marine ecological and economic sustainability. Similar constraints have
been reported by Akay and Mehmet (2007). From the standpoint of
modelling the complex dynamics of the marine environment, although
the traditional GM(1, 1) model offers advantages for small-sample
datasets (Li et al., 2023), its static accumulation operator fails to capture
the intricate dynamics arising from coupling of multiple marine
environmental factors (Li X. et al,, 2019). In comparison, this study
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investigates the prediction and evaluation of the sustainable
development of the marine ecological-economic system through the
CDGM(1,1)-DPSIR model. The analysis is grounded in the DPSIR
theoretical framework, employing the dynamically modified discrete
GM(1,1) model (CDGM(1,1)) for indicator forecasting. A
comprehensive and systematic prediction-evaluation framework is
established to provide robust scientific support for promoting
sustainable marine ecological and economic development.

Therefore, further research must accurately characterize the
interactions and dynamic evolution within marine ecological-
economic systems and elucidate the underlying mechanisms of
marine environmental change. Moreover, most existing studies
address a single process or time point, with few developing an
integrated prediction and evaluation framework that encompasses
driving forces, environmental pressures, ecological states, impact
effects and societal responses. A comprehensive understanding of
the marine ecological-economic system, supported by systematic
prediction and evaluation, is thus essential for assessing its
sustainable development trajectory.

3 Model construction
3.1 Overall model architecture

This study integrates the DPSIR theoretical framework, enhances
the PDGM(1, 1) and RLinear models, proposes the CDGM(1, 1) model
and develops a full-chain prediction-evaluation system. The system
comprises three primary modules (Figure 1):

1. Indicator collection and processing: Initially, 29 indicators
were compiled. Following preprocessing, which included
data cleaning, correction and integration, 22 valid
indicators were retained.

2. Prediction using the CDGM(1,1) model: The CDGM(1, 1)
model refines the P-AGO operator of the PDGM(1, 1) by
incorporating dynamic parameters, which are forecast
using the RLinear module. This enhancement improves
the predictive performance of the PDGM(1, 1).
Additionally, the DPDGM(1, 1) model is applied for
correction, yielding the final prediction results.

3. Subsystem classification and evaluation, within the DPSIR
framework, indicators are categorized into five subsystems:
Driving forces (e.g., marine circular economy industries),
environmental pressures (e.g., marine fishing output),
ecological state (e.g., marine biomedicine industry),
impact effects (e.g., frequency of red tide marine events)
and societal responses (e.g., marine research, education and
management services).

The entropy weight method is employed to determine the indicator
weights, followed by the TOPSIS method (Cao et al.,, 2024) to calculate
the annual evaluation scores for each subsystem. These scores are used
to quantify dynamic trends and explore interrelationships between
subsystems within the DPSIR framework. By combining current state
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FIGURE 1
Overall model system architecture.

assessments with future scenario forecasts, the study identifies key  study develops a causality-driven grey prediction model, CDGM(1,
constraints on sustainable marine development, thereby providing a 1), which integrates the DPSIR framework.
scientific basis for optimizing management strategies.
The subsequent sections present a detailed description of the ~ 3.2.1 PDGM(Z, 1) model based on the probability
construction of the DPSIR model and the CDGM(1, 1) model. accumulation generation operator
The grey prediction model GM(1, 1) is widely applied in
contexts with limited datasets. Unlike the conventional GM(1, 1)
3.2 Prediction method based on model, the PDGM(1, 1) model, proposed by Yin et al. (2024),
CDGM(1, 1) employs a probability cumulative generation operator that
differentiates between effective and ineffective information within
Given the characteristics of marine environmental data, namely ~ a sequence in probabilistic terms. This feature confers substantial
small sample sizes, high noise levels, and pronounced dynamic  advantages in marine ecological and economic applications where
variability, as well as the limitations of existing methodologies, this  reliable statistical data are scarce.
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The procedure for constructing the PDGM(1, 1) model is
outlined below.

3.2.1.1 Quantification of grey effective information and
probability accumulation operator

The concept of grey effective information refers to behavioral
data points that effectively characterize the governing laws of the
system’s operation. This is quantified using the whitenisation value
of the interval grey number: ® = p - x, where p is the positioning
coefficient (0 < p < 1), representing the proportion of effective
information. The extraction process is modelled as a Bernoulli
distribution, with the extraction probability expressed in the form of
a Sigmoid function (Equation 1):

1

Here, A denotes the information standard parameter, which
determines the threshold for extracting effective information.

The P-AGO screens the grey effective information using
a weighted accumulation method to produce a new sequence
X#)(k), calculated as Equation 2:

1+eh

(2)

where € is the information difference adjustment parameter,
controlling temporal information disparities and enabling the
weighting of effective information.

3.2.1.2 Discrete model structure
A discrete model is subsequently developed based on the
probability accumulation sequence X'?(k), as shown in Equation 3:

P(k+1) = Bx'? (k) + B, (3)

Estimate the parameters f3;, 3, by the least squeares method
(Equation 4), and boldface symbols indicate matrices.

[B: B]—a%?mg[ )= (B (k-1)+ )|
21y 1 T xP(1) 1 B
- xP(2) 1 P (2) 1
- (4)

P (n-1) 1 P (n-1) 1
[0 1] [« (2)
x(P) 2) 1 x(P) (3)
P (n-1) 1 x(";(n)
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The time-response expression is a discrete difference (Equation 5).
B2
-B

2P (k+1) = (x<°>(1) - (5)

Bx s
—— |B1+

-B 1
Using the time-response equation, the system’s future state can

be predicted, providing the basis for subsequent inverse restoration
and adjustment of growth rates.

3.2.1.3 Inverse restoration and growth-rate adjustment

The original sequence is restored by the inverse cumulative
operator, incorporating the information-extraction weight
(Equation 6):

2O(k) = (,g(?)(k) _ 20 (k- 1)> (1 . e_/lk)ﬁ(k—l) ©

The growth rate depends on a parameter A, €, allows the model
to accommodate different data trends.

Figure 2 presents the PDGM(1,1) predictions for marine
environmental data, which exhibit pronounced dynamics.
The model performs well in the early horizons; however, once
the prediction horizon exceeds eight time-steps (e.g., years), its
ability to capture fluctuation patterns declines noticeably.
Because the P-AGO tends towards an ordinary accumulation
operator as it increases, its sensitivity to fluctuations diminishes.
In practice, this degradation manifests as reduced predictive
accuracy, which is insufficient for complex, highly
dynamic environments.

To address these limitations, we improve the P-AGO operator
by introducing dynamic parameters and combine it with RLinear
for prediction.

3.2.2 Improved P-AGO operator
From expé‘(efﬁi)on (2), for any fixed A, €, as i increases, the product

term approaches zero, causing operator degradation. To

T+e

overcome this, we introduce dynamic parameters, yielding a new
cumulative-sequence generation formula (Equation 7):

k 1 &
®) (k) = ©); 7
0 =3 (155) 500 g
and the corresponding reduction formula (Equation 8):
#00) = (#0(k) - 2 (- 1)) (146 (8)

Let the length of the observed data sequence be x(*) (k) is n, we
then formulate an optimization (planning) model to obtain an
optimal set of parameters €, &, ..., €,, A (Equation 9), and boldface

symbols indicate matrices.
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Prediction results of the PDGM(1, 1) model.

k=2 X0 (k)
" (k) = ﬁl(l :ﬂl) ),
[B.5.] = (B"B) Y,

&)

A & € [-10,10), i = 1,2,...,7.

In conjunction with the existing x* (k) sequence and &
(k=1,2,...,n), parameter setting, a sliding-window dataset is
constructed. Regression prediction is carried out using the
RLinear module to obtain &,,,, the intermediate results, %
(n+ 1) which are then processed through the reduction formula
(8) to produce the final predictions.

3.2.3 RLinear module
The RLinear module performs regression prediction on the
target parameter &,,,, and its components are as follows:

3.2.3.1 Reversible normalization and multi-layer
perceptron structure

The model incorporates a RevIN layer. This layer standardized
the input data by computing its mean p and standard deviation ¢
according to Equation 10.

(x-u)
O +e€

Y+ B (10)

Xnorm =

Here, y and f the scaling and bias terms are learnable
parameters, and & a small constant is included to prevent
division by zero. During the prediction phase, the reverse
operation restores the data to its original scale, preserving its
inherent characteristics.
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The normalized data are then passed through an MLP
comprising two fully connected layers, with a Sigmoid activation
function in between to introduce a non-linear transformation. This
enables the model to capture complex non-linear mappings with
the residual sequence. A Dropout layer is applied to reduce
overfitting. The MLP configuration is adjusted based on the
characteristics of residual data and model performance, ensuring
that nonlinear information is fully exploited.

3.2.3.2 Dataset construction and model training

The regression model utilizes the specified x() (k) independent
variable(s) and g, dependent variable(s) to generate a sliding-
window dataset, as illustrated in Figure 3. Two data groups are
selected, k = n — 1, n, as the test set, with the remainder forming the
training set. Data augmentation is performed by adding normally
distributed noise to the original data, thereby increasing the
diversity of training samples. Weight decay and an additional
Dropout layer are employed to mitigate overfitting further.

Given the relatively small dataset, random errors during
training are minimized by closely monitoring the training
process, adjusting the number of epochs, setting an early-stopping
criterion and recording the convergence behavior. The training is
repeated multiple times, and the optimal solution is selected. The
final output comprises the predicted values of ¢g,,; the target
variable generated by the RLinear model.

3.2.4 Residual dynamic mining and correction
module (DPDGM(1,1))

To more effectively capture periodic trends in the data, the
DPDGM(1, 1) model is employed to refine the prediction results of
the improved PDGM(1, 1) model. The outputs of both models are
then combined to generate the final prediction results of the CDGM
(1, 1) model.

3.2.4.1 Sliding window accumulation
Following the principle of the dynamic partial accumulative
generation operator (DPAGO), an appropriate sliding window size
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is selected. Let the residual sequence be EO = e(o)(l),e(o) (2), -,
€% (n)). At the k-th time point, a partial accumulation is performed
to obtain the sliding-window cumulative value e (k), calculated
as Equation 11:

k+q-1

L0 = 3 ()

ok

(11)

where, k=1, 2,
captures the local dynamic variations of the residual sequence

~-,n—q+1. This approach effectively

within different time windows, aligning with the non-stationary
nature of marine environmental data. Compared with the
traditional accumulation method, it adapts more flexibly to the
variability patterns of the data.

3.2.4.2 Discrete model construction and parameter
estimation

A discrete model is then formulated based on the sliding-
window cumulative sequence. The structure is inspired by the
conventional grey model and is expressed as Equation 12:

M (k+1) = oe™ (k) + B (12)

where, k=1, 2,
are estimated using the least-squares method.

---,n—q+ 1. The model parameters ¢ and f3

3.2.4.3 Inverse cumulative subtraction for prediction
restoration

The predicted values of the residuals are retrieved by applying
a dynamic local cumulative-subtraction generation operation to
the results from the sliding-window cumulative sequence
(Equation 13).

D) (i +1), i<q
eV(i+1)= R
(61— a0 (1) + a1 +eV(i-q+1), izq
(13)

These residual predictions are subsequently used to adjust the
outputs of the improved PDGM(1, 1) model. This residual-
correction mechanism enhances the accuracy of marine
environmental data forecasting and mitigates the original model’s
limitations in representing complex data features.

Finally, the pseudocode of the CDGM(1,1) algorithm is
provided in Algorithm 1.

Frontiers in Marine Science

[] Feature [ Label

Input: historical values of indicator
Output: forecasting value of next year
1 Main Program:
2
3 #Part1
4 PAGO_series « PAGO_operator(raw_series)
5 windows_data —
build_sliding_windows (PAGO_series)
6 RLinear.train(windows_data)
7 PAGO_hat « RLinear.predict(windows_data)
8 fitted_sert, forecast] —
PAGO_inverse_operator (PAGO_hat)
9
10 #Part?2
11 DAGO_series « DAGO_operator(raw_series)
12 DAGO_hat « fit_diff_equation(DAGO_series)
13 fitted_ser2,
DAGO_inverse_operator (DAGO_hat)
14
15 # Combine
16 w <« weight_fit(raw_series, [fitted1, fitted2])
17 final_ser<—weighted_average(w,
[fitted_ser1, fitted_ser2])
18 final_val
[forecast1, forecast2])
19 print(final_val)
20 return final_ser, final_val

forecast?2 —

—weighted_average(w,

Algorithm 1. Pseudocode for CDGM(1,1).

3.3 Construction of the DPSIR model and
indictor system

The DPSIR framework facilitates the analysis of causal
relationships among five interlinked components: driving forces (D),
pressures (P), state (S), impact effects (I), and societal responses (R).
This structure enables a comprehensive and systematic evaluation of
the interaction mechanisms between human activities and the
environmental systems. It also fosters an in-depth understanding of
the impact of industrial development on marine ecosystems and
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socio-economic conditions, thereby providing a robust basis for
scientifically informed and rational policy formulation.

In this study, a DPSIR-based framework was established, with
selected indicators categorized into the following five subsystems:

* Driving Forces (D): Indicators capturing the dynamics of
marine economic development, such as total marine
production value and the output value of marine circular
economy industries. These forces constitute the primary
impetus for the marine ecological economy, where shifts
can trigger a cascade of subsequent changes.

* Environmental pressures (P): Indicators representing the
stresses by human activities on the marine environment,
including the extent of marine waters failing to meet Grade
I water quality standards and marine fishing yields. These
factors directly impact the marine ecosystem, disrupting its
natural balance.

* Ecological state (S): Indicators reflecting changes in the
condition of the marine ecosystem under the influence of
environmental pressures, such as the area of marine
wetlands and the scale of the marine biomedicine
industry (Xu et al., 2025d). This subsystem reveals the
ecosystem’s actual response to external stressors and
serves as a critical measure of ecosystem health.

* Impact effects (I): Indicators describing the repercussions of
changes in ecological state on the socio-economic sphere,
including direct economic losses from marine disasters and
the frequency of red tide events. This subsystem highlights
the interdependence of ecological integrity and
socioeconomic stability, illustrating the economic
repercussions of ecological shifts.

» Societal responses (R): Indicators covering measures taken
by various societal sectors to address ecological degradation
and associated socio-economic impacts, such as investment
in marine scientific research, education, management
services and the number of marine survey projects. These
responses aim to foster sustainable industrial development.

4 Case verification

This study assesses the sustainable development of China’s
marine economy using data from multiple authoritative sources,
including the China Statistical Yearbook, the China Marine
Statistical Yearbook and the China Marine Statistical Bulletin. By
compiling and integrating data from these sources, a time-series
dataset comprising 29 indicators was constructed. These indicators
encompass economic, environmental and social dimensions,
covering areas such as marine industry development, the state of
the marine ecological environment and marine scientific research
and education. This multidimensional dataset provides a
comprehensive representation of the marine ecological system. In
this section, the CDGM(1, 1) model is applied to the empirical data,
with the results presented and analyzed, followed by predictions for
each indicator for the year 2025.
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4.1 Division of DPSIR subsystems

A total of 29 indicators were initially collected. Principal
component analysis (PCA) was employed to determine the
contribution of each indicator to the first five principal
components. Indicators with minimal contributions were
removed, while highly correlated variables were merged. This
process yielded 22 core effective indicators, as illustrated in
Figure 4. Furthermore, several indicators were deemed unsuitable
for prediction due to constraints such as lengthy statistical cycles;
these were also excluded from the subsequent forecasting tasks.

The retained dataset was analyzed by the DPSIR framework,
which categorizes indicators into five groups: D (driving force), P
(pressure), S (state), I (impact) and R (response). Each indicator was
re-numbered for clarity. Using 2010 as the reference year (year 0),
subsequent years were renumbered sequentially. The entropy
weight method was then applied to determine the weight of each
indicator, with the results presented in Table 1.

4.2 Prediction dataset processing

Given the variation in the lengths of time series across different
indicators, this study adopts a tailored dataset partitioning strategy
to facilitate prediction for the year 2026. For model training, a
differentiated approach is applied based on data availability. Where
the original series length exceeds 11 years, the final two years are
designated as the test set, with the remainder allocated to training.
Where the length is fewer than 11 years, only the final year is
reserved for testing.

For series extending up to 2025, a sequential multi-step
prediction approach is employed. The most recent year is used as
the test set, while preceding years are from the training set. Each
prediction advances the series by one year; the forecast output is
then reintroduced as input for the subsequent prediction. This
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FIGURE 4
Correlation heatmap of the indicators.
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TABLE 1 Classification of DPSIR subsystems and corresponding indicator weights.

Target layer Criterion layer Indicator Indicator layer Weight
D, gross marine product (trillion) 0.071506
D, output value of major marine industries (trillion) 0.040586
Driving force (D) D; output value of marine-related industries (trillion) 0.049768
D, output value of marine circular gain industries (trillion) 0.062111
D; output value of coastal tourism (trillion) 0.058492
P, fishery employees (person) 0.034875
P, area of sea areas with less-than-grade I water quality (square kilometer) 0.045490
Pressure (P)
Py output value of the traditional marine industry (trillion) 0.029748
P, marine fishing yield (ton) 0.007501
Si output value of marine fishery (trillion) 0.039268
S, output value of the marine biomedical industry (trillion) 0.050544
i i Marine Crude Oil Producti
Marine ecological 5, arine Crude Oil Production 0.047554
economic sustainable State (S) (10,000 tons)
development R .
indicator system 5, Marine natural gas production 0.049859
(10,000 cubic meters)
Ss Marine wetland area (1,000 hectares) 0.033735
I Direct economic loss from marine disasters (100 million yuan) 0.060004
Influence (1) L Number of red tide marine disasters 0.055214
I Proportion of the marine protected area to the territorial sea area 0.057184
Output value of marine scientific research, education and management service
R . . e 0.053535
industries (trillion)
R, number of postgraduate students in marine-related majors (person) 0.035196
Number of patent applications accepted by marine scientific research
Response (R) Ry i u_ . p K pplicatt P Y ! ! 0.060113
institutions (pleces)
Number of scientific and technological papers published by marine scientific
Ry o 0.008994
research institutions (papers)
Rs Number of marine survey projects (unit) 0.048721

iterative process continues until estimates for 2026 are obtained.
Such an approach maximizes the utility of limited data, enables
multiple training and prediction circles, progressively converges
towards the 2026 true value, and enhances both prediction accuracy
and reliability. The detailed procedure is illustrated in Figure 5.

4.3 Sub-indicator prediction

Using the CDGM(1, 1) model, predictions were generated for
each retained indicator. Due to the extensive workload, the
indicator, direct economic losses from marine disasters (100
million yuan), hereafter referred to as Indicator I1, is presented as
an illustrative example, without detailing the calculation process
in Table 2.

The first stage employed the PDGM model to generate
predictions. The model parameters were estimated using the
sequential least squares programming method, based on Equation
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(9), to obtain an optimal set of coefficients &),¢,,...,€4 and A
(see Table 3).

In the second stage, the RLinear model was applied to predict
parameter values £5. As a machine learning model, the RLinear
model takes the input of sliding window datasets. A window length
of 6 is chosen to generate sliding window datasets, and the datasets
are expanded after adding noise with a normal distribution. The
probability of the Dropout layer is set to 0.15. By continuously
observing the training process, a training early - stopping target is
set, so that after the model is trained for a certain number of epochs,
the fitting result of the RLinear model for residuals is obtained. The
model is trained for a total of 500 epochs, and the fitting values of ¢;
on the training set as well as the predicted values on the test set are
obtained (see Table 4). Subsequently, the restoration formula is
applied to get the prediction result of the improved PDGM(1,1).

Subsequently, the DPDGM(1, 1) model was applied to fit the
original dataset. Based on the performance of the training set, the
results were combined using a weighted approach to derive the final

frontiersin.org


https://doi.org/10.3389/fmars.2025.1687230
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Dai et al.

Input data

Y

Use the last two years of data in
the sequence as the test set, and
the rest as the training set

Is the data sequence
up to 2025?

YES

Use the prediction results to
augment the input data sequence

Predict 2026 data

FIGURE 5
Prediction process of the CDGM(1, 1).

performance of the CDGM(1, 1) model on the available data. The
comparative prediction outcomes of the models are presented
in Table 5.

Table 5 presents a comparison of the prediction results obtained
using the CDGM(1, 1), PDGM(1, 1), DPDGM(1, 1) and DM(1,1)
models. As observed from Table 5, Figure 6, in the final year, the
CDGM(1, 1) model demonstrates substantially superior
performance compared with the other models, both on the

TABLE 2 Direct economic losses from marine disasters (100 million yuan).

Indicator 1 2 3 4 5 6
\Year
I ‘ 132 62 155 ‘ 163 | 136 | 725 46.5 ‘
Indicator 13 14
\Year 3 N (test)  (test)
I ‘ 640 478 117 ‘ 83 | 307 | 241 25.0 ‘ 109.0
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training and test datasets. Figure 6 Illustrates the multi-model
prediction and fitting results for the I; index.

Figure 7 presents the multi-model fitting performance of the D4
and D5 indicators, highlighting the superior performance of the
CDGM(1, 1) model relative to the other models in the
same category.

A detailed comparative analysis of the fitting results for the
CDGM(1, 1), PDGM(1, 1), DPDGM(1, 1) and GM(1, 1) models
was conducted on both the training and test sets, as summarized in
Tables 6, 7. For the majority of indicators, the CDGM(1, 1) model
demonstrates superior predictive performance compared with the
PDGM(1, 1), DPDGM(1,1), and GM(1,1) models. Therefore, the
CDGM (1, 1) model was selected to forecast each indicator for 2026.
The resulting predictions are presented in Table 8, which confirms
that the CDGM(1, 1) model achieves high accuracy
across indicators.

5 Result analysis and discussion
5.1 Analysis of prediction results

This section outlines the derivation of the fitting results and
predicted values for various indicators in 2025 using the CDGM (1,
1) model. The results are subsequently incorporated into the DPSIR
evaluation framework to assess the status of China’s marine
sustainable development.

For each indicator, the TOPSIS method is employed to compute
for each year, denoted as c;. Simultaneously, the entropy weight
method is applied to the original data to determine the contribution
of each indicator to the overall system, expressed as a weight, w;;.

Through the formula v;; = ¢;; - wy;, the annual evaluation value v;; for

ij)
each indicator is calculated. The evaluation values of all indicators

across the year are presented in Figure 8.

5.2 Analysis of evaluation results

5.2.1 Driving force subsystem

As illustrated in Figure 9, the driving force subsystem of the
marine ecological-economic system exhibits a consistent upward
trend from 2010 to 2025. Its contribution to the sustainable
development of the marine ecological economy increased from
0.00020 to 4.75443. Predictions from the CDGM(1, 1) model
indicate that this contribution will reach 5.0000 by 2026,

TABLE 3 Optimized parameters of the improved P-AGO operator.

&o & & &3 &4 Es &6 &
0.00 -1.11 0.43 ‘ 0.67 0.54 -0.35 -0.97 -0.26
€13 €14
& & & &
8 &9 10 11 12 (test) (test)
-0.63 1.19 -3.67 ‘ -1.02 | -1.35 -1.12 2.19 0.33
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TABLE 4 Fitting of data by the RLinear model.

Method\Year

10.3389/fmars.2025.1687230

13 (test)

14 (test)

PDGM (1,1)
+RLinear

-10.05

-0.52

-23.79

1.06

0.45

CDGM (1,1) 132.80 59.40 150.75 161.80 137.04 76.75 46.55 64.92
PDGM (1,1) 132.80 78.82 144.61 163.50 142.07 109.73 82.17 62.49
DPDGM (1,1) 132.80 62.10 154.95 163.50 136.14 61.22 -2.52 96.61
GM(1,1) 132.80 135.19 120.50 107.41 95.74 85.34 76.06 67.80
M\f(teh;d 8 9 10 1 12 13 (test) 14 (test) LR:;'; h:iill-:
CDGM (1,1) 57.49 130.46 11.72 31.59 27.80 22.51 95.34 8.26 11.23
PDGM (1,1) 49.27 40.53 34.72 30.83 28.20 26.41 25.20 41.31 76.53
DPDGM(1,1) 110.82 88.58 29.56 7.73 29.00 16.20 88.47 51.04 18.83
GM(1,1) 60.43 53.86 48.01 42.79 38.14 34.00 30.31 70.26 72.20

Underlines indicate the best-performing results.

suggesting continuous improvement and substantial growth
potential within this subsystem.

Notably, the contribution of the “output value of the marine
circular gain industry (trillion yuan)” and “output value of the
coastal tourism industry (trillion yuan)” to the driving force
subsystem has steadily increased. This trend reflects China’s
recent policies promoting the development of both the marine
circular gain industry and coastal tourism.

According to the prediction results of the CDGM (1, 1) model,
the output value of the marine circular economy sector is projected

to rise from $91 trillion in 2010 to $756 trillion by 2026.
Concurrently, the coastal tourism sector is forecast to reach an
output value of 23,512 trillion in 2026. These projections suggest
that both sectors will generate substantial economic value in 2026,
underscoring the need to strengthen policy and financial support,
while advancing initiatives for sustainable marine development.
Based on the above prediction results, policies should focus on
guiding the transformation of economic development models. For
instance, the government may establish a “Special Fund for Sustainable
Marine Development”, allocate a certain amount of funds annually,

100
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—e— Original Data
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GM(1,1)

FIGURE 6
Multi-model prediction and fitting results of the 11 index.
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FIGURE 7

Multi-model prediction and fitting results for the D5 and R3 indicators.

and encourage enterprises to carry out research and development
projects related to the circular utilization of marine resources and low-
carbon development. Enterprises that adopt environmentally friendly
and sustainable development technologies should be granted a 3- to 5-
year corporate income tax reduction or exemption. On the other hand,
it is necessary to continuously promote the in-depth integration of
coastal tourism and ecological protection, and build an ecotourism
demonstration belt in popular coastal tourism areas.

5.2.2 Pressure subsystem

The driving force subsystem of the marine ecological-economic
system exhibited a gradual increase followed by a steady annual
decline between 2010 and 2025. It is estimated that its contribution
to the overall sustainability of the marine ecological economy will
reach 1.41394 in 2026. This change is mainly attributable to
improvements in the area of marine waters failing to meet Class I
water quality standards (square kilometers), which has played a
critical role in enhancing environmental conditions. With growing
public awareness and concern for marine protection, ocean water
quality has improved considerably, making a notable contribution

TABLE 6 Fitting performance on the training set (MAPE).

to sustainable marine ecological development. CDGM(1, 1) model
forecasts indicate that the non-compliant marine area will decline
from 177,720 square kilometers in 2010 to 56,427 square kilometers
in 2026, marking a historic low. Nonetheless, further progress is
required to address the remaining shortfalls in this indicator.
Figure 10 presents the contribution value of the pressure subsystem.

Pressure factors are alleviated but still require attention. Policies
need to focus on consolidating the effectiveness of pollution control
and resource protection, and preventing the rebound of local
pressure. For sea areas where water quality fails to meet Grade I
standards, on the basis of existing governance efforts, more precise
pollution source control should be implemented to clearly identify
the main pollution sources in each polluted sea area and the main
entities responsible for governance. Regarding marine fishing, the
fishing quota system should continue to be strictly enforced; at the
same time, support for the transformation and transfer of the
fishing industry should be strengthened. Skill training should be
provided to fishermen who withdraw from fishing, and they should
be guided to engage in fields such as marine ecological conservation
and aquaculture, so as to reduce reliance on marine fishing.

Method
\Indicator
CDGM (1,1) 4.16 2.27 142 0.59 4.85 115 2.93 2.52 1.80 2.04
PDGM (1,1) 5.00 6.09 530 5.58 15.44 230 8.23 512 3.82 252
DPDGM (1,1) 449 6.52 539 3.09 9.73 267 13.76 6.68 4.93 530
GM (1,1) 498 6.08 529 11.60 15.26 230 927 513 3.83 621
\mcjit:;c:r S2 = Sa Ss Iy 2 Ry Rs R4 Rs
CDGM (1,1) 2.38 1.26 1.47 31.44 12.34 20.34 217 171 0.79 15.62
PDGM (1,1) 12.19 3.89 3.86 55.86 4131 176.91 238 8.00 430 28.92
DPDGM (1,1) 2.20 351 493 28.51 51.04 192.55 1.94 7.13 7.38 122.76
GM (1,1) 12.20 403 6.07 60.34 70.26 182.24 297 13.31 6.82 29.14

Underlines indicate the best-performing results.
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TABLE 7 Fitting performance on the test set(MAPE).

10.3389/fmars.2025.1687230

Method
\Indicator
CDGM (1,1) 0.61 318 0.70 0.60 6.62 0.31 2.43 9.66 3.29 534
PDGM (1,1) 325 227 224 0.69 1111 274 3253 7.60 4.59 8.41
DPDGM (1,1) 123 7.83 8.44 318 1451 16.09 2023 17.04 25.68 L11
GM (1,1) 326 221 218 12.62 11.73 276 24.63 7.51 452 551
\mgit:;cgr S2 = Sa Ss Iy I2 Ry Rs R4 Rs
CDGM (1,1) 1.55 5.38 2.53 6.44 23.62 17.64 2.41 3.56 6.42 65.90
PDGM (1,1) 14.84 10.10 2.54 51.88 76.53 51.12 8.63 7.53 6.97 894.89
DPDGM (1,1) 1.68 14.07 7.30 137.23 18.83 37.17 7.47 21.17 12.75 1006.44
GM (1,1) 14.81 10.24 10.04 46.32 72.20 48.84 751 2039 933 933.85

Underlines indicate the best-performing results.

TABLE 8 Prediction results of various indicators.

Prediction
\Indicator
RESULT 122551 40514 36346 755.61 23512 3566155 56427 13451 8932964 5676
Prediction
X S S S S | | R R R R
\| ndicator 2 3] 4 5 1 2 1 3 4 5
RESULT 648.56 7396.9 2444624 34311 4593 29.51 49551 10840 57175 96.73

5.2.3 Ecosystem state subsystem

Between 2010 and 2025, the contribution value of the pressure
subsystem within the marine ecological-economic system exhibited
a generally upward yet fluctuating trend, rising from 0.73429 to
3.76642. Model predictions indicate that this value will further

increase to 4.44827 in 2026. The steady growth in the output value
of the marine biomedicine industry (trillion yuan) substantiates the
positive influence of its rapid expansion in recent years. Based on
the CDGM (1, 1) model forecasts, the industry’s output value is
projected to reach 649 trillion yuan by 2026. Consequently, policies
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Sustainable utilization evaluation value of the driving force subsystem.

that foster and support the development of biomedical enterprises
are essential to sustaining and advancing the marine biomedicine
sector. The contribution value of the state subsystem to sustainable
utilization is presented in Figure 11.

The overall state of marine ecology and industrial development
tends to be positive. Policies should focus on consolidating the
achievements of ecological restoration and promoting the
upgrading of ecological functions. For emerging industries such
as marine biomedicine, it is necessary to increase scientific research
investment and policy support, while attaching importance to the
protection of the ecological environment in the process of industrial
development. With regard to marine wetlands, on the basis of
existing protection efforts, the scope of marine wetland protection
should be expanded; meanwhile, exploration should be conducted
into pathways for realizing the ecological value of wetlands—such

as developing wetland ecotourism and carbon sink trading—so as to
provide more economic support for wetland ecological protection.

5.2.4 Impact subsystem

From 2010 to 2025, the contribution value of the impact
subsystem of the marine ecological-economic framework exhibited
a generally declining but fluctuating trend, falling from 1.74085 to
1.38554. Model projections indicate that this value will rise to 1.59395
by 2026. This improvement is attributed to China’s enhanced
capacity to mitigate marine disasters, resulting in progressively
reduced periodic direct economic losses. Additionally, the
establishment of marine protected areas has considerably
reinforced the sustainable development capacity of the impact
subsystem. The contribution value of sustainable utilization for the
subsystem is illustrated in Figure 12.

Evaluation value

OP1 P2 EP3 NP4

FIGURE 10
Contribution value of the pressure subsystem to sustainable utilization.
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Contribution value of the state subsystem to sustainable utilization.

Based on relevant indicators, the construction of protected areas
has achieved certain results. However, the impacts of marine
disasters still require attention. In terms of policies, efforts should
be made to strengthen the development of marine disaster early
warning and response capabilities, improve the marine disaster
monitoring and early warning system, enhance the accuracy of
disaster forecasting, and establish a marine disaster emergency
rescue system simultaneously, so as to reduce the impacts of
disasters on the economy.

5.2.5 Response subsystem

The response subsystem demonstrated a steady upward
trajectory from 2010 to 2025, with its contribution value
increasing from 0.48679 to 2.88017. It is forecast to reach 3.87146
in 2026. Notably, between 2019 and 2021, the subsystem’s
contribution to sustainable development entered a temporary
trough. This decline was primarily due to a reduction in the

12

contribution value of the “Number of ocean survey projects”,
offset by increases in four other indicators:

* Output value of the marine scientific research, education,
management and service industry

e Number of master’s postgraduates enrolled in marine-
related majors

*  Number of patent applications accepted by marine scientific
research institutions

*  Number of scientific and technological papers published by

marine scientific research Institutions.

These trends indicate that China has moved beyond the initial
phase of ocean exploration and now possesses a substantially
stronger capacity for advanced marine research. According to the
CDGM(1, 1) model predictions, by 2026, the output value of the
marine scientific research, education, management and service
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FIGURE 12
Contribution value of the impact subsystem to sustainable utilization.
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Contribution value of the response subsystem to sustainable utilization

industry will reach CNY 49,551 trillion, while patent applications
from marine research institutions will total 10,840. With robust
financial and technical resources, the nation is positioned to deepen
its understanding of the marine environment, thereby facilitating
the construction of more sustainable ocean development
framework. The contribution value of the response subsystem to
sustainable utilization is shown in Figure 13.

Based on the comprehensive forecast results, the government
should increase investment in marine scientific research and
education, construct more high-level marine scientific research
platforms, and attract global marine scientific research talents.
Meanwhile, it is necessary to improve the transformation
mechanism of marine scientific research achievements, establish a
cooperation and connection platform between scientific research
institutions and enterprises, and promote the rapid transformation
of marine scientific research achievements into practical
productive forces.

6 Conclusions and prospects

To address the core challenges in evaluating China’s marine
ecological-economic, system such as unclear underlying
mechanisms and limited dynamic adaptability, such as nuclear
underlying mechanisms and limited dynamic adaptability, this
study develops an integrated, full-chain prediction and evaluation
framework. The approach combines the dynamic correction
discrete GM(1, 1) model (CDGM(1, 1)) with the DPSIR
framework, offering a comprehensive solution to the dual
problems of inaccurate prediction from small samples and
insufficient interpretation of complex interrelationships.

From a methodological standpoint, the research introduces the
concepts of grey effective information and a probability
accumulation operator, enabling the effective extraction of critical
signals from small-sample datasets. The P-AGO operator is refined
through targeted improvements, and a dynamic parameter
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optimization mechanism, integrated with the RLinear module, is
incorporated to mitigate the degradation observed in conventional
probability accumulation processes. Furthermore, the DPDGM(1,
1) model is employed in a combined forecasting structure,
enhancing the system’s capacity to capture periodic patterns. This
results in a robust three-stage prediction architecture, trend
modelling, dynamic fitting and residual correction, that
substantially improves the modelling of complex dynamics in the
marine eco-economic system and overcomes the limitations of
traditional models in representing non-linear coupling effects.

At the empirical level, analysis of China’s marine economic data
(2010-2025) indicates a steady increase in the sustainable
development index of the marine eco-economy, exhibiting an
evolutionary trajectory characterized by driving-force leadership
and multi-subsystem synergy. The driving-force subsystem emerges
as the principal engine, propelled by the rapid expansion of the
marine circular-gain and coastal tourism industries. The pressure
subsystem has progressively alleviated ecological stress through
improvements in water quantity and quality. In the state
subsystem, the sustained growth of the marine biomedicine sector
highlights the potential of emerging industries. Meanwhile, the
response subsystem has strengthened the technological
foundation by increasing investment in scientific research. These
dynamic interactions confirm the effectiveness of China’s marine
ecological protection and economic development policies, while
elucidating a collaborative operational mechanism characterized by
industry-driven growth, ecological responsiveness and effective
policy regulation.

The CDGM (1,1)-DPSIR framework developed in this study
provides a robust analytical tool for assessing the marine ecological
economy, integrating high predictive accuracy with strong policy
relevance. Future work should focus on refining the indicator
system to encompass emerging sectors, strengthening the model’s
resilience to extreme outlier data and deepening analyses of regional
disparities. Such improvements will enable more precise decision-
making in support of the high-quality, sustainable growth of
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China’s marine economy. Despite its contributions, the study has
certain limitations. The marine economy is influenced by a wide
array of factors and intricate interdependencies, many of which
remain unaccounted for. Expanding the evaluation indicators to
incorporate additional relevant variables would improve
comprehensiveness. From a modelling perspective, although the
CDGM (1, 1) demonstrates notable progress in handling small-
sample datasets and capturing the dynamic evolution of complex
systems, its stability and adaptability declined when confronted
with extreme anomalies. Consequently, future research should
prioritize enhancing the model architecture, advancing data-
processing techniques and improving simulation and forecasting
capabilities to address the multifaceted nature of the marine
ecological-economic system.
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