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The marine ecological economy has emerged as one of the most dynamic and

promising sectors for economic expansion in coastal nations and regions. Its

development is vital for fostering sustained, balanced and resilient economic

growth. To enhance the precision of predictions and assessments of the marine

eco-economic system, thereby supporting sustainable marine economic

development, this study proposes a corrected discrete grey model (CDGM(1,1))

incorporating dynamic adjustment mechanisms. The model is further integrated

with the driving force-pressure-state-impact-response (DPSIR) framework to

establish a comprehensive forecasting and evaluation methodology. By

introducing the concept of “grey effective information” and refining the probability

accumulating generation operator (P-AGO), the approach effectively extracts critical

information from data sequences. For datasets containing periodic patterns, a

discrete GM(1,1) variant based on dynamic local accumulation is employed,

allowing for combined forecasting. Finally, with the DPSIR framework and using

the TOPSISmethod, China’smarine economic data from 2010 to 2026 are analyzed.

The prediction accuracy improved by 84% compared with traditional GM(1,1). The

results demonstrate not only the effectiveness of marine ecological protection and

economic development strategies but also elucidate the synergistic interplay of

industrial growth, ecological feedback and policy regulation within the system.
KEYWORDS

marine economy, CDGM(1,1), DPSIR, sustainable development assessment, prediction
1 Introduction

The ocean is a critical spatial resource underpinning economic and societal

advancement, offering vast opportunities for future development. The high-quality

growth of the marine economy is pivotal for optimizing terrestrial spatial structures,

fostering emerging productive capacities and contributing to the formation of a modern

development paradigm. Currently, the marine economy is experiencing unprecedented
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opportunities, with entire industrial chains spanning deep-sea

energy exploration to offshore fisheries, expanding rapidly to

become major drivers of sustainable economic growth. In the

context of global carbon-emission reduction, accurately

identifying the key determinants of marine economic growth, as

well as forecasting and evaluating its developmental trajectory, has

become central to achieving integrated land-sea governance (Sun

et al., 2022; Mao et al., 2023; Xu et al., 2025a). The formulation of

robust and scientifically rigorous prediction and evaluation models

is therefore essential for monitoring and forecasting the dynamic

evolution of marine ecological and economic systems, thereby

ensuring the long-term sustainability of ocean-based development.

Several challenges hinder the development of an evaluation

framework for the marine ecological-economic system. These include:

(1) Mechanistic ambiguity – the evolution of the marine environment

arises from the coupled interactions of physical, chemical and biological

processes, which traditional black box models struggle to represent in

terms of ecological mechanisms; (2) Dynamic adaptability – abrupt

system changes driven by climate variability and anthropogenic

activities, such as recurrent red tides, outbreaks, and demand models

capable of real-time adjustment. Current research has yet to establish a

unified framework that integrates data-driven methods with

mechanistic analysis, resulting in a threefold bottleneck: inaccurate

predictions from small datasets, poor interpretability of complex

relationships, and delayed responses to dynamic disturbances.

Existing predictive assessments of the marine ecological–economic

system predominantly rely on traditional statistical models, machine

learning algorithms and classical grey models (Cai et al., 2023; Tao

et al., 2021; Wang et al., 2023). However, these approaches are

constrained when addressing the marine environment’s distinctive

features, small samples, high noise and strong dynamics. Statistical

models are limited by linearity assumptions and inadequate

adaptability to dynamic change, making them ill-suited to capture

the system’s nonlinear coupling relationships (Germano, 1999). While

machine learning models perform well with large datasets, they exhibit

poor generalization under small-sample conditions (Zhang et al., 2021)

and suffer from black-box opacity, which detaches them from their

underlying mechanisms (Yan et al., 2022). The static accumulation

operator in classical grey models is unable to effectively extract relevant

information from limited data or capture multifactor coupling (Yin

and Zeng, 2022). Furthermore, most existing studies lack an integrated

modelling framework encompassing the complete DPSIR chain,

thereby limiting the ability to analyze the co-evolutionary dynamics

of the marine ecological economy from a holistic perspective (Nielsen

et al., 2018).

Given the characteristics of marine environmental data, namely

small sample sizes, pronounced heterogeneity and multi-mechanism

coupling, this study proposes a dynamically corrected discrete GM(1,1)

model (CDGM(1,1)). It develops a comprehensive prediction–

evaluation framework that integrates the DPSIR and CDGM (1,1)

theoretical models (Patrıćio et al., 2016; Li X. et al., 2023). First, the

model extracts the grey effective information from core indicators using

a discrete GM(1, 1) model based on probability accumulation (PDGM

(1,1)). The probability accumulation operator (P-AGO) is enhanced by

incorporating dynamic parameters and the RLinear model to address
Frontiers in Marine Science 02
operator degradation (Zhou et al., 2023; Li Z. et al., 2023). In addition, it

is combined with the discrete GM(1,1) model based on dynamic local

accumulation generation (DPDGM(1,1)) for hybrid prediction,

thereby improving accuracy through a trend modelling-residual

fusion mechanism. The experimental results demonstrate that the

proposed method achieves high predictive performance.

Furthermore, the study examines the strengths and weaknesses of

current marine economic development by forecasting the future

marine economic and proposes strategic priorities for future growth

and development.

The principal contributions of this study are as follows:
1. For the marine economic system, key factors across the

chain, from driving forces to societal responses, are

identified, such as the marine circular gain industry and

marine fishing output. Development priorities and strategic

directions for the marine economy are analyzed

and forecasted.

2. The PDGM(1,1) model is enhanced through the

introduction of dynamic parameters, leading to the

formulation of the CDGM(1,1) model. Its integration

with the DPSIR framework addresses the limitations of

conventional approaches in capturing complex

interrelationships. The predictive outputs not only reflect

the system’s dynamic evolution but also offer clear policy

interpretability, thereby providing an effective solution to

the challenges of “small data” and “interpretability” in

marine environmental forecasting.
The rest of this paper is organized as follows: Section 2 reviews

research on marine ecological and economic evaluation. Section 3

introduces the marine ecological economic evaluation model. Section

4 analyzes the applicability and effectiveness of the model using

examples. Section 5 presents predicted results and offers management

recommendations for the future marine ecological economy. Section 6

concludes the article and suggests directions for future research.
2 Literature review

In recent years, the intensification of global climate change and the

escalating frequency of human marine activities have drawn increasing

international concern regarding marine environmental issues.

Phenomena such as ocean acidification, pollution and ecological

degradation have repeatedly prompted academic debate (Xu et al.,

2025b, 2025). Research has progressively shifted from focusing on

individual pollutants and complex systems to describing dynamic

trends, rather than static conditions (Benavides et al., 2022). Against

this backdrop, the development of predictive models tailored to the

unique features of the marine environment has become a critical step

towards addressing modelling challenges associated with small datasets

and high uncertainty.

Early research in marine environment prediction predominantly

relied on traditional statistical approaches, including time series

analysis and regression models. However, these methods are
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inadequate for handling non-linear and non-stationary data. Recent

advances in machine learning and deep learning have revitalized the

field. Wen et al. (2020) developed a data-driven time series prediction

network to address the complex, dynamic characteristics of large-scale

marine environmental datasets. By incorporating spatiotemporal

correlation features and a fuzzy logic mechanism, their long-term

surface water temperature prediction errors in the South China Sea

were reduced by 12%, offering a refined tool for simulating ocean

current dynamics and issuing more accurate extreme weather

warnings. Using multi-source data from marine buoys and satellite

remote sensing, they constructed a training set that demonstrated a

strong representational capacity of deep learning in modelling high-

dimensional spatiotemporal data. Deng et al. (2021) tackled the

challenge of offshore water quality prediction by enhancing artificial

neural network (ANN) and support vector machine (SVM) algorithms.

Introducing an attention mechanism to dynamically optimize the

weighting of water quality features, their approach improves COD

concentration prediction accuracy by 8% in monitoring the Pearl River

Estuary. The outcomes were applied directly to red tide early warning

systems, enabling real-time decision support for coastal ecological

management. Considerable progress was also reported by Ham et al.

(2019) in forecasting El Niño events. They designed a deep learning

architecture that integrates convolutional neural networks (CNNs)

with long short-term memory networks (LSTMs) to capture the

spatiotemporal propagation of sea surface temperature anomalies,

achieving a six-month lead-time prediction accuracy of 78%, 23%

points higher than conventional statistical models.

Although machine learning and deep learning have demonstrated

notable success in predicting marine environments, the present study

focuses on forecasting and assessing the sustainable development of the

marine ecological economy. Small sample sizes, high noise levels and

strong dynamics often characterize marine environmental datasets.

Deep learning methods, such as the time series prediction network

proposed by Wen et al. (2020), typically require large-scale labelled

datasets and exhibit poor generalization in small-sample contexts, such

as polar ocean monitoring or deep-sea ecological surveys.

Consequently, in data-scarce regions, these models fail to deliver

reliable predictions and cannot adequately support local marine

ecological and economic development.

Regarding model interpretability and cross-regional adaptability,

Deng et al. (2021) proposed an enhanced machine learning model;

however, the persistent “black-box” dilemma remains unresolved. The

logic of underpinning the weight allocation in the attention mechanism

cannot be effectively linked to the physical processes governing water

quality evolution. At the same time, the adaptation cost in cross-regional

applications remains high. Consequently, rapid deployment across

diverse marine environments is hindered, limiting the model’s ability

to meet the varied requirements of predictive evaluation for global

marine ecological and economic sustainability. Similar constraints have

been reported by Akay and Mehmet (2007). From the standpoint of

modelling the complex dynamics of the marine environment, although

the traditional GM(1, 1) model offers advantages for small-sample

datasets (Li et al., 2023), its static accumulation operator fails to capture

the intricate dynamics arising from coupling of multiple marine

environmental factors (Li X. et al., 2019). In comparison, this study
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investigates the prediction and evaluation of the sustainable

development of the marine ecological-economic system through the

CDGM(1,1)-DPSIR model. The analysis is grounded in the DPSIR

theoretical framework, employing the dynamically modified discrete

GM(1,1) model (CDGM(1,1)) for indicator forecasting. A

comprehensive and systematic prediction-evaluation framework is

established to provide robust scientific support for promoting

sustainable marine ecological and economic development.

Therefore, further research must accurately characterize the

interactions and dynamic evolution within marine ecological-

economic systems and elucidate the underlying mechanisms of

marine environmental change. Moreover, most existing studies

address a single process or time point, with few developing an

integrated prediction and evaluation framework that encompasses

driving forces, environmental pressures, ecological states, impact

effects and societal responses. A comprehensive understanding of

the marine ecological-economic system, supported by systematic

prediction and evaluation, is thus essential for assessing its

sustainable development trajectory.
3 Model construction

3.1 Overall model architecture

This study integrates the DPSIR theoretical framework, enhances

the PDGM(1, 1) and RLinear models, proposes the CDGM(1, 1) model

and develops a full-chain prediction-evaluation system. The system

comprises three primary modules (Figure 1):
1. Indicator collection and processing: Initially, 29 indicators

were compiled. Following preprocessing, which included

data cleaning, correction and integration, 22 valid

indicators were retained.

2. Prediction using the CDGM(1,1) model: The CDGM(1, 1)

model refines the P-AGO operator of the PDGM(1, 1) by

incorporating dynamic parameters, which are forecast

using the RLinear module. This enhancement improves

the predictive performance of the PDGM(1, 1).

Additionally, the DPDGM(1, 1) model is applied for

correction, yielding the final prediction results.

3. Subsystem classification and evaluation, within the DPSIR

framework, indicators are categorized into five subsystems:

Driving forces (e.g., marine circular economy industries),

environmental pressures (e.g., marine fishing output),

ecological state (e.g., marine biomedicine industry),

impact effects (e.g., frequency of red tide marine events)

and societal responses (e.g., marine research, education and

management services).
The entropy weightmethod is employed to determine the indicator

weights, followed by the TOPSIS method (Cao et al., 2024) to calculate

the annual evaluation scores for each subsystem. These scores are used

to quantify dynamic trends and explore interrelationships between

subsystems within the DPSIR framework. By combining current state
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assessments with future scenario forecasts, the study identifies key

constraints on sustainable marine development, thereby providing a

scientific basis for optimizing management strategies.

The subsequent sections present a detailed description of the

construction of the DPSIR model and the CDGM(1, 1) model.
3.2 Prediction method based on
CDGM(1, 1)

Given the characteristics of marine environmental data, namely

small sample sizes, high noise levels, and pronounced dynamic

variability, as well as the limitations of existing methodologies, this
Frontiers in Marine Science 04
study develops a causality-driven grey prediction model, CDGM(1,

1), which integrates the DPSIR framework.

3.2.1 PDGM(1, 1) model based on the probability
accumulation generation operator

The grey prediction model GM(1, 1) is widely applied in

contexts with limited datasets. Unlike the conventional GM(1, 1)

model, the PDGM(1, 1) model, proposed by Yin et al. (2024),

employs a probability cumulative generation operator that

differentiates between effective and ineffective information within

a sequence in probabilistic terms. This feature confers substantial

advantages in marine ecological and economic applications where

reliable statistical data are scarce.
FIGURE 1

Overall model system architecture.
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The procedure for constructing the PDGM(1, 1) model is

outlined below.

3.2.1.1 Quantification of grey effective information and
probability accumulation operator

The concept of grey effective information refers to behavioral

data points that effectively characterize the governing laws of the

system’s operation. This is quantified using the whitenisation value

of the interval grey number: ~⊗ = p · x, where p is the positioning

coefficient (0 < p ≤ 1), representing the proportion of effective

information. The extraction process is modelled as a Bernoulli

distribution, with the extraction probability expressed in the form of

a Sigmoid function (Equation 1):

p xð Þ = 1

1 + e−li
(1)

Here, l denotes the information standard parameter, which

determines the threshold for extracting effective information.

The P-AGO screens the grey effective information using

a weighted accumulation method to produce a new sequence

X pð Þ kð Þ, calculated as Equation 2:

x pð Þ kð Þ =o
k

i=1

1

1 + e−li

� �e i−1ð Þ
x 0ð Þ ið Þ (2)

where e is the information difference adjustment parameter,

controlling temporal information disparities and enabling the

weighting of effective information.

3.2.1.2 Discrete model structure

A discrete model is subsequently developed based on the

probability accumulation sequence X pð Þ kð Þ, as shown in Equation 3:

x pð Þ k + 1ð Þ = b1x
pð Þ kð Þ + b2 (3)

Estimate the parameters b1, b2 by the least squeares method

(Equation 4), and boldface symbols indicate matrices.

b̂ 1, b̂ 2

h iT
= argmin

b1,b2
o
n−1

i=1
x pð Þ kð Þ − b1x

pð Þ k − 1ð Þ + b2
� �h i2

  = BTB
� �−1BTY

  =

x pð Þ 1ð Þ  1

x pð Þ 2ð Þ  1

  ⋮   ⋮

x pð Þ n − 1ð Þ 1

2
666664

3
777775

T
x pð Þ 1ð Þ  1

x pð Þ 2ð Þ  1

  ⋮   ⋮

x pð Þ n − 1ð Þ 1

2
666664

3
777775

0
BBBBB@

1
CCCCCA

−1

 

x pð Þ 1ð Þ  1

x pð Þ 2ð Þ  1

  ⋮   ⋮

x pð Þ n − 1ð Þ 1

2
666664

3
777775

T
x pð Þ 2ð Þ
x pð Þ 3ð Þ

⋮

x pð Þ nð Þ

2
666664

3
777775 :

(4)
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The time-response expression is a discrete difference (Equation 5).

x̂ pð Þ k + 1ð Þ = x 0ð Þ 1ð Þ − b̂ 2

1 − b̂ 1

 !
b̂ k

1 +
b̂ 2

1 − b̂ 1

(5)

Using the time-response equation, the system’s future state can

be predicted, providing the basis for subsequent inverse restoration

and adjustment of growth rates.
3.2.1.3 Inverse restoration and growth-rate adjustment

The original sequence is restored by the inverse cumulative

operator, incorporating the information-extraction weight

(Equation 6):

x̂ 0 kð Þ = x̂ pð Þ kð Þ − x̂ pð Þ k − 1ð Þ
� �

1 + e−lk
� �e k−1ð Þ

(6)

The growth rate depends on a parameter l, e, allows the model

to accommodate different data trends.

Figure 2 presents the PDGM(1,1) predictions for marine

environmental data, which exhibit pronounced dynamics.

The model performs well in the early horizons; however, once

the prediction horizon exceeds eight time-steps (e.g., years), its

ability to capture fluctuation patterns declines noticeably.

Because the P-AGO tends towards an ordinary accumulation

operator as it increases, its sensitivity to fluctuations diminishes.

In practice, this degradation manifests as reduced predictive

accuracy , which i s insu ffic ient for complex , h igh ly

dynamic environments.

To address these limitations, we improve the P-AGO operator

by introducing dynamic parameters and combine it with RLinear

for prediction.
3.2.2 Improved P-AGO operator
From expression (2), for any fixed l,  e , as i increases, the product

term 1
1+e−li

� �e i−1ð Þ
approaches zero, causing operator degradation. To

overcome this, we introduce dynamic parameters, yielding a new

cumulative-sequence generation formula (Equation 7):

x pð Þ kð Þ =o
k

i=1

1

1 + e−li

� �ei
x 0ð Þ ið Þ (7)

and the corresponding reduction formula (Equation 8):

x̂ 0ð Þ kð Þ = x̂ pð Þ kð Þ − x̂ pð Þ k − 1ð Þ
� �

1 + e−lk
� �ek

(8)

Let the length of the observed data sequence be x 0ð Þ kð Þ is n, we
then formulate an optimization (planning) model to obtain an

optimal set of parameters e1, e2,…, en, l (Equation 9), and boldface

symbols indicate matrices.
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min f l, eð Þ = 1
n−1o

n

k=2

x̂ 0ð Þ kð Þ − x 0ð Þ kð Þ
x 0ð Þ kð Þ

����
����

x
pð Þ
kð Þ =o

k

i=1

1

1 + e−li

� �ei
x 0ð Þ ið Þ,

b̂ 1 b̂ 2

h iT
= BTB
� �−1

BTY,

x̂ pð Þ k + 1ð Þ = x 0ð Þ 1ð Þ b̂ 2

1−b̂ 1

� �
b̂ k

1 +
b̂ 2

1−b̂ 1
, k ≥ 1,

x̂ 0ð Þ kð Þ = x̂ pð Þ kð Þ − x̂ pð Þ k − 1ð Þ� �
1+e−lkÞek , k ≥ 2,
�

x̂ 1ð Þ 1ð Þ = x̂ 0ð Þ 1ð Þ = x 0ð Þ 1ð Þ,
l,  ei ∈ −10, 10½ Þ,  i = 1, 2,…, n :

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(9)

In conjunction with the existing x 0ð Þ kð Þ sequence and ek
k = 1, 2,…, nð Þ, parameter setting, a sliding-window dataset is

constructed. Regression prediction is carried out using the

RLinear module to obtain en+1, the intermediate results, x̂ 0ð Þ

n + 1ð Þ which are then processed through the reduction formula

(8) to produce the final predictions.

3.2.3 RLinear module
The RLinear module performs regression prediction on the

target parameter en+1, and its components are as follows:

3.2.3.1 Reversible normalization and multi-layer
perceptron structure

The model incorporates a RevIN layer. This layer standardized

the input data by computing its mean m and standard deviation s
according to Equation 10.

xnorm =
x − mð Þ
s + є

· g + b (10)

Here, g and b the scaling and bias terms are learnable

parameters, and ∈ a small constant is included to prevent

division by zero. During the prediction phase, the reverse

operation restores the data to its original scale, preserving its

inherent characteristics.
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The normalized data are then passed through an MLP

comprising two fully connected layers, with a Sigmoid activation

function in between to introduce a non-linear transformation. This

enables the model to capture complex non-linear mappings with

the residual sequence. A Dropout layer is applied to reduce

overfitting. The MLP configuration is adjusted based on the

characteristics of residual data and model performance, ensuring

that nonlinear information is fully exploited.

3.2.3.2 Dataset construction and model training

The regression model utilizes the specified x 0ð Þ kð Þ independent
variable(s) and ek dependent variable(s) to generate a sliding-

window dataset, as illustrated in Figure 3. Two data groups are

selected, k = n − 1,  n, as the test set, with the remainder forming the

training set. Data augmentation is performed by adding normally

distributed noise to the original data, thereby increasing the

diversity of training samples. Weight decay and an additional

Dropout layer are employed to mitigate overfitting further.

Given the relatively small dataset, random errors during

training are minimized by closely monitoring the training

process, adjusting the number of epochs, setting an early-stopping

criterion and recording the convergence behavior. The training is

repeated multiple times, and the optimal solution is selected. The

final output comprises the predicted values of en+1 the target

variable generated by the RLinear model.

3.2.4 Residual dynamic mining and correction
module (DPDGM(1,1))

To more effectively capture periodic trends in the data, the

DPDGM(1, 1) model is employed to refine the prediction results of

the improved PDGM(1, 1) model. The outputs of both models are

then combined to generate the final prediction results of the CDGM

(1, 1) model.

3.2.4.1 Sliding window accumulation

Following the principle of the dynamic partial accumulative

generation operator (DPAGO), an appropriate sliding window size
FIGURE 2

Prediction results of the PDGM(1, 1) model.
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is selected. Let the residual sequence be E 0ð Þ = e 0ð Þ 1ð Þ, e 0ð Þ 2ð Þ,⋯,

e 0ð Þ nð ÞÞ. At the k-th time point, a partial accumulation is performed

to obtain the sliding-window cumulative value e 1,qð Þ kð Þ, calculated
as Equation 11:

e 1,qð Þ kð Þ = o
k+q−1

j=k

e 0ð Þ jð Þ (11)

where, k = 1, 2, ⋯, n − q + 1. This approach effectively

captures the local dynamic variations of the residual sequence

within different time windows, aligning with the non-stationary

nature of marine environmental data. Compared with the

traditional accumulation method, it adapts more flexibly to the

variability patterns of the data.

3.2.4.2 Discrete model construction and parameter
estimation

A discrete model is then formulated based on the sliding-

window cumulative sequence. The structure is inspired by the

conventional grey model and is expressed as Equation 12:

e 1,qð Þ k + 1ð Þ = ae 1,qð Þ kð Þ + b (12)

where, k = 1,  2,  ⋯, n − q + 1. The model parameters a and b
are estimated using the least-squares method.

3.2.4.3 Inverse cumulative subtraction for prediction
restoration

The predicted values of the residuals are retrieved by applying

a dynamic local cumulative-subtraction generation operation to

the results from the sliding-window cumulative sequence

(Equation 13).

ê 0ð Þ i + 1ð Þ =
e 0ð Þ i + 1ð Þ;                  i < q

â i−q+1 − â i−q
� �

e 1,qð Þ 1ð Þ + â i−qb̂ + ê 0ð Þ i − q + 1ð Þ,  i ≥ q

(

(13)

These residual predictions are subsequently used to adjust the

outputs of the improved PDGM(1, 1) model. This residual-

correction mechanism enhances the accuracy of marine

environmental data forecasting and mitigates the original model’s

limitations in representing complex data features.

Finally, the pseudocode of the CDGM(1,1) algorithm is

provided in Algorithm 1.
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Input: historical values of indicator

Output: forecasting value of next year

1 Main Program:

2

3 # Part 1

4 PAGO_series ← PAGO_operator(raw_series)

5 w i n d o w s _ d a t a ←

build_sliding_windows(PAGO_series)

6 RLinear.train(windows_data)

7 PAGO_hat ← RLinear.predict(windows_data)

8 f i t t e d _ s e r 1 , f o r e c a s t 1 ←

PAGO_inverse_operator(PAGO_hat)

9

10 # Part 2

11 DAGO_series ← DAGO_operator(raw_series)

12 DAGO_hat ← fit_diff_equation(DAGO_series)

1 3 f i t t e d _ s e r 2 , f o r e c a s t 2 ←

DAGO_inverse_operator(DAGO_hat)

14

15 # Combine

16 w ← weight_fit(raw_series, [fitted1,fitted2])

1 7 f i n a l _ s e r ← w e i g h t e d _ a v e r a g e ( w ,

[fitted_ser1,fitted_ser2])

1 8 f i n a l _ v a l ← w e i g h t e d _ a v e r a g e ( w ,

[forecast1, forecast2])

19 print(final_val)

20 return final_ser, final_val
Algorithm 1. Pseudocode for CDGM(1,1).
3.3 Construction of the DPSIR model and
indictor system

The DPSIR framework facilitates the analysis of causal

relationships among five interlinked components: driving forces (D),

pressures (P), state (S), impact effects (I), and societal responses (R).

This structure enables a comprehensive and systematic evaluation of

the interaction mechanisms between human activities and the

environmental systems. It also fosters an in-depth understanding of

the impact of industrial development on marine ecosystems and
FIGURE 3

Generation method of the sliding window dataset.
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socio-economic conditions, thereby providing a robust basis for

scientifically informed and rational policy formulation.

In this study, a DPSIR-based framework was established, with

selected indicators categorized into the following five subsystems:
Fron
• Driving Forces (D): Indicators capturing the dynamics of

marine economic development, such as total marine

production value and the output value of marine circular

economy industries. These forces constitute the primary

impetus for the marine ecological economy, where shifts

can trigger a cascade of subsequent changes.

• Environmental pressures (P): Indicators representing the

stresses by human activities on the marine environment,

including the extent of marine waters failing to meet Grade

I water quality standards and marine fishing yields. These

factors directly impact the marine ecosystem, disrupting its

natural balance.

• Ecological state (S): Indicators reflecting changes in the

condition of the marine ecosystem under the influence of

environmental pressures, such as the area of marine

wetlands and the scale of the marine biomedicine

industry (Xu et al., 2025d). This subsystem reveals the

ecosystem’s actual response to external stressors and

serves as a critical measure of ecosystem health.

• Impact effects (I): Indicators describing the repercussions of

changes in ecological state on the socio-economic sphere,

including direct economic losses from marine disasters and

the frequency of red tide events. This subsystem highlights

the interdependence of ecological integrity and

socioeconomic stability, illustrating the economic

repercussions of ecological shifts.

• Societal responses (R): Indicators covering measures taken

by various societal sectors to address ecological degradation

and associated socio-economic impacts, such as investment

in marine scientific research, education, management

services and the number of marine survey projects. These

responses aim to foster sustainable industrial development.
4 Case verification

This study assesses the sustainable development of China’s

marine economy using data from multiple authoritative sources,

including the China Statistical Yearbook, the China Marine

Statistical Yearbook and the China Marine Statistical Bulletin. By

compiling and integrating data from these sources, a time-series

dataset comprising 29 indicators was constructed. These indicators

encompass economic, environmental and social dimensions,

covering areas such as marine industry development, the state of

the marine ecological environment and marine scientific research

and education. This multidimensional dataset provides a

comprehensive representation of the marine ecological system. In

this section, the CDGM(1, 1) model is applied to the empirical data,

with the results presented and analyzed, followed by predictions for

each indicator for the year 2025.
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4.1 Division of DPSIR subsystems

A total of 29 indicators were initially collected. Principal

component analysis (PCA) was employed to determine the

contribution of each indicator to the first five principal

components. Indicators with minimal contributions were

removed, while highly correlated variables were merged. This

process yielded 22 core effective indicators, as illustrated in

Figure 4. Furthermore, several indicators were deemed unsuitable

for prediction due to constraints such as lengthy statistical cycles;

these were also excluded from the subsequent forecasting tasks.

The retained dataset was analyzed by the DPSIR framework,

which categorizes indicators into five groups: D (driving force), P

(pressure), S (state), I (impact) and R (response). Each indicator was

re-numbered for clarity. Using 2010 as the reference year (year 0),

subsequent years were renumbered sequentially. The entropy

weight method was then applied to determine the weight of each

indicator, with the results presented in Table 1.
4.2 Prediction dataset processing

Given the variation in the lengths of time series across different

indicators, this study adopts a tailored dataset partitioning strategy

to facilitate prediction for the year 2026. For model training, a

differentiated approach is applied based on data availability. Where

the original series length exceeds 11 years, the final two years are

designated as the test set, with the remainder allocated to training.

Where the length is fewer than 11 years, only the final year is

reserved for testing.

For series extending up to 2025, a sequential multi-step

prediction approach is employed. The most recent year is used as

the test set, while preceding years are from the training set. Each

prediction advances the series by one year; the forecast output is

then reintroduced as input for the subsequent prediction. This
FIGURE 4

Correlation heatmap of the indicators.
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iterative process continues until estimates for 2026 are obtained.

Such an approach maximizes the utility of limited data, enables

multiple training and prediction circles, progressively converges

towards the 2026 true value, and enhances both prediction accuracy

and reliability. The detailed procedure is illustrated in Figure 5.
4.3 Sub-indicator prediction

Using the CDGM(1, 1) model, predictions were generated for

each retained indicator. Due to the extensive workload, the

indicator, direct economic losses from marine disasters (100

million yuan), hereafter referred to as Indicator I1, is presented as

an illustrative example, without detailing the calculation process

in Table 2.

The first stage employed the PDGM model to generate

predictions. The model parameters were estimated using the

sequential least squares programming method, based on Equation
Frontiers in Marine Science 09
(9), to obtain an optimal set of coefficients e0, e2,…, e14 and l
(see Table 3).

In the second stage, the RLinear model was applied to predict

parameter values e15. As a machine learning model, the RLinear

model takes the input of sliding window datasets. A window length

of 6 is chosen to generate sliding window datasets, and the datasets

are expanded after adding noise with a normal distribution. The

probability of the Dropout layer is set to 0.15. By continuously

observing the training process, a training early - stopping target is

set, so that after the model is trained for a certain number of epochs,

the fitting result of the RLinear model for residuals is obtained. The

model is trained for a total of 500 epochs, and the fitting values of ei
on the training set as well as the predicted values on the test set are

obtained (see Table 4). Subsequently, the restoration formula is

applied to get the prediction result of the improved PDGM(1,1).

Subsequently, the DPDGM(1, 1) model was applied to fit the

original dataset. Based on the performance of the training set, the

results were combined using a weighted approach to derive the final
TABLE 1 Classification of DPSIR subsystems and corresponding indicator weights.

Target layer Criterion layer Indicator Indicator layer Weight

Marine ecological
economic sustainable

development
indicator system

Driving force (D)

D1 gross marine product (trillion) 0.071506

D2 output value of major marine industries (trillion) 0.040586

D3 output value of marine-related industries (trillion) 0.049768

D4 output value of marine circular gain industries (trillion) 0.062111

D5 output value of coastal tourism (trillion) 0.058492

Pressure (P)

P1 fishery employees (person) 0.034875

P2 area of sea areas with less-than-grade I water quality (square kilometer) 0.045490

P3 output value of the traditional marine industry (trillion) 0.029748

P4 marine fishing yield (ton) 0.007501

State (S)

S1 output value of marine fishery (trillion) 0.039268

S2 output value of the marine biomedical industry (trillion) 0.050544

S3
Marine Crude Oil Production
(10,000 tons)

0.047554

S4
Marine natural gas production
(10,000 cubic meters)

0.049859

S5 Marine wetland area (1,000 hectares) 0.033735

Influence (I)

I1 Direct economic loss from marine disasters (100 million yuan) 0.060004

I2 Number of red tide marine disasters 0.055214

I3 Proportion of the marine protected area to the territorial sea area 0.057184

Response (R)

R1
Output value of marine scientific research, education and management service
industries (trillion)

0.053535

R2 number of postgraduate students in marine-related majors (person) 0.035196

R3
Number of patent applications accepted by marine scientific research
institutions (pieces)

0.060113

R4
Number of scientific and technological papers published by marine scientific
research institutions (papers)

0.008994

R5 Number of marine survey projects (unit) 0.048721
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performance of the CDGM(1, 1) model on the available data. The

comparative prediction outcomes of the models are presented

in Table 5.

Table 5 presents a comparison of the prediction results obtained

using the CDGM(1, 1), PDGM(1, 1), DPDGM(1, 1) and DM(1,1)

models. As observed from Table 5, Figure 6, in the final year, the

CDGM(1, 1) model demonstrates substantially superior

performance compared with the other models, both on the
Frontiers in Marine Science 10
training and test datasets. Figure 6 Illustrates the multi-model

prediction and fitting results for the I1 index.

Figure 7 presents the multi-model fitting performance of the D4

and D5 indicators, highlighting the superior performance of the

CDGM(1, 1) model relative to the other models in the

same category.

A detailed comparative analysis of the fitting results for the

CDGM(1, 1), PDGM(1, 1), DPDGM(1, 1) and GM(1, 1) models

was conducted on both the training and test sets, as summarized in

Tables 6, 7. For the majority of indicators, the CDGM(1, 1) model

demonstrates superior predictive performance compared with the

PDGM(1, 1), DPDGM(1,1), and GM(1,1) models. Therefore, the

CDGM (1, 1) model was selected to forecast each indicator for 2026.

The resulting predictions are presented in Table 8, which confirms

that the CDGM(1, 1) model achieves high accuracy

across indicators.
5 Result analysis and discussion

5.1 Analysis of prediction results

This section outlines the derivation of the fitting results and

predicted values for various indicators in 2025 using the CDGM (1,

1) model. The results are subsequently incorporated into the DPSIR

evaluation framework to assess the status of China’s marine

sustainable development.

For each indicator, the TOPSIS method is employed to compute

for each year, denoted as cij. Simultaneously, the entropy weight

method is applied to the original data to determine the contribution

of each indicator to the overall system, expressed as a weight, wij.

Through the formula vij = cij · wij, the annual evaluation value vij for

each indicator is calculated. The evaluation values of all indicators

across the year are presented in Figure 8.
5.2 Analysis of evaluation results

5.2.1 Driving force subsystem
As illustrated in Figure 9, the driving force subsystem of the

marine ecological–economic system exhibits a consistent upward

trend from 2010 to 2025. Its contribution to the sustainable

development of the marine ecological economy increased from

0.00020 to 4.75443. Predictions from the CDGM(1, 1) model

indicate that this contribution will reach 5.0000 by 2026,
FIGURE 5

Prediction process of the CDGM(1, 1).
TABLE 2 Direct economic losses from marine disasters (100 million yuan).

Indicator
\Year

0 1 2 3 4 5 6

I1 132 62 155 163 136 72.5 46.5

Indicator
\Year

7 8 9 10 11 12
13

(test)
14

(test)

I1 64.0 47.8 117 8.3 30.7 24.1 25.0 109.0
TABLE 3 Optimized parameters of the improved P-AGO operator.

e0 e1 e2 e3 e4 e5 e6 e7
0.00 -1.11 0.43 0.67 0.54 -0.35 -0.97 -0.26

e8 e9 e10 e11 e12
e13

(test)
e14

(test)
l

-0.63 1.19 -3.67 -1.02 -1.35 -1.12 2.19 0.33
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suggesting continuous improvement and substantial growth

potential within this subsystem.

Notably, the contribution of the “output value of the marine

circular gain industry (trillion yuan)” and “output value of the

coastal tourism industry (trillion yuan)” to the driving force

subsystem has steadily increased. This trend reflects China’s

recent policies promoting the development of both the marine

circular gain industry and coastal tourism.

According to the prediction results of the CDGM (1, 1) model,

the output value of the marine circular economy sector is projected
Frontiers in Marine Science 11
to rise from $91 trillion in 2010 to $756 trillion by 2026.

Concurrently, the coastal tourism sector is forecast to reach an

output value of 23,512 trillion in 2026. These projections suggest

that both sectors will generate substantial economic value in 2026,

underscoring the need to strengthen policy and financial support,

while advancing initiatives for sustainable marine development.

Based on the above prediction results, policies should focus on

guiding the transformation of economic development models. For

instance, the government may establish a “Special Fund for Sustainable

Marine Development”, allocate a certain amount of funds annually,
TABLE 5 Comparison of prediction results between models.

Method
\Year

0 1 2 3 4 5 6 7

CDGM (1,1) 132.80 59.40 150.75 161.80 137.04 76.75 46.55 64.92

PDGM (1,1) 132.80 78.82 144.61 163.50 142.07 109.73 82.17 62.49

DPDGM (1,1) 132.80 62.10 154.95 163.50 136.14 61.22 -2.52 96.61

GM(1,1) 132.80 135.19 120.50 107.41 95.74 85.34 76.06 67.80

Method
\Year

8 9 10 11 12 13 (test) 14 (test)
TRAIN
MAPE

TEST
MAPE

CDGM (1,1) 57.49 130.46 11.72 31.59 27.80 22.51 95.34 8.26 11.23

PDGM (1,1) 49.27 40.53 34.72 30.83 28.20 26.41 25.20 41.31 76.53

DPDGM(1,1) 110.82 88.58 29.56 7.73 29.00 16.20 88.47 51.04 18.83

GM(1,1) 60.43 53.86 48.01 42.79 38.14 34.00 30.31 70.26 72.20
Underlines indicate the best-performing results.
TABLE 4 Fitting of data by the RLinear model.

Method\Year 5 6 7 8 9 10 11 12 13 (test) 14 (test)

PDGM (1,1)
+RLinear

2.33 -23.0 2.40 8.70 25.96 -10.05 -0.52 -23.79 1.06 0.45
FIGURE 6

Multi-model prediction and fitting results of the I1 index.
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and encourage enterprises to carry out research and development

projects related to the circular utilization of marine resources and low-

carbon development. Enterprises that adopt environmentally friendly

and sustainable development technologies should be granted a 3- to 5-

year corporate income tax reduction or exemption. On the other hand,

it is necessary to continuously promote the in-depth integration of

coastal tourism and ecological protection, and build an ecotourism

demonstration belt in popular coastal tourism areas.

5.2.2 Pressure subsystem
The driving force subsystem of the marine ecological–economic

system exhibited a gradual increase followed by a steady annual

decline between 2010 and 2025. It is estimated that its contribution

to the overall sustainability of the marine ecological economy will

reach 1.41394 in 2026. This change is mainly attributable to

improvements in the area of marine waters failing to meet Class I

water quality standards (square kilometers), which has played a

critical role in enhancing environmental conditions. With growing

public awareness and concern for marine protection, ocean water

quality has improved considerably, making a notable contribution
Frontiers in Marine Science 12
to sustainable marine ecological development. CDGM(1, 1) model

forecasts indicate that the non-compliant marine area will decline

from 177,720 square kilometers in 2010 to 56,427 square kilometers

in 2026, marking a historic low. Nonetheless, further progress is

required to address the remaining shortfalls in this indicator.

Figure 10 presents the contribution value of the pressure subsystem.

Pressure factors are alleviated but still require attention. Policies

need to focus on consolidating the effectiveness of pollution control

and resource protection, and preventing the rebound of local

pressure. For sea areas where water quality fails to meet Grade I

standards, on the basis of existing governance efforts, more precise

pollution source control should be implemented to clearly identify

the main pollution sources in each polluted sea area and the main

entities responsible for governance. Regarding marine fishing, the

fishing quota system should continue to be strictly enforced; at the

same time, support for the transformation and transfer of the

fishing industry should be strengthened. Skill training should be

provided to fishermen who withdraw from fishing, and they should

be guided to engage in fields such as marine ecological conservation

and aquaculture, so as to reduce reliance on marine fishing.
FIGURE 7

Multi-model prediction and fitting results for the D5 and R3 indicators.
TABLE 6 Fitting performance on the training set (MAPE).

Method
\Indicator

D1 D2 D3 D4 D5 P1 P2 P3 P4 S1

CDGM (1,1) 4.16 2.27 1.42 0.59 4.85 1.15 2.93 2.52 1.80 2.04

PDGM (1,1) 5.00 6.09 5.30 5.58 15.44 2.30 8.23 5.12 3.82 2.52

DPDGM (1,1) 4.49 6.52 5.39 3.09 9.73 2.67 13.76 6.68 4.93 5.30

GM (1,1) 4.98 6.08 5.29 11.60 15.26 2.30 9.27 5.13 3.83 6.21

Method
\Indicator

S2 S3 S4 S5 I1 I2 R1 R3 R4 R5

CDGM (1,1) 2.38 1.26 1.47 31.44 12.34 20.34 2.17 1.71 0.79 15.62

PDGM (1,1) 12.19 3.89 3.86 55.86 41.31 176.91 2.38 8.00 4.30 28.92

DPDGM (1,1) 2.20 3.51 4.93 28.51 51.04 192.55 1.94 7.13 7.38 122.76

GM (1,1) 12.20 4.03 6.07 60.34 70.26 182.24 2.97 13.31 6.82 29.14
fr
Underlines indicate the best-performing results.
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5.2.3 Ecosystem state subsystem
Between 2010 and 2025, the contribution value of the pressure

subsystem within the marine ecological–economic system exhibited

a generally upward yet fluctuating trend, rising from 0.73429 to

3.76642. Model predictions indicate that this value will further
Frontiers in Marine Science 13
increase to 4.44827 in 2026. The steady growth in the output value

of the marine biomedicine industry (trillion yuan) substantiates the

positive influence of its rapid expansion in recent years. Based on

the CDGM (1, 1) model forecasts, the industry’s output value is

projected to reach 649 trillion yuan by 2026. Consequently, policies
TABLE 7 Fitting performance on the test set(MAPE).

Method
\Indicator

D1 D2 D3 D4 D5 P1 P2 P3 P4 S1

CDGM (1,1) 0.61 3.18 0.70 0.60 6.62 0.31 2.43 9.66 3.29 5.34

PDGM (1,1) 3.25 2.27 2.24 0.69 11.11 2.74 32.53 7.60 4.59 8.41

DPDGM (1,1) 1.23 7.83 8.44 3.18 14.51 16.09 20.23 17.04 25.68 1.11

GM (1,1) 3.26 2.21 2.18 12.62 11.73 2.76 24.63 7.51 4.52 5.51

Method
\Indicator

S2 S3 S4 S5 I1 I2 R1 R3 R4 R5

CDGM (1,1) 1.55 5.38 2.53 6.44 23.62 17.64 2.41 3.56 6.42 65.90

PDGM (1,1) 14.84 10.10 2.54 51.88 76.53 51.12 8.63 7.53 6.97 894.89

DPDGM (1,1) 1.68 14.07 7.30 137.23 18.83 37.17 7.47 21.17 12.75 1006.44

GM (1,1) 14.81 10.24 10.04 46.32 72.20 48.84 7.51 20.39 9.33 933.85
fr
Underlines indicate the best-performing results.
TABLE 8 Prediction results of various indicators.

Prediction
\Indicator

D1 D2 D3 D4 D5 P1 P2 P3 P4 S1

RESULT 122551 40514 36346 755.61 23512 3566155 56427 13451 8932964 5676

Prediction
\Indicator

S2 S3 S4 S5 I1 I2 R1 R3 R4 R5

RESULT 648.56 7396.9 2444624 34311 45.93 29.51 49551 10840 57175 96.73
FIGURE 8

Evaluation values of the DPSIR sub-system.
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that foster and support the development of biomedical enterprises

are essential to sustaining and advancing the marine biomedicine

sector. The contribution value of the state subsystem to sustainable

utilization is presented in Figure 11.

The overall state of marine ecology and industrial development

tends to be positive. Policies should focus on consolidating the

achievements of ecological restoration and promoting the

upgrading of ecological functions. For emerging industries such

as marine biomedicine, it is necessary to increase scientific research

investment and policy support, while attaching importance to the

protection of the ecological environment in the process of industrial

development. With regard to marine wetlands, on the basis of

existing protection efforts, the scope of marine wetland protection

should be expanded; meanwhile, exploration should be conducted

into pathways for realizing the ecological value of wetlands—such
Frontiers in Marine Science 14
as developing wetland ecotourism and carbon sink trading—so as to

provide more economic support for wetland ecological protection.

5.2.4 Impact subsystem
From 2010 to 2025, the contribution value of the impact

subsystem of the marine ecological–economic framework exhibited

a generally declining but fluctuating trend, falling from 1.74085 to

1.38554. Model projections indicate that this value will rise to 1.59395

by 2026. This improvement is attributed to China’s enhanced

capacity to mitigate marine disasters, resulting in progressively

reduced periodic direct economic losses. Additionally, the

establishment of marine protected areas has considerably

reinforced the sustainable development capacity of the impact

subsystem. The contribution value of sustainable utilization for the

subsystem is illustrated in Figure 12.
FIGURE 9

Sustainable utilization evaluation value of the driving force subsystem.
FIGURE 10

Contribution value of the pressure subsystem to sustainable utilization.
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Based on relevant indicators, the construction of protected areas

has achieved certain results. However, the impacts of marine

disasters still require attention. In terms of policies, efforts should

be made to strengthen the development of marine disaster early

warning and response capabilities, improve the marine disaster

monitoring and early warning system, enhance the accuracy of

disaster forecasting, and establish a marine disaster emergency

rescue system simultaneously, so as to reduce the impacts of

disasters on the economy.

5.2.5 Response subsystem
The response subsystem demonstrated a steady upward

trajectory from 2010 to 2025, with its contribution value

increasing from 0.48679 to 2.88017. It is forecast to reach 3.87146

in 2026. Notably, between 2019 and 2021, the subsystem’s

contribution to sustainable development entered a temporary

trough. This decline was primarily due to a reduction in the
Frontiers in Marine Science 15
contribution value of the “Number of ocean survey projects”,

offset by increases in four other indicators:
• Output value of the marine scientific research, education,

management and service industry

• Number of master’s postgraduates enrolled in marine-

related majors

• Number of patent applications accepted by marine scientific

research institutions

• Number of scientific and technological papers published by

marine scientific research Institutions.
These trends indicate that China has moved beyond the initial

phase of ocean exploration and now possesses a substantially

stronger capacity for advanced marine research. According to the

CDGM(1, 1) model predictions, by 2026, the output value of the

marine scientific research, education, management and service
FIGURE 11

Contribution value of the state subsystem to sustainable utilization.
FIGURE 12

Contribution value of the impact subsystem to sustainable utilization.
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industry will reach CNY 49,551 trillion, while patent applications

from marine research institutions will total 10,840. With robust

financial and technical resources, the nation is positioned to deepen

its understanding of the marine environment, thereby facilitating

the construction of more sustainable ocean development

framework. The contribution value of the response subsystem to

sustainable utilization is shown in Figure 13.

Based on the comprehensive forecast results, the government

should increase investment in marine scientific research and

education, construct more high-level marine scientific research

platforms, and attract global marine scientific research talents.

Meanwhile, it is necessary to improve the transformation

mechanism of marine scientific research achievements, establish a

cooperation and connection platform between scientific research

institutions and enterprises, and promote the rapid transformation

of marine scientific research achievements into practical

productive forces.
6 Conclusions and prospects

To address the core challenges in evaluating China’s marine

ecological-economic, system such as unclear underlying

mechanisms and limited dynamic adaptability, such as nuclear

underlying mechanisms and limited dynamic adaptability, this

study develops an integrated, full-chain prediction and evaluation

framework. The approach combines the dynamic correction

discrete GM(1, 1) model (CDGM(1, 1)) with the DPSIR

framework, offering a comprehensive solution to the dual

problems of inaccurate prediction from small samples and

insufficient interpretation of complex interrelationships.

From a methodological standpoint, the research introduces the

concepts of grey effective information and a probability

accumulation operator, enabling the effective extraction of critical

signals from small-sample datasets. The P-AGO operator is refined

through targeted improvements, and a dynamic parameter
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optimization mechanism, integrated with the RLinear module, is

incorporated to mitigate the degradation observed in conventional

probability accumulation processes. Furthermore, the DPDGM(1,

1) model is employed in a combined forecasting structure,

enhancing the system’s capacity to capture periodic patterns. This

results in a robust three-stage prediction architecture, trend

modelling, dynamic fitting and residual correction, that

substantially improves the modelling of complex dynamics in the

marine eco-economic system and overcomes the limitations of

traditional models in representing non-linear coupling effects.

At the empirical level, analysis of China’s marine economic data

(2010–2025) indicates a steady increase in the sustainable

development index of the marine eco-economy, exhibiting an

evolutionary trajectory characterized by driving-force leadership

and multi-subsystem synergy. The driving-force subsystem emerges

as the principal engine, propelled by the rapid expansion of the

marine circular-gain and coastal tourism industries. The pressure

subsystem has progressively alleviated ecological stress through

improvements in water quantity and quality. In the state

subsystem, the sustained growth of the marine biomedicine sector

highlights the potential of emerging industries. Meanwhile, the

response subsystem has strengthened the technological

foundation by increasing investment in scientific research. These

dynamic interactions confirm the effectiveness of China’s marine

ecological protection and economic development policies, while

elucidating a collaborative operational mechanism characterized by

industry-driven growth, ecological responsiveness and effective

policy regulation.

The CDGM (1,1)-DPSIR framework developed in this study

provides a robust analytical tool for assessing the marine ecological

economy, integrating high predictive accuracy with strong policy

relevance. Future work should focus on refining the indicator

system to encompass emerging sectors, strengthening the model’s

resilience to extreme outlier data and deepening analyses of regional

disparities. Such improvements will enable more precise decision-

making in support of the high-quality, sustainable growth of
FIGURE 13

Contribution value of the response subsystem to sustainable utilization.
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China’s marine economy. Despite its contributions, the study has

certain limitations. The marine economy is influenced by a wide

array of factors and intricate interdependencies, many of which

remain unaccounted for. Expanding the evaluation indicators to

incorporate additional relevant variables would improve

comprehensiveness. From a modelling perspective, although the

CDGM (1, 1) demonstrates notable progress in handling small-

sample datasets and capturing the dynamic evolution of complex

systems, its stability and adaptability declined when confronted

with extreme anomalies. Consequently, future research should

prioritize enhancing the model architecture, advancing data-

processing techniques and improving simulation and forecasting

capabilities to address the multifaceted nature of the marine

ecological-economic system.
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