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Phytoplankton communities play a crucial role in the sustainability of mariculture
practices, particularly regarding the risks associated with potentially harmful
species that can cause algal blooms and toxin production. These harmful
species can have devastating effects, not only threatening human health and
safety through the contamination of seafood and water supplies but also
disrupting the delicate balance of marine ecosystems. Monitoring
phytoplankton levels and composition is essential to ensure that mariculture
remains environmentally sustainable, economically viable, and safe for
consumers. Ultimately, this contributes to the preservation of marine
biodiversity and its long-term health. Traditional methods for phytoplankton
identification are often labor-intensive and may fail to capture the full diversity of
these organisms. Environmental DNA (eDNA) metabarcoding is emerging as an
innovative tool that offers a more comprehensive assessment of phytoplankton
biodiversity, although it does not yet provide a strictly quantitative measure. In
our research, we employed eDNA metabarcoding to analyze eukaryotic
phytoplankton community composition, both qualitatively and semi-
quantitatively, along a mariculture facility located in the Mediterranean Sea.
From a quantitative perspective, we evaluated whether the number of
sequences obtained for each OTU could serve as an indicator of the relative
abundance of each taxonomic group across different sites. We considered five
sampling sites around and at the center of the mariculture facility and conducted
eDNA metabarcoding analyses with three replicates per site. Statistical analysis
revealed that the number of sequences per OTU were significantly consistent
among replicates. This suggests that the number of sequences can be used as a
proxy concerning the relative abundance of taxonomic groups across sampling
sites. Consequently, this research opens the possibility of using eDNA
metabarcoding as a semi-quantitative tool. From a qualitative perspective, we
were able to characterize the structure of eukaryotic phytoplankton
communities around the mariculture plant, detecting a high level of
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biodiversity. We also identified potentially dangerous species at low abundance,
highlighting the potential of eDNA metabarcoding as an early warning system, an
essential aspect for ensuring sustainability in mariculture. This study represents a
pioneering effort in utilizing eDNA metabarcoding for both the semi-quantitative
and qualitative monitoring of eukaryotic phytoplankton in mariculture supporting
eco-sustainable management practices.

KEYWORDS

environmental DNA, eDNA metabarcoding, phytoplankton monitoring, mariculture
facilities, quantitative analysis, harmful algal blooms

1 Introduction

1.1 eDNA metabarcoding: state of the art
and application in aquaculture

Environmental DNA (eDNA) metabarcoding is emerging as a
powerful tool for biodiversity assessment and ecological studies,
particularly in aquatic ecosystems, targeting the main ecological
indicator assemblages and describing different ecological
communities’ structures (Taberlet et al,, 2012; Bohmann et al,
2014; Kermarrec et al., 2014; Pawlowski et al., 2018; Rivera et al.,
2023; Apothéloz-Perret-Gentil et al., 2021; Tzafesta et al., 2021; Xie
et al., 2021; Specchia et al., 2022, 2023; Pinna et al., 2024). This
molecular technique allows for the simultaneous detection and
identification of multiple species from environmental samples,
such as water, sediment, or biofilms, by amplifying specific
genomic regions. Commonly used gene markers include the
mitochondrial cytochrome ¢ oxidase subunit I (COI) for animal
identification (Hebert et al, 2003); the ribosomal RNA genes
(rRNAs) such as 18S and 16S for phytoplankton and bacteria,
respectively (Zimmermann et al., 2011; Tragin and Vaulot, 2018);
and the chloroplast gene rbcL for plants (Kress and Erickson, 2007).
Such genes are intraspecifically highly conserved, and sequence
divergence presents sufficient variability and universality across taxa
to ensure easy interspecific discrimination and making them
suitable for DNA barcoding analyses. Advancements in
sequencing technologies revolutionized the field of environmental
DNA by enabling the simultaneous sequencing of amplicons from
multiple DNA targets. Furthermore, the integration of
bioinformatic tools and streamlined data analysis allow for more
comprehensive biodiversity assessments (Bohmann et al., 2014;
Bolyen et al., 2019; Mace et al., 2022; Hakimzadeh et al., 2024).

Hence, eDNA metabarcoding can provide comprehensive
insights into the composition of eukaryotic and prokaryotic
communities and was successfully applied in various aquatic
habitats, including transitional waters, lakes, rivers, and marine
environments, enabling the detection of a wide range of species,
from fish to invertebrates (Sinniger et al., 2016; Elbrecht and
Steinke, 2019; Leduc et al., 2019; Antich et al., 2021; Reinholdt
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Jensen et al., 2021; Hupalo et al., 2022; Ji et al., 2022; Hickling et al.,
2023; Zizka et al.,, 2025). Indeed, eDNA metabarcoding was
successfully used in early detection of non-indigenous species
(NIS) in both freshwater and coastal ecosystems (Zangaro et al,
2021; Couton et al,, 2022; Jeunen et al., 2022; Zangaro et al., 2024),
providing crucial insights for effective conservation efforts.
Moreover, eDNA-based surveys facilitated the assessment of
marine biodiversity, revealing the presence of elusive or rare
species that traditional sampling methods might overlook
(Djurhuus et al., 2018; Haderle et al., 2024; Rossouw et al., 2024).

Overall, the application of eDNA metabarcoding in aquatic
environments demonstrates its potential to enhance our
understanding of biodiversity and ecosystem health. In this
context, preliminary studies explored the application of eDNA
metabarcoding in environmental monitoring and underscored the
ecological consequences of aquaculture practices on marine
biodiversity. Specifically, these studies focused on analyzing
sediments from aquaculture sites to assess the diversity of benthic
organisms and to establish a relationship between the biotic signals
identified through eDNA and the ecological impacts of aquaculture
on sediment ecosystems. The findings underscore the utility of
eDNA metabarcoding for monitoring environmental changes in
fish farming sediments (Pawlowski et al., 2014; He et al,, 2021;
Turon et al., 2022; Stoeck et al., 2024).

1.2 The relevance of phytoplankton in the
context of mariculture activities

Monitoring phytoplankton assemblages across mariculture
facilities is essential, as these microscopic organisms play a vital
role in aquatic ecosystems and on the health of cultured species
(Anderson et al., 2012). In particular, an overabundance of certain
species can cause imbalances that may negatively impact cultured
organisms. Additionally, some phytoplankton species produce
toxins that are harmful to both aquatic life and human health.
Tracking dominant taxa and potentially toxic species is crucial for
preventing harmful algal blooms (HABs), which can lead to fish
kills, shellfish poisoning, and economic losses (Grattan et al., 2016).
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Traditional methods of phytoplankton identification, primarily
based on microscopy, can be labor-intensive, and often overlook
cryptic species. The advent of eDNA metabarcoding ofters a more
efficient tool for assessing phytoplankton diversity and community
structure. Different studies have demonstrated the efficacy of eDNA
metabarcoding in detecting phytoplankton species in various
aquatic environments. Their findings indicate that eDNA can
capture a broader diversity of phytoplankton and revealed
significant shifts in community composition in response to
environmental changes, underscoring the utility of eDNA as a
monitoring tool for assessing ecological responses to abiotic
factors and climate changes (De Vargas et al., 2015; Pawlowski
et al., 2016a; Méchler et al., 2016; Specchia et al., 2023). Recent
studies have increasingly applied eDNA metabarcoding techniques
to investigate phytoplankton diversity in marine environments,
revealing insights into community composition and dynamics
(Pawlowski et al., 2016b). The results from eDNA metabarcoding
have a critical role in assessing the influence of environmental
drivers on phytoplankton communities, showcasing its relevance in
ecological studies and marine biodiversity assessments (Balint
et al., 2024).

Shifts in phytoplankton populations, often driven by
environmental changes or nutrient loading, can lead to harmful
algal blooms (HABs) which produce toxins detrimental to fish
health (Anderson et al.,, 2021). For instance, toxins from certain
dinoflagellates and cyanobacteria can accumulate in fish tissues can
accumulate in fish tissues, leading to acute toxicity and subsequent
mass die-offs (Baker and Geider, 2021). Regular monitoring and
quantification of phytoplankton species can provide essential
information for mariculture managers, allowing them to
implement timely interventions to mitigate the risks associated
with harmful blooms (Zhang et al., 2022).

1.3 eDNA metabarcoding and species
quantitative data: state of the art

The integration of eDNA metabarcoding with quantitative PCR
(qQPCR) represents the actual tool to quantify the abundance of
specific target species. Recent studies have used eDNA
metabarcoding in conjunction with qPCR to enhance the
accuracy of fish species detection and quantification in various
aquatic ecosystems. For instance, eDNA metabarcoding and qPCR
techniques have been used to estimate the abundance of fish species
in freshwater habitats and marine environments (Pont et al., 2023).
The advantages of this dual approach in assessing fish biodiversity
highlight how qPCR can provide precise quantification of eDNA
signals obtained from metabarcoding (Pont et al.,, 2023). In
addition, integrated studies have been used to unveil the presence
of specific invasive non-indigenous species and to detect and assess
blooming jellyfish taxa (Gargan et al, 2022; Peng et al., 2023).
Besides, while eDNA metabarcoding is effective for identifying and
characterizing community composition, the correlation between the
number of sequences reads and actual species abundance is not yet
firmly established.
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This research represents a pioneering effort to utilize the
number of sequences obtained through high-throughput
sequencing of environmental DNA (eDNA) as a means to
estimate the relative abundance of eukaryotic phytoplanktonic
species across different sampling sites. The study was conducted
within the context of a mariculture facility, where maintaining a
balanced phytoplanktonic community is crucial for the eco-
sustainability of fish production. In such environments, the
composition and dynamics of phytoplankton populations can
directly influence water quality, fish health, and overall ecosystem
stability, as well as represent a powerful ecological indicator.

We demonstrated the feasibility of assessing the relative
abundance of different eukaryotic phytoplankton species by
analyzing the number of sequencing reads associated with each
operational taxonomic unit (OTU). In particular, we focused on
OTUs that could be confidently annotated at the species level,
allowing us to gain insights into the presence and prevalence of
specific species within the community.

Furthermore, our analysis extended to examining the proportional
composition of eukaryotic phytoplanktonic communities surrounding
the mariculture facility. In doing so, we paid special attention to species
that are potentially harmful, such as those able to produce toxins or
cause algal blooms. Monitoring these species is vital for early detection
and ongoing management, helping to mitigate risks to both the

environment and mariculture activities.

2 Materials and methods
2.1 Study area and sampling sites

The study area is represented by a mariculture facility situated
along the Salento Ionian coastline in the Mediterranean sea. Located
about 1 nautical mile off the Torre Suda coast, approximately 40 km
southwest from the City of Lecce, this mariculture facility is
strategically situated in an area characterized by strong and
consistent underwater currents. These dynamic hydrological
conditions create optimal growth environments for species such
as European sea bass (Dicentrarchus labrax), gilthead sea bream
(Sparus aurata), and meagre (Argyrosomus regius). Five sampling
stations (A, B, C, D, and E) were identified according to a distance
gradient from the mariculture center. Accordingly, Site A is located
at the center, while Sites B, D, and E surround the facility, and Site C
is the farthest (Figure 1).

2.2 Water sampling, filtration, and DNA
extraction

During October 2023, surface water samples were independently
collected in the 5 identified sampling sites. Using a Ruttner Water
Sampler, 10 liters of water were collected below one meter from the
surface and stored into two separate 5 liters sterile tanks labelled
referring to the sampling site. The water sampler was rinsed with
ultrapure water between each sampling station. The 5 liters tanks were
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FIGURE 1

Geographic localization of the study area and localization of the five sampling sites (A—E) across the facility.

immediately stored in a refrigerated container and were transported to
the genetics laboratory of the Department of Biological and
Environmental Sciences and Technologies (DiSTeBA - University of
Salento, Lecce, Italy) at the end of the sampling. The water samples
were immediately processed upon arrival to the laboratory. The
biological, independently collected 10 L samples were independently
processed across all experimental steps.

Environmental parameters, specifically Salinity (PSU), Total
Dissolved Solids (PPT), RDO Concentration (mg/L), RDO
Saturation (%Sat), Partial Pressure of Oxygen (Torr), pH,
Turbidity (NTU), Temperature (°C), Chlorophyll-a Fluorescence
(RFU), and Chlorophyll-a Concentration (ug/L), were
independently registered during the water sampling process in the
5 sampling sites using the multiparametric probe Aqua TROLL
500® (In-Situ Inc., Colorado, USA).

In the laboratory, the 10 L biological samples were singularly
divided into three 2-litres technical replicates of water. The
remaining 4 L were stored separately. Each 2 L replica was
independently filtered through a 0.45 um filter of 47 mm
diameter (Advantec® Mixed Cellulose Ester filters) through a
Chemker 300 Chemical Resistant Vacuum Pump (Rocker
Scientific Co., Ltd, Taiwan). Following, each filter was singularly
used in the DNA extraction using the DNeasy PowerWater kit
(Qiagen, Germany) following the manufacturer’s protocol.

2.3 DNA amplification, NGS sequencing
and bioinformatic analysis

The V4 region of the 18S rRNA gene was amplified with PCR
using the primers TAReuk454FWD1 and TAReukREV3 (Stoeck
et al,, 2010). The amplicon is about 390 bp in length. The reaction
was performed in a volume of 50 UL composed of 5 uL of 10X
reaction buffer, 1 uL of MgCl, (50 mM), 1 pL of ANTP mix
(10 mM), 1 uL of each primer (10 mM), 10 ng of DNA, 0.2 uL of
Platinum Taq (5 U/uL; Life Technologies, USA) and sterile water to
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reach a volume of 50 LL. A negative control PCR reaction was also
set up, which did not produce any amplification. The amplification
program included the following steps: denaturation at 95°C for
5 min, 30 cycles of denaturation (95°C for 30’ seconds), annealing
(48°C for 30 seconds), extension (72°C for 30 seconds), and a final
extension step (72°C for 1 minute).

All PCR products were purified with a PureLink PCR
purification kit (Invitrogen, Carlsbad, CA, USA). CeleroTM
DNA-Seq kit (NuGEN, San Carlos, CA, USA) was used for
library preparation following the manufacturer’s instructions and
avoiding the fragmentation step. Both input and final library were
quantified by Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA,
USA) and quality tested by Agilent 2100 Bioanalyzer High
Sensitivity DNA assay (Agilent technologies, Santa Clara, CA,
USA). Libraries were sequenced on AVITI 2 x 300 bp platform
(Element Biosciences, San Diego, CA, USA) by IGATech,
Udine, Italy.

An internal pipeline was set up to analyze the metabarcoding
sequences. (1) Where the amplicon length was permissive with
respect to the read sequencing length, 3'-ends of pairs were
overlapped with flash v.1.2.11 and parameters “—max-overlap 70
-min-overlap 15” (Magoc¢ and Salzberg, 2011), while non-
overlapping reads were maintained as separated pairs. Both
overlapping and non-overlapping reads were retained. (2) Primer
sequences used to amplify the 18S V4 region were removed with
cutadapt v. 2.7 and parameters: “~discard-untrimmed -minimum-
length 70 —overlap 10 -times 2 —error-rate 0.15” (Martin, 2011).
Reads were retained if they maintained a minimum length of 70 bp.
(3) Low-quality bases at 3’ tails of the reads were trimmed with the
erne-filter v. 1.4.3 and parameters: “~min-size 70” (Del Fabbro et al.,
2013). (4) The QIIME pipeline v. 1.9.1 (Bolyen et al., 2019) was then
executed. (5) The library was scanned for the presence of chimeras
with the VSEARCH algorithm v. 2.14.1 (Rognes et al., 2016). (6)
The Operational Taxonomic Unit (OTU) picking process was
performed in “open-reference” mode. Specifically, in “open-
reference” OTUs were built de novo with a clustering threshold
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set at 97%. OTUs in “open-reference” analysis were generated with
a minimum of 2 sequenced fragments. Finally, (7) taxonomy was
assigned to OTUs using the predefined taxonomy mapping file of
the reference sequences with the RDP classifier v. 2.2 (Wang and
Cole, 2024). Only OTUs matching with 97% minimum identity
threshold and with minimum confidence threshold of 0.50 were
retained and subjected to further classification.

2.4 Statistical OTU diversity estimation

To evaluate the reliability of the number of reads obtained for
each molecular taxonomic group or OTU to be used for establishing
abundance, a statistical analysis to assess the consistency and
homogeneity of the variance in the number of sequences among
the replicates collected at each site was designed. In the initial phase,
the null-hypothesis that there are no significant differences between
the means of the number of sequences for the OTUs in the
replicates was assessed. To investigate this, a one-way analysis of
variance (ANOVA) for each sampling site was performed in R using
the package vegan v. 2.6-4 (Oksanen et al, 2014), as detailed in
Supplementary Table S1. The results from the independent replicas
at each sampling site are very consistent and show no statistically
significant differences, supporting the idea that the replications are
highly dependable. To integrate the ANOVA results and assess the
distribution of data, the Shapiro-Wilk test for normality was applied
in R using the package vegan v. 2.6-4 (Supplementary Table S2).

The result of the Shapiro-Wilk test obtained for each sampling
site indicates that the residues in the samples deviate from a normal
distribution. However, considering the large number of samples, it
is essential to consider that the Shapiro-Wilk test becomes
particularly sensitive in the presence of very large datasets, since
the test detects differences from the normal distribution with greater
statistical power as the number of observations grows (Kozak and
Piepho, 2018; Gonzalez-Estrada et al., 2022; Shatz, 2024). To further
confirm the reliability of the analysis of variance, the Levene’s test
was conducted in R using the package vegan v. 2.6-4, allowing for
the evaluation of the homogeneity of variances between distinct
groups (Supplementary Table S3).

The results obtained show absence of significance for all
sampling sites, indicating that the variances between replicates are
homogeneous, confirming that the homoskedasticity condition is
satisfied for the dataset (Sayago and Asuero, 2004; Gastwirth et al.,
2009). To further support the previous analyses, the Intraclass
Correlation Coefficient (ICC) was calculated in R using the
package vegan v. 2.6-4, which allows to quantify the degree of
consistency between the measurements made on replicas belonging
to the same sampling site (Supplementary Table S4).

The results obtained show a relatively high Intraclass
Correlation Coefficient (ICC), obtained using a two-way
consistency model. A high ICC value suggests that the variability
between replicates is negligible, especially when compared to the
variability between different sites, confirming that the
measurements are representative of the community composition
at each site (Bose et al., 2014; Ionan et al., 2014; Pleil et al., 2018).
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The two-way model used for the analysis made it possible to
evaluate the proportion of variance attributable to real differences
between subjects, compared to the error component. The narrow
confidence interval indicates a precise estimate of the
reproducibility of the experimental method adopted. The analysis
of the replications for the quantification of OTUs show good
consistency between the replications. The statistical results were
supported with a graphical analysis conducted in R using the
packages ggplot2 v. 3.5.0 (Wickham, 2016) and vegan v. 2.6-4
(Supplementary Figures S1-S5).

The graphical analysis of the data provided further confirms the
accuracy of the replicates in using the number of reads as a proxy
for relative species abundance in phytoplankton communities. In
particular, the boxplots related to the distribution of OTUs among
the replicates show a high homogeneity. Furthermore, the barplots
of the mean abundances per replicate show that the differences
between the replicates are negligible. In addition, the comparison
between residuals and expected values shows an absence of
systematic patterns that could indicate biases in the data. Finally,
the QQ-plots of the residuals showed that the observed deviations
do not significantly affect the validity of the results, confirming that
the data can be interpreted with confidence in the context of the
ANOVA and the other analyses performed (Pleil, 2016; Fox and
Weisberg, 2018).

Alpha diversity investigations were conducted calculating the
Shannon diversity index for each of the five sampling sites using the
R package vegan v. 2.6-4. Significance among sampling sites was
assessed through the one-way ANOVA. Results were visualized as a
violin plot using the R package ggplot2 v. 3.5.0. Furthermore, an
intersection analysis was performed in R using the R package
UpSetR v. 1.4.0 (Conway et al., 2017) and visualized as a Venn
diagram using the R package VennDiagram v. 1.7.3 (Chen and
Boutros, 2011).

To quantify the compositional dissimilarity between the
sampling sites in terms of the number of reads associated to each
OTU, a Hellinger transformation combined with a Bray-Curtis
dissimilarity matrix was calculated using the R package vegan v. 2.6-
4. The results are visualized as a non-metric multidimensional
scaling (nMDS) plot obtained using the R package ggplot2 v.
3.5.0. Significance was assessed by permutation test (n=999
permutations). Homogeneity of multivariate dispersions was
tested using “betadisper” followed by a permutation test (999
permutations). Bonferroni correction was applied to minimize
Type I errors. Statistical results are reported in the Supplementary
File S1.

To better understand the differences in terms of OTUs
composition of the samples and replicates and correlate it to the
abiotic characteristics of the study area, a Bray-Curtis distance-based
Redundancy Analysis (db-RDA) was performed on the Hellinger
transformed OTUs data and standardized environmental data using
the R package vegan v. 2.6-4. Response variables are represented by
the number of reads per OTU for each replicate, while explanatory
variables are represented by the mean abiotic parameter values
registered at the sampling sites. Two-way ANOVA was calculated
for significance. The results are visualized as a db-RDA plot obtained
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using the R package ggplot2 v. 3.5.0. Homogeneity of multivariate
dispersions was tested using “betadisper” followed by a permutation
test (999 permutations). Bonferroni correction was applied to
minimize Type I errors. Statistical results are available in File S1.

3 Results

3.1 Eukaryotic phytoplankton biodiversity:
an overall survey across a mariculture
facility

The High Throughput Sequencing of environmental DNA
samples collected in the marine area across the mariculture
facility returned a total of 22,126,290 high quality reads (Q30
score above 85%). On average, each analyzed replica generated
1,475,086 reads, grouped into a total of 12,155 Operational
Taxonomic Units (OTUs). 7,257 of these were annotated as
Chromista and were selected to conduct the subsequent
downstream analyses based on phytoplankton communities.
Specifically, chromists show a diverse range of forms from tiny
unicellular flagellates to the large brown algae known as kelp.
Molecular studies confirmed the inclusion of certain organisms
once considered Fungi, as well as some heterotrophic flagellates
(Maneveldt and Keats, 2003).

OTUs annotated as eukaryotic phytoplankton taxa were
classified into a hierarchical taxonomic output comprising 12
phyla, 40 classes, 184 families, 103 orders, 259 genera, 175
species, demonstrating a high phytoplankton biodiversity across
the study area.

Observing the spatial analysis of the phytoplankton
composition at the phyla level across the sampling sites, an
overall and relative distribution of OTUs according to a
homogeneous scheme appears clearly evident with variations in
OTU richness. Sites A and B show a lower number of OTUs than
the other sites, while sites D and E host the highest overall wealth of
OTUs (Figure 2).

5000

Number of OTUs

g

10.3389/fmars.2025.1688716

By increasing the taxonomic resolution and observing the
eukaryotic phytoplankton composition at the class level, a similar
distribution of OTUs arises, with noticeable variations in the OTUs
richness in sites A and B, specifically concerning dinoflagellates
(class: Dinophyceae), which show a lower number of OTUs with
respect to the other sampling sites (Figure 3).

To infer the differences in eukaryotic phytoplankton diversity
across the five sampling sites, alpha diversity analysis was
performed using the Shannon diversity index in all sites. The
results were visualized as a violin plot to highlight spatial
differences in phytoplankton diversity among the five sampling
sites (Figure 4). Specifically, sampling site C, representing the most
external with respect to the mariculture cages, exhibited the highest
diversity value (visualized as the median line in the violin plot),
whereas Site D, localized around the mariculture cages external with
respect to the dominant surface currents, showed the lowest value.
At the same time, sampling site A, localized at the center of the
mariculture plant, displayed an intermediate diversity value. In
particular, this sampling site demonstrated the greatest diversity
variability compared to the other sampling sites, with a narrower
range of values.

To determine whether significant differences in the Shannon
diversity index existed among the sampling sites, a one-way
ANOVA and a Tukey multiple comparisons of means were
conducted following a Shapiro-Wilk normality test and a Levene’s
Test for Homogeneity of Variance for the Shannon diversity index
in the five sampling sites. The analysis revealed no significant
differences among the five sampling sites (p > 0.05,
Supplementary File 1).

To infer the proportion of shared OTUs among the sampling
sites, an intersection analysis was performed. The results, visualized
as a Venn diagram (Figure 5), showed that the highest proportion of
OTUs (2,251 OTUs) was shared among all five sampling sites.

Furthermore, sampling site E, localized surrounding the
mariculture plant and closest to the coastal area, hosted the
largest proportion of “site-endemic” OTUs (304 OTUs), while
Site B, localized surrounding the mariculture plant and
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Phytoplankton composition at phylum level across the five sampling sites of the study area.
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Phytoplankton composition at class level across the five sampling sites of the study area.

representing the closest to the dominant surface current exposure,
hosted the lowest proportion (111 OTUs). The schematic
intersection plot is provided in the Supplementary File SI.

3.2 Assessment of species relative
abundance across sampling sites

After the analysis of diversity differences among sampling sites,
we deepened the eukaryotic phytoplanktonic community
composition in terms of relative abundance of all OTUs among
the five sampling sites. The relative abundance of each OTU was
measured through the quantification of the number of reads
obtained from the sequencing and clustered in the same OTU, as
visualized in Supplementary Figure S6.

A species proportion analysis was then performed considering the
number of reads associated to each OTU annotated up to the species

level as a proxy for the species’ relative abundance across the five
sampling sites (Supplementary Figure S7). A subsample of the
identified species, and specifically the species retrieved in the IOC-
UNESCO Taxonomic Reference List of Harmful Micro Algae
(Lundholm et al,,
perform a further species proportion analysis to compare the relative

2009; Supplementary Table S5) was used to

abundance of such species in the five sampling sites (Figure 6).

The proportion analysis revealed some differences between
sampling sites. These differences are mainly represented by the
higher heterogeneity in species composition in sites A, B, and E with
respect to sites C and D, where a remarked dominance of Karlodinium
veneficum appears evident. Besides such differences, the proportionally
most abundant potentially harmful species across the five sampling
sites remain consistent, mainly represented by Ceratulina pelagica,
Emilana huxleyi, Karlodinium veneficum, Margalefidinium
polykrikoides, and Nitzschia longissima, which, despite representing a
potential risk for the fish production, are common phytoplanktonic
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FIGURE 4

Violin plot showing the Alpha diversity Index (Shannon diversity index) in the five sampling sites.
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FIGURE 5
Venn diagram showing the number of shared OTUs among
sampling sites.

residents in the Mediterranean Sea. However, according to the
proportion analysis conducted considering the entire dataset, the
proportionally most abundant species across the five sampling sites
are mainly represented by Algirosphaera robusta, Berkeleya hyalina,
Cerataulina pelagica, and Cyclotella choctawhatcheeana, which are not
reported as potentially harmful species (Lundholm et al., 2009).

3.3 Assessment of eukaryotic
phytoplankton communities’ composition
across sampling sites

The alpha diversity analyses highlighted a specific composition
of eukaryotic phytoplankton communities across the five sampling

10.3389/fmars.2025.1688716

sites. Hence, to investigate the distribution patterns of
phytoplankton diversity across various sampling sites, we utilized
the pairwise Bray-Curtis dissimilarity matrix and the non-metric
multidimensional scaling (nMDS) ordination plot. These analytical
tools help visualize and interpret the similarities and differences in
community composition according to the relative quantification of
OTUs and the proportion of OTUs shared across sampling sites and
replicates. The results suggest a distribution of the phytoplankton
diversity into three main communities: one localized around
sampling sites A and B; one shared between sampling sites D and
E; and one localized at sampling site C. (Figure 7).

To investigate the potential correlation between the
dissimilarities obtained through the OTUs semi-quantitative
analyses and the main abiotic drivers that characterize the
environment under study, a constrained ordination was
performed. Specifically, a Bray-Curtis distance-based Redundancy
Analysis (db-RDA) was calculated (Figure 8). Ten environmental
parameters were used as explanatory variables: Salinity (PSU), Total
Dissolved Solids (PPT), RDO Concentration (mg/L), RDO
Saturation (%Sat), Partial Pressure of Oxygen (Torr), pH,
Turbidity (NTU), Temperature (°C), Chlorophyll-a Fluorescence
(RFU), and Chlorophyll-a Concentration (pg/L). According to the
two-way ANOVA calculated for each of the abiotic parameters,
none of the explanatory variables emerged as significant (p values >
0.05), despite sites A and B appear to be characterized by slightly
higher levels of chlorophyll-a and oxygen concentration, suggesting
higher photosynthetic rates.

3.4 Potentially dangerous eukaryotic
phytoplankton species: clues from the
eDNA analysis

According to the proportion analysis displayed in Figure 6,
eDNA metabarcoding results were able to identify some potentially
harmful phytoplanktonic species (the most representative were
Ceratulina pelagica, Emilana huxleyi, Karlodinium veneficum,
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= 0 Akashiwo sanguinea 0 Lingulodinium polyedra

0 Alexandrium affine B Margalefidinium polykrikoides
8 B Amphidinium carterae 0 Nitzschia longissima
.2 0.75- N Asterionella glacialis U Ostreopsis ovata
= [ Aureococcus anophagefferens B Oxyrrhis marina
o 0 Cerataulina pelagica 0 Paralia sulcata
8— [ Chaetoceros calcitrans B Phaeodactylum tricornutum
hd I Chaetoceros socialis 0 Phalacroma mitra
©.0.501 I Chattonella subsalsa 0 Phalacroma rotundatum
) 0 Chrysochromulina leadbeateri B Polykrikos kofoidii
[} O cylindrotheca closterium 0 Protoperidinium conicum
T B Emiliania huxleyi O Prymnesium parvum
[0) 0 Gonyaulax fragilis B Pseudo-nitzschia pseudodelicatissima
0 0.251 - 0 Gonyaulax spinifera 0 Pseudosolenia calcar-avis
(7] - U Guinardia flaccida 0 Rhizosolenia setigera

0 Guinardia striata 0 Rhizosolenia shrubsolei

! 0 Gymnodinium impudicum B Teleaulax amphioxeia
0.00 [ Karlodinium veneficum B Thalassiosira pseudonana
' 0 Leptocylindrus danicus

A B CODE
Sampling site

FIGURE 6

Potentially harmful species proportion across the five sampling sites according to the number of reads as a proxy for the species’ relative abundance.

Frontiers in Marine Science

08

frontiersin.org


https://doi.org/10.3389/fmars.2025.1688716
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Zangaro et al.

10.3389/fmars.2025.1688716

02

Sampling Site
® SiteA
SiteB
SiteC
SiteD
SiteE

0.1 0
NMDS1

FIGURE 7

0

0.1 02

Non-metric multidimensional scaling (hnMDS) obtained through the Bray-Curtis dissimilarity matrix based on the number of reads per OTU

composition of the replicates collected in the study area.

Margalefidinium polykrikoides, and Nitzschia longissima). However,
their relative abundance based on the number of reads is negligible
if compared to the other identified species and to the overall
diversity observed across the five sampling sites (Supplementary
Figure S7).

Besides this, the potentially harmful Karlodinium veneficum
was identified in all sampling sites, although in the direct vicinity of
farming facility (Sampling Site A) it is underrepresented with
respect to the other sampling sites and to the overall diversity
observed in the area. The potentially ichthyotoxic Prymnesium
parvum was identified too, although it is completely absent in the
direct proximity of the facility’s fish stocks.

Overall, in all five sampling sites, the dominating proportion of
phytoplanktonic species is highly heterogeneous, reflecting the

absence of dominating potentially harmful taxa and highlighting
the power of semi-quantitative investigations at the species level
through eDNA metabarcoding results in coastal and marine areas.

4 Discussion

Given the ecological implications deriving from the economic
activities carried out by humans in coastal and marine areas, it is
essential to implement continuous monitoring of water quality and
ecological indicators to ensure the environmental sustainability of
these delicate socio-ecological systems. In light of this, the balance
of phytoplankton communities represents a crucial index for the

assessment of marine ecosystems ecological status.
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FIGURE 8
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Bray—Curtis distance-based Redundancy Analysis (db-RDA) based on the number of reads per OTU composition and abiotic drivers identified in the
replicates collected in the study area. PSU, Salinity; PPT, Total Dissolved Solids; RDO.C, RDO Concentration; RDO.S, RDO Saturation; PPO, Partial
Pressure of Oxygen; NTU, Turbidity; T, Temperature; RFU, Chlorophyll-a Fluorescence; and Chla.C, Chlorophyll-a Concentration.
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The sustainable mariculture initiatives along the Mediterranean
Sea, confirmed by the ICEA (Reg. CE 834-/2007 and Reg. CE 889/
2008) certification from the European Union, exemplify how
leveraging distinctive hydrogeological features and reduced fish
stock densities can foster sustainability in mariculture facilities. In
this setting, the integration of mariculture with the eDNA-based
biodiversity assessment and monitoring approaches strengthens an
environmentally conscious production model. This strategy enables
the observation of natural dynamics in novel ways, allowing for the
early detection of changes that might disrupt ecological balance.
The mariculture facility involved in this study stands out as a
commendable model where the synergy of scientific knowledge,
technological innovation, and environmental respect yields benefits
for both production and ecosystem preservation.

This study represents the first experimental application of eDNA
metabarcoding approaches to assess eukaryotic phytoplankton
biodiversity across a mariculture facility, investigating distinct
spatial patterns in community composition and providing valuable
insights about the presence, abundance, and spatial distribution of
potentially harmful phytoplankton species. The sampling season
identified is subsequent to strong surface temperature anomalies
occurring during the summer season of 2023, as reported in the
publicly available databases provided by Copernicus. Such increased
temperature conditions potentially increased the primary production
in the presence of nutrients availability, allowing for a better
monitoring of potential shifts in phytoplankton communities.

According to the observed results, 259 genera and 175 species
were identified across the study area, thus demonstrating high species
richness and phytoplankton biodiversity distributed across the
mariculture facility displaying a certain degree of difference in
community composition. More in detail, sampling site A, central
with respect to the mariculture facility structure, displayed a reduced
OTU richness, particularly among Dinophyceae, compared to
peripheral sites C, D, and E. Alpha diversity estimations underscore
the reliability of the number of reads per OTU as a proxy for inferring
the relative abundance of OTUs identified in eDNA metabarcoding
studies. Such validation allows for the use of the relative abundance
proportions as a semi-quantitative parameter for alpha and beta
diversity calculations in the context of coastal and marine biodiversity
monitoring scenarios. The absence of significant differences in
diversity estimations among the five sampling sites strongly
confirms the statistical consistency of replicates in eDNA
metabarcoding studies. Furthermore, such results highlight the
absence of significant shifts in Shannon diversity among sampling
sites within the context of the mariculture plant under study. The
violin plot clearly shows a balanced symmetry across all five sampling
sites, indicating existing natural variations in phytoplankton
composition, not significantly related to the specific sampling site
location within the mariculture plant. However, sampling site A
exhibited the highest range extension, confirming greater variability
in this location, likely attributable to its vicinity to mariculture cages.
This proximity could potentially modify nutrient availability locally,
probably depending also on factors such as current intensity.
Moreover, the high proportion of shared OTUs among the five
sampling sites further supports the consistency of eDNA studies,
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reinforcing the potential of molecular methods to accurately describe
phytoplankton communities in diverse ecosystems. This includes
environments ranging from extremely conserved conditions
(Specchia et al., 2023) to ecosystems under human-use for
production purposes, thereby enabling the evaluation of influences
acting on ecological communities’ composition and dynamics.

The nMDS ordination further highlighted an aggregation of the
eukaryotic phytoplankton communities into three clusters: one
represented by sampling sites A and B, another at distal sampling
sites (D and E), and a unique cluster at site C. Despite minor abiotic
variations, represented by a slightly higher chlorophyll-a
concentration and fluorescence, and oxygen saturation, close to
the fish stocks, environmental drivers did not significantly explain
compositional dissimilarities.

Notably, potentially harmful phytoplankton species (e.g.,
Karlodinium veneficum, Prymnesium parvum, Margelfidinium
polykrikoides) were detected but at negligible abundances compared
with the overall eukaryotic phytoplankton composition, suggesting
minimal immediate risk to mariculture operations and human health.
The minimal detection of potentially harmful species closest to the
fish stocks underscores the facility’s success in maintaining ecological
balance, likely facilitated by strong currents mitigating the potential
localized eutrophication (MyOcean, Marine Copernicus data). This
aligns with global efforts to locate areas suited to mariculture activities
in hydrodynamically active regions to minimize the risk for
environmental perturbations (Carballeira Brana et al., 2021; Morris
et al., 2025; Ferreira, 2025). However, the persistence of K. veneficum
across all sites, even though at low levels, confirms the need for
constant monitoring, as this species can form ichthyotoxic blooms
under shifting nutrient regimes (Place et al,, 2012), and demonstrates
the validity and reliability of eDNA-based monitoring plans for
phytoplankton assemblages in the context of mariculture facilities.

The absence of significant shifts in eukaryotic phytoplankton
composition and the negligible abundance of potentially harmful
species demonstrate a high integration degree of the facility within
the ecosystem landscape. A certain level of difference in the
communities’ composition aligns with studies demonstrating
spatial zonation in plankton communities near aquaculture
systems, often linked to organic enrichment or hydrodynamic
gradients (Camarena-Gomez et al, 2018). As an example, the
reduced dinoflagellate diversity in the closest area to the facility’s
center, coupled to the increased photosynthetic activity, suggested
by the higher levels of chlorophyll-a and oxygen concentrations,
may reflect competitive exclusion by fast-growing diatoms under
higher availability conditions of dissolved organic material due to
the presence of the fish stock (Spilling et al., 2018; Song et al., 2022).
However, such variations did not demonstrate to significantly drive
shifts in the phytoplankton community composition.

In this investigation, a total of 7,257 operational taxonomic units
(OTUs) were identified through high-throughput sequencing of
environmental DNA (eDNA) derived from Mediterranean Sea
water samples. Of these, 1,301 OTUs (about 18%) were
taxonomically annotated up to the species level using curated
reference databases (e.g., SILVA). These observations align robustly
with prior gap analyses of 18S ribosomal RNA (18S rRNA) barcode
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completeness in public repositories (Tzafesta et al., 2022). Specifically,
in this previous analysis, a gap in reference sequences was quantified
for approximately 40% of morphologically described phytoplankton
species within the Mediterranean Sea, with pronounced gaps among
diatoms (Bacillariophyceae) and dinoflagellates (Dinophyceae).
Likely, the high gap between molecular and morphological taxon
assignments arises from intrinsic challenges in traditional
microscopy-based morphological identification of phytoplanktonic
species, often due to the loss of diagnostic cellular structures during
preservation, interspecific morphological convergence, and the
prevalence of non-differentiated life stages (e.g., cysts). Despite gaps
in the reference libraries, eDNA metabarcoding demonstrated
remarkable efficacy in recovering spatially-related biodiversity
patterns. The reliability of eDNA-based biodiversity assessments is
underscored by its capacity to detect taxa even when reference
databases are incomplete. This aligns with broader findings that
eDNA surveys inherently reflect both biological reality and reference
library gaps yet still represent reliable tools in capturing diversity
(Seymour et al., 2021: Banerjee et al., 2022; Specchia et al., 2023; Cruz-
Cano et al., 2024; Pinna et al,, 2024). While database gaps remain a
constraint for absolute species richness quantification, eDNA’s ability
to resolve relative biodiversity patterns and ecological gradients
remains unimpaired.

5 Conclusions

Overall, the results of this study confirm the potential reliability of
eDNA metabarcoding in monitoring the presence, distribution and
relative abundance proportion of eukaryotic phytoplankton
communities’ assemblage and potentially harmful phytoplanktonic
species in coastal marine ecosystems and, more specifically, in the
close vicinity of fish production areas, where constant and efficient
biomonitoring is essential. The overall elevated homogeneity among
replicates validates the reliability of eDNA metabarcoding for
monitoring phytoplankton dynamics. Furthermore, read counts
provided robust relative abundance estimates, strengthening the
potential efficiency of eDNA-based approaches in the assessment of
harmful algal bloom (HAB) risks, particularly for low-abundance
toxigenic phytoplankton taxa. Future prospects foresee the routine
application of eDNA-based ecological monitoring in different
ecosystems, as well as in the context of diverse socio-ecologic systems.
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