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Considering the complex offshore environment, where small robotic fish are
exposed to surface disturbances from wave forces, suspended particles, and
model uncertainties, as well as deep-water disturbances from bottom currents,
this paper proposes an inverse sliding mode control strategy based on a
disturbance observer to enhance trajectory tracking robustness. The research
focuses on a tail-fin-driven bionic robotic fish. Utilizing its kinematic and dynamic
models, a virtual control law based on an agent dynamics model is proposed,
with the tail fin integrated as a real control input. A nonlinear disturbance
observer with controllable convergence characteristics is developed to
estimate and compensate for disturbances, including wave forces and model
uncertainties. Additionally, a velocity error correction function is introduced to
mitigate the impact of strong disturbances. Based on Lyapunov theory, an
adaptive sliding mode control law is derived to ensure system stability. The
control law for the caudal fin swing angle and bias is obtained by inverting the
virtual control inputs, applied to the robotic fish's accurate model. Numerical
simulations show that the disturbance observer’s tracking error remains below
5%, and the trajectory tracking error is within 0.1 meters, representing only 2.2%
of the robotic fish's body length. Compared to mainstream control methods, the
proposed approach significantly enhances robustness in contrast to the
conventional sliding mode control with observers, and exhibits substantially
smaller tracking errors, especially during trajectory transitions.

KEYWORDS

inverse sliding mode control, nonlinear disturbance observer, trajectory tracking, tail-
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1 Introduction

In recent years, as the global energy structure transforms and
marine resource development deepens, the strategic value of marine
energy has become more prominent (Li M. et al., 2025; Rehman et al.,
2023). The complexity and significance of exploration tasks, such as
marine environmental monitoring, resource exploration, and seabed
mapping, are steadily increasing. This raises higher demands for the
performance of underwater exploration equipment and stimulates
widespread interest and enthusiasm among researchers.

Breakthrough progress has been made in current underwater tasks,
resulting in a wealth of research achievements. Examples include
Visual-textual Fusion Empowered Underwater Image Enhancement
(Wang H. et al, 2026), underwater scene clarity reconstruction via
multilayer information fusion and self-organized stitching (Wang H.
et al, 2024), and Underwater Image Captioning AquaSketch (Li H.
et al., 2025). However, Traditional underwater unmanned vehicles
typically use propeller propulsion systems driven by hydraulic or
electromagnetic principles. Although this mechanical propulsion is
well-established in engineering applications, it has significant
limitations in energy efficiency, environmental friendliness, and
stealth, which hinder its effectiveness for underwater operations.
With advances in robotics and bionics research, particularly in the
study of efficient propulsion mechanisms in aquatic organisms (e.g.,
fish BCF movement mode, cephalopod jet propulsion), the
development of bionic underwater robots has emerged as a new
solution to the limitations of traditional propulsion systems (Ma
et al, 2019; Sfakiotakis et al., 1999; Yan et al,, 2024). By simulating
the flexible deformation of living organisms, vortex control, and other
mechanisms, these systems offer significant advantages in propulsion
efficiency, maneuverability, and environmental adaptability,
representing a key direction for the future of underwater propulsion
technology (Nash et al., 2021).

The bionic robotic fish is one of the most iconic underwater
robots. The most common bionic fish uses both pectoral and caudal
fins in concert for propulsion, with horizontal motion driven either
by the caudal fins, a pair of pectoral fins, or a combination of both
(Kadiyam and Mohan, 2019). The most common bionic fish tails
employ a multilink mechanism with multiple motors working in
coordination to drive the fish’s body, enabling oscillation and
propulsion. Clapham et al. from Harvard University present a
small-scale robotic fish with independent monoarticulated fins,
utilizing a binocular fisheye camera for perception and optical
communication. This system successfully replicates and interprets
autonomous behaviors observed in real fish (Clapham and Hu, 2014).
Ning Wang et al. simulated the dorso-ventral motion of a dolphin’s
caudal fin and found that a variable thickness flexible caudal fin can
enhance propulsive performance (Wang N. et al., 2025). Deqiang Wei
et al. found through numerical simulation that the flexible tail fin,
driven by a magnetic actuator, offers advantages of high speed and
compact size, making it suitable for pipeline surveys (Wei et al,
2023). Fengran Xie et al. designed a wire-driven bionic fish tail that
swings by alternately pulling ropes on both sides through a turntable.
They also built an experimental platform and proposed a pivotal
pattern generator capable of producing four characteristic motion
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patterns (Xie et al., 2019, 2020). Two rigid-body actuators are used to
control the tail motion. Numerical simulations reveal that changes in
the shape of the robotic fish increase the total drag force, limiting its
maximum speed (Vignesh et al., 2024). Qixin Wang et al. proposed a
robotic fish with modular adaptive variable-stiffness passive joints,
enabling adaptive stiffness variation without the need for an external
drive source (Wang Q. et al., 2025). Currently, bionic fish tail designs
primarily use multi-motor drives, linkage mechanisms, and linear
drives. However, these methods often suffer from complex drive
systems, bulky mechanical structures, insufficient swinging precision,
and limited motion range, resulting in a poor overall bionic effect.
Given that the control strategy developed for a single-joint robotic
fish can be theoretically extended to multi-joint configurations, this
study focuses on a single-joint structure to facilitate analysis and
controller design (Cao et al., 2022).

Despite the variety of mechanical forms of robotic fish, precise
trajectory tracking control mechanisms are required to ensure stable
following of the desired path. Kim Donghee et al. proposed a three-
degree-of-freedom CPG controller to track in-plane motion
trajectories, enabling the bionic fish to move along the desired path
(Kim et al., 2008). Longxin Lin et al. proposed a Q-learning controller
that incorporates supervised neural networks to control the body
oscillations of a bionic fish (Lin et al, 2010). Zheping Yan et al.
optimized the parameters of the bionic fish tail using the fish body
wave equation and penalty function, integrated the pivotal mode
generator with the sliding mode controller, and experimentally
verified the effectiveness of the proposed SMC-CPG controller and
tail structure (Yan et al,, 2022). Ming Wang et al. designed an iterative
learning controller for a bionic robotic fish and verified its
effectiveness through control simulation experiments (Wang et al.,
2020). Pengfei Zhang et al. proposed a two-stage nonlinear model
predictive solution for orientation-velocity, which is applicable
not only to bionic robotic fish but also to other underwater
underdriven robots (Zhang et al., 2020). Xiao Yan and Yue Ma
proposed a new control method for flexible robotic fish, offering over
10% greater propulsion compared to conventional control methods
(Yan and Ma, 2023). Ruilong Wang et al. proposed an algorithm for
trajectory tracking and obstacle avoidance of a robotic fish using
nonlinear model predictive control, which leverages current state and
environmental data to efficiently regulate its motion in a highly agile
manner (Wang R. et al., 2023). Ming Wang et al. proposed a discrete
linear quadratic regulator optimization strategy based on the particle
swarm optimization algorithm and verified its feasibility and
effectiveness in tracking complex trajectories (Wang M. et al,
2023). In the complex underwater operating environment, a single
control strategy struggles to meet both the accuracy and robustness
requirements for trajectory tracking of the robotic fish. As a result,
researchers have begun exploring composite control strategies that
integrate the advantages of multiple methods.

In order to simultaneously improve system robustness and control
precision, an increasing number of studies have explored composite
control frameworks that integrate multiple control paradigms.
Ming Wang et al. proposed a novel motion control method for
robotic fish based on an impulse neural network and a central
pattern generator, and verified the effectiveness of this hybrid control
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approach (Wang M. et al, 2022). Yizhuo Mu et al. dynamically
adjusted the objective function of optimal control using a model
predictive control method based on multilayer perceptron, effectively
overcoming the complexity of kinematic modeling in robotic fish (Mu
et al,, 2022). Kewei Ning et al. introduced inverse learning for feed-
forward neural networks to achieve real-time trajectory control (Ning
et al, 2022). South China University of Technology proposed a hybrid
control method based on a model predictive decision-making strategy,
which significantly reduces computational errors and achieves fast
system convergence (Wang K. et al,, 2024). Qixin Wang et al. proposed
a deep reinforcement learning-based approach for online control of a
machine eel with multiple passive structures, enabling control without
relying on underlying control models or strategies (Wang Q. et al,
2022). Yu Wang et al. designed a nonlinear model predictive controller
with reinforcement learning to track the trajectory of a machine fish
and verified the effectiveness of the proposed approach (Wang Y. et al,,
2024). Sijie Li et al. proposed a gliding-oscillating-strategy-based
backstepping-adaptive control method to attenuate tracking error
jitter (Li et al, 2024). Dongfang Li et al. introduced a fast global
terminal sliding mode fuzzy controller that considers tangential
displacements and employs a fuzzy adaptive approach to address
complex uncertainties, improving the error convergence speed and
accuracy of the machine fish system (Li D. et al, 2025). The
aforementioned methods have significantly contributed to the
research on trajectory tracking of robotic fish. However, the unique
challenges of offshore environments—characterized by high-velocity
currents, sediment-laden waters, and strong external disturbances—
significantly limit the direct applicability of existing control approaches
to such scenarios.

The main innovations presented in this paper to address the
gaps in current research are as follows:

I. In this paper, we decompose the robotic fish dynamics
model into an agent model and an exact model, utilizing
both in conjunction.

II. Improving the robustness of robotic fish trajectory
tracking through a nonlinear disturbance observer and
an adaptive inverse sliding mode control strategy with
velocity correction.

III. By directly using the oscillation frequency and bias of the
caudal fin as control inputs, the influence of
environmental disturbances on the robotic fish is
effectively attenuated, thereby reducing the adverse
effects caused by the nonlinear mapping relationship in
highly perturbed environments.

The rest of the paper is organized as follows: Section II presents
the exact dynamics model of the robotic fish and the agent model to
reduce computational intensity. Section III outlines the design of
the nonlinear disturbance observer, the velocity correction method,
and the derivation process of the adaptive inverse sliding mode
controller. Additionally, the tail fin model is updated, and the
control inputs are derived. Simulation experiments and a
discussion of the results are provided in Section IV. Finally,
Section V offers concluding remarks.
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2 Modeling of dynamics

This section explains the problems related to the robotic fish,
including the definition of the two coordinate systems, its kinematics,
and the dynamic equations. The dynamic model used in this study is
derived from the physical robotic fish prototype (Figure 1) through
feature extraction and physics-based simplification.

The modeling of the robotic fish is divided into two parts:
kinematics and dynamics. To clearly characterize the motion of the
robotic fish in the horizontal plane, Figure 2 shows the geometric
relationship between the ground-fixed coordinate system {Cg} and
the body-fixed coordinate system {Cp}.

The horizontal rocking motion, primarily related to the symmetry
of the robotic fish, is not considered in the modeling. The kinematic
equations of the robotic fish in the horizontal plane are given in
Equation 1.

X=ucosy —vsiny

y=usiny +vcosy (1)
W=r

Here x and y denote the positional coordinates of the robotic
fish in the Earth’s fixed coordinate system {Cg}; ¥ denotes the yaw
angle; r denotes the yaw angular velocity; and u and v are the
forward and traverse velocities, respectively.

In this paper, the higher-order hydrodynamic drag term is
neglected, ensuring that the center of gravity of the robotic fish
coincides with the center of buoyancy. The exact dynamic equations
of the robotic fish are given in Equation 2.

i =vr+ hy(u,v) /My, — Kk, hs (s, ) /Mgy
v = —ur+ hy(u,v) + Kk he (@5, &) /Mp (2)
= _|r|rKT/]s,b,z - k2h6(w5> 50)/]s,b,z

To simplify the computation and facilitate control, a simplified
agent model is used as the mathematical model for the controller of
the robotic fish. Directly using the exact model in combination with
the interference observer and the adaptive inverse sliding mode
controller complicates the solution process and poses significant
difficulty in inversely solving the caudal fin parameters. The
primary focus of this study is not on the detailed derivation of the
agent model, but rather on the integrated application of the model
with the proposed control strategy. Therefore, this study adopts the
well-established underdriven autonomous underwater vehicle (AUV)
dynamics model and integrates it with the dynamics modeling of the
robotic fish to construct an agent model. By inputting the solved
caudal fin parameters into the exact model, the velocity and position
of the robotic fish are obtained, completing the control process. The
agent model of the robotic fish is given as follows:

Mv+B(W)v=1+d (3)

where v is the velocity and angular velocity vector in the attached
coordinate system; M is the inertia matrix; B(v) = MC(v) is the
composite term of the dynamics model; 7 is the virtual control input;
and d is the environmental disturbance force and model uncertainty.
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FIGURE 1

Photograph of the physical robotic fish.

3 Controller design

The control objective is to achieve horizontal trajectory tracking of
the robotic fish. To address the strong disturbance environment, a
nonlinear observer is designed to stabilize the system, even in the
presence of significant disturbances. The velocity correction controller is
used to reduce the impact of strong disturbances on the motion of the
robotic fish; The inverse sliding mode control method is used to derive
the virtual control law for the agent model, adapting it to sea currents.

3.1 Nonlinear interference observer design

Under the influence of strong ocean currents, wave-induced
forces, and sediment-induced uncertainties, system stabilization is

FIGURE 2
Schematic diagram of robot fish coordinate system.
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difficult to achieve by solely relying on adaptive sliding mode
control to compensate for environmental disturbances. The
nonlinear disturbance observer can reduce the steady-state error
of the robotic fish by incorporating the external environmental
force into measurement or estimation. The nonlinear disturbance
observer can inject the external disturbance into the adaptive sliding
mode controller as additional signals to enhance the robustness of
the system. Given the highly nonlinear nature of the robotic fish’s
mathematical model, an exponentially convergent disturbance
observer is employed. However, the disturbances measured or
estimated are external forces that vary slowly with time but
exhibit large peaks.

Letd = K(d — d), where d is the interference observation and K
is the gain parameter of the nonlinear disturbance observer. Define
the auxiliary parameter vector as given in Equation 4.

z=d - KMdotv (4)
Then, taking the derivative yields Equation 5.
t=d-KMi (5)

From the machine fish agent model in Equation 3, we obtain the
disturbance mathematical model in Equation 6.

d=Mv+B(v)v-1 (6)
Then Equation 7 can be derived.
d = KMV + B(v)v - 1) - Kd @)
This, in turn, leads to
z=KMV+B(W)v-1)-Kd - KM¥ )

=KBWV)v-1) - Kd

By combining Equation 4 and Equation 8, the disturbance
observer can be designed as Equation 9.
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z=KB(V)v-1)-Kd
{ . &)
d =z + KMy
Which can be further obtained as Equation 10.
z=K(B(v)v - 1) - K(z + KMv)
(10)

=KB(v)v-17-KMv) - Kz

Since the targeted disturbance is slowly varying, it can be
assumed that d =0, and consequently, the disturbance error is
given in Equation 11.

d=d-d=-d=—z-KMyp 11

Substituting Equation 10 into the above equation results in

d = ~(K(B(V)V - 7 - KMv) - Kz) - KM
= -KB(v)v -7 - KMv) + Kz - KMv»
=K(z + KMv) - K(Mv + B(v) — 1)

= K(d - d)

= -Kd

(12)

Therefore, rearranging Equation 12, the observation error
equation can be expressed as Equation 13.

d+Kd=0

(13)
This resolves to Equation 14.
d(t) = d(t,) - exp (-K¢) (14)

Since gi(to) is a constant and K > 0, the observer error equation
converges, and the convergence accuracy depends on the value of
the gain K.

3.2 Velocity correction

In the trajectory tracking problem of a robotic fish, the reference
trajectory is directly provided by the navigation system. Let 17, =
[x4(6), y4(O)]" = [x4,y4]" be in the Earth’s fixed coordinate system
{Cg}, where x;4 and y, are sufficiently smooth functions with at least
three derivatives. Since the horizontal motion of the robotic fish in
the plane is driven solely by the tail fin, its reference trajectory must
satisfy the conditions given in Equation 15.

_ Fdda=Faal 1 (15)
(Xé + yf,) & &
where C, is the curvature of the desired trajectory, and &, is the
minimum radius of gyration of the robotic fish.
For control purposes, the position error equation of the robotic
fish is expressed as Equation 16.

X, cosy siny || x—xy
- (16)
Ve —siny cosy | | y -y
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where x, and y, are the trajectory tracking errors of the robotic
fish in the body coordinate system {B}; x, y and 7, are the actual and
desired trajectories of the robotic fish in the Earth coordinate
system {E}, respectively. The coordinate transformation matrices
are non-singular, so the position errors defined in both coordinate
systems are equivalent, and their stability is also equivalent. The
desired yaw angle of the robotic fish can be directly calculated from
the reference trajectory:

Y, = arctan (yy/%,) (17)

Therefore, by means of Equation 17, the tracking error of the
yaw angle can be expressed as Equation 18.

Ye=VW -y (18)

The following differential equation for the tracking error is
derived by substituting the derivatives of the desired trajectory and
yaw angle into the kinematic equations of the robotic fish, as given
in Equation 19.

X, = U—UyCOS Y, + 1V,

e =V +ugsiny, —rx, (19)

Y, =r—r14

where u, is t the desired velocity, directly calculated from the
desired trajectory of the robotic fish, and its direction is aligned with
the straight line connecting the head and tail of the robotic fish,
Uug = /%5 +j% r4 is the bow angular velocity, also directly
calculated from the desired trajectory of the robotic fish, ry = ; =
Gaka = ya¥a)/ u.

Construct the Lyapunov function for the tracking error of the
robotic fish and complete the stability proof for x,, y, and .

1 1
%+ Ye + (1= cos yr)

\%
)

(20)

This can be obtained by taking the derivative with respect to
time and substituting Equation 20.

Ve = x.%, +y65}e + !]/e sin ¥,

= (M — Ug COS We)xe TV + (r- rg+ udye) sin e

(1)

Subsequently, the desired virtual forward speed and angular
velocity of the robotic fish are designed based on the above equation.
To ensure that the forward speed and angular velocity control inputs
correct the tracking error, it is required that these control inputs match
the desired virtual forward speed and angular velocity when the
positional tracking error x,, y, and the bow angle tracking error v,
are zero. The specific expressions are given in Equation 22.

{

where k, and k,, are gain coefficients and k, > 0, k,, > 0.

U, = Uy cos Y, — kyx, )

rp=Tg = Ug)e _ku/ sin Ve

Substituting u, and r, into Equation 21 yields Equation 23.

V, = —k.x2 —k,, sin” y, + vy, (23)
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It can be observed that due to the presence of the nonlinear term
VY., the current system cannot guarantee that Ve remains negative,
thus preventing stability in the speed correction system. However, if
the longitudinal trajectory tracking error y, can be reduced to zero
or approximately zero, and by appropriately adjusting the gain
coefficients k, and kW’ it is possible to ensure Ve < 0, thereby
stabilizing the speed correction system. Therefore, further design of
the trajectory tracking controller is required to ensure the overall
stability of the control system.

3.3 Adaptive inverse sliding mode control
controller design

An adaptive inverse sliding mode controller is designed based
on an exponentially converged nonlinear disturbance observer,
which compensates for large external disturbances. This
controller enables the robotic fish to adjust to real-time current
variations in the water, ensuring that these disturbances do not
affect the system’s robustness, thereby further reducing the
tracking error.

Assumption 1: The value of currents in the robotic fish
dynamics model is bounded above and compensated for by the
adaptive rate, i.e., v < Vp

Assumption 2: The tracking reference trajectory and its
derivative, 1, are both bounded.

Define the trajectory-tracking error as Equation 24.

Zp=N-M4 (24)

where 1) represents the actual trajectory of the robotic fish
(n=[xyw]"), and 1, denotes the reference trajectory

(Na = xa»ya> wal")-

Then
Z=N-14 4 (25)
=J(v +ve =1y
Constructing Lyapunov functions:
V=34 (26)

Derivation of the Equation 26, followed by substitution of
Equation 25, yields the following result:

Vi =z(J(mv+ v - 1) (27)

Assume J(mv + vy — N4 = —C12; + 25, so that the sliding mold
surface becomes s =2z, = J(N)v + v - Mg+ ¢z, It is designed to
guide the system state toward the desired dynamic behavior. Among
them, c,z; introduces the proportional feedback of the position error
into the sliding surface. This ensures that if the robotic fish deviates
from the target position (z # 0), the sliding surface s will be adjusted to
“pull” the system back to the desired trajectory, achieving faster
convergence with the help of error feedback.

Let vy = vy — ¥, where 7 is the current adaptive compensation
value, and substituting into Equation 27 yields.
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Construct a Lyapunov function that integrates position error
and sliding surface error:

1
V,=V, +Es2 (28)

Differentiating Equation 28 yields Equation 19.

V2 = Vl + Zziz = _CIZ%
+212, + 2,75 + 2 [J(Mv + T (M) (M (29)
BWyv+1+d)+ 15f =g+ 12

The control law can thus be designed as Equation 30.

=M (M2 = JMv = vy + g = U0V + 9, = 115)  (30)

~c,5gn(2,) — hz,) —- MB(v) — d

It is used to generate the virtual control input 7(the thrust and
torque required by the robotic fish) to drive the system to track the
reference trajectory. Where ¢, ¢,, h are constants and ¢, ¢;, h > 0,
v i < 17f, T/f are current compensation errors.

Then

V, = —azi —hz - 65| + (2 + €2y (31)

This part solves the stability problem of the sliding surface, so
that if T/f =0, then VZ < 0. Therefore, continue to construct the
Lyapunov function to completely eliminate the influence of the
disturbance term.

[
V=V, + Evf (32)

Here, v is the gain constant, and y > 0. Differentiating Equation
32 gives Equation 33.

Vi=V, +%17f1;/f
=V, + 33 (5 - ¥) (33)
=V, -1¥9;
Among them, since the ocean current changes slowly, then v = 0.
Substituting Equation 31 gives

. 1.
Vs = —c1zf —hzs — 6|z| + Vr (zl - ?Of + clzz) (34)
The adaptive rate is designed as

V=7 +02) (35)

Substituting Equation 35 into Equation 34 results in the
following expression:

Vs = —¢,22 — hz3 -Glz] <0

Since V3 is negative definite, it follows that z;, z,, f/f — 0. Using
Lyapunov’s stability theory, it was proven that the system is
asymptotically stable, which verifies the effectiveness of the
controller in robotic fish trajectory tracking control.
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3.4 Solution for tail fin control

Since the robotic fish is powered by its caudal fin, there exists a
mapping between the driving force and torque of the caudal fin and the
fish’s movement. This implies that directly using the motor’s output
torque to control the robotic fish’s caudal fin may reduce accuracy due
to environmental interference. The virtual control input derived from
the proxy model is not the actual control input for the tail fin motor.
However, the required frequency and bias angle of the tail fin can be
determined by solving inversely from this virtual control input. Next, a
force analysis and modeling of the robotic fish’s caudal fin is needed to
establish the relationship between the caudal fin’s force and the swing
frequency and offset angle.

The swing angle of a caudal fin-driven robotic fish is defined as
Equation 36.

O(t) = & + O, sin wst (36)

Among them, &, represents the bias of the tail fin swing angle
function. By adjusting the value of &, the forward direction of the
robotic fish can be altered. J, and @s represent the amplitude and
frequency of the tail fin swing angle function, respectively, which
control the forward speed of the robotic fish. To reduce the number
of control variables and enhance the robustness of the control system,
in this paper, J, is set as a constant with a value of §; = /4. The
control variables for the tail fin inverse solution are &, and ®;.

Let the tail length of the robotic fish be L, and any action point
on the tail be represented as k. When x = 0, it indicates the joint
where the tail fin connects to the body of the robotic fish. When
K = L, it indicates the end of the caudal fin. If the x-coordinate of
point x relative to the body coordinate system {C;} is defined as
(X (i, ), Y( 550" =
(v, v1)", the vector along the tail fin direction is represented as j =

K, 1)), then the velocity at point x is v; = (

(- g—fg R g—i )T, and the vector perpendicular to the tail fin direction is
represented as i = (- %, - 9% ). The swinging tail can be modeled

as a slender body. According to Lighthill’s slender-body theory, the
force at any point can be expressed as Equation 37.

S = - 3w (37)

Where m, is the virtual mass per unit length of the caudal fin
according to the elongate body theory, m, = 1 prd?; p is the density
of the water, and d is the immersion depth. For the end of the caudal
fin when x =L, a concentrated force is generated, as given in
Equation 38 (Behbahani and Tan, 2017):

1

f@@) = —fmtvfj - mv i

3 (38)

The value of the component of the velocity at any point x on the
caudal fin relative to the body coordinate system {Cp} in both the j
and i directions can be approximated as v, = K5, v = 0. Therefore,
f(L) can be simplified as Equation 39.

S =~ mp (9)
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Further, assuming an inviscid fluid, the virtual mass force
component parallel to the tail’s motion is negligible. Therefore, the
force at any point k on the caudal fin can be approximately written as
Equation 40.

(k) = —m, (x8i — k&%) = —m, k5i
f t J t (40)
f) =-tmpij-myivi=0
By integrating the pointwise force distribution across the caudal
fin, the total force generated by the caudal fin is given by Equation
41.

L
thl f(x)dx
L

= / —m, K Sidx
0

= —G m, L5 sin 5) m+ (% m, L5 cos 5)ﬁ
) (41)
Tr = A (re,e X fie)dE+ 1, X fi

:/}L(—ctthSCOSS—thZS)IQdK
= <—%z°‘3c055—m‘TL33>12

where i = msind — 7icosd, j = —#1cosd — 7isind:Let r¢, . = —(¢; +
Kcosd)m — (ksind)n denote the vector from the center of mass of
the robotic fish (origin of the body-coordinate system {C,}) to an
arbitrary point k on the caudal fin, and let r¢,; denote the vector
from the same origin to the tip of the caudal fin.; Let ¢, be a scalar
parameter characterizing the tail's geometry. Finally, let 1,7,k
represent the unit vectors along the three axes of the body
coordinate system {C,}; and derive Equation 42 below.

m 7l k
feoe X fe = | —(¢; + Kcos8) -ksind 0
—m,KS sin 8 thS coso 0 (42)
= —(c, + Kk cos 8)m, k'S cos Sk — m, k*8 sin? Sk
=(- Ctth'SCOS S - thZB)I;
The total force on the caudal fin can be written as:
F,=-1 m,L*§ sin &
F,, = %thzg cos (43)

T D
T, =-5mL°c,6cos 6 — -0

The sinusoidal oscillatory terms present in the caudal fin’s force
function, which includes both sine and cosine components, complicate
the separation of the control variables for the caudal fin. To invert the
caudal fin control function, this paper applies the method of averaging
combined with Taylor expansion. It uses polynomials to approximate
the oscillatory terms (e.g., trigonometric functions) in the caudal fin
force, thereby equivalently simplifying the force expression (Wang
et al,, 2013). The averaging method is given in Equation 44.
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T
fulost) = [ g0y (1)

where T represents the period. For the oscillatory term f, (6, t) =
dsin §, the average system is expressed as Equation 45.

T ) = . 1
%A f1(5,t)dtz2—7‘;/) " 5,03 sin (@3)(5 £ 8t
15018 1)

. r
Similarly, for f,(, t) = & cos §, the mean system is % £(6,1)
dt = = 8,36 for f;(8,t) = 6, the mean system valite is zero.

(45)

Substituting the approximate value of the averaged system into
Equation 43 results in Equation 46.

F,=imI*8w5(1-16 -163)

F,, =1m*6; w56, (46)

— 1 2 2,2
Tt,z = —thL CtéAwg(sO

The external forces acting on the robotic fish in this study
include gravity, buoyancy, water damping force, and caudal fin
force. It is assumed that the center of buoyancy coincides with the
center of mass of the head, ensuring a perfect balance between
gravity and buoyancy. Additionally, B(v) is a composite term that
contains the matrix of the Coriolis and damping effects, and its
multiplication by the velocity vector v produces the effect of water
damping force on the robotic fish’s motion. At this point, the virtual
control input 7 obtained from the adaptive inverse sliding mode
controller is approximately equal to the caudal fin force, i.e., T =
[Fix Frys T,.]", due to the effect of this force.

The actual control quantities, tailfin frequency w; and bias &,
are obtained by inverting the above system of nonlinear equations
in MATLAB using the fsolve function from the Optimization
Toolbox. The tailfin frequency @s and bias §, values are
determined using the fsolve function in the Optimization
Toolbox. However, considering the tail motor parameters and the
safety requirements, saturation limits are imposed on the tailfin
control quantities: the tailfin frequency is constrained to @z < 50Hz
and the tailfin swing bias is constrained to }30’ < 45°.

4 Simulation and analysis

To evaluate the effectiveness of the designed controller, MATLAB/
Simulink is used for simulation and analysis. Additionally, a nonlinear
disturbance observer-model predictive control (NDO-MPC) was
designed for comparison, highlighting the advantages of the
robustness of the proposed controller in handling strong
disturbances, compared to mainstream control methods.

Table 1 presents the required parameters for dynamic and
simulation modeling. These parameters are derived from
estimates of the object’s size and shape.

The control block diagram of the bionic robot developed in this
study is shown in Figure 3.

In the simulation verification, a trajectory tracking task for
sinusoidal curves was designed. The controller parameters k, = 1.35,
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TABLE 1 Parameters of the fish robot.

Parameter Symbol Valve Unit
Length I 0.45 m
Width w 0.08 m
Mass m 3.68 kg
Moment of inertia in x-axis L. 0.0019 kg/m2
Moment of inertia in y-axis L, 0.042 kg/m2
Moment of inertia in z-axis I, 0.0123 kg/m*
Caudal fin area Sef 0.0062 m?
Equivalent cylindrical length of the tail = [, 0.258 m
Equivalent cylindrical weight of the tail =S, 0.98 kg

ky, =32, ¢, =125 ¢; =1.06, h=15, y=0.85 and the nonlinear
disturbance observer gain parameter K = 0.78. The desired trajectory
is: 1y = [t,sint,arctan (cost)]”, defining the initial velocity of the
machine fish vy = [0.05,0.01,0.01]m, define the initial position of the
robotic fish as 7y = [0.005,0.001,0.005]m, define the environmental
disturbance and uncertainty as F = 5sint, and define the current
perturbation as v; = 3m/s, and the simulation time is set to 30s. The
parameters of the proposed robotic fish model are derived from those
of existing robotic fish prototypes, with its physical dimensions
specified as length (L) x width (W) x height (H) = 1.6 m x 0.7 m x
0.4 m.

To validate the effectiveness of the nonlinear disturbance
observer, the basic inverse sliding mode controller and the
controller with the nonlinear disturbance observer are compared
under the same initial conditions. The simulation results are
presented in Figure 4.

Figure 4 demonstrates that, in the absence of the nonlinear
disturbance observer, the error between the actual and reference
trajectories exhibits a monotonic increase within the 0-15 s interval
(approximately 1.5 m forward displacement), indicating that model
uncertainties and external disturbances significantly affect the
dynamic behavior of the robotic fish. Upon the introduction of the
nonlinear disturbance observer at 15 s, the system’s transient
response quickly converges over a minimal transition distance, with
the error amplitude rapidly decaying and remaining at a very low
level for the subsequent 15 s. This result validates the nonlinear
disturbance observer’s ability to provide accurate online estimation
and real-time compensation for aggregate disturbances. Quantitative
analysis further shows that, with the controller gain held constant, the
incorporation of the nonlinear disturbance observer reduces
trajectory tracking error by approximately 95.6%, while effectively
mitigating periodic disturbances induced by nearshore wave forces
and sediment disturbances. These findings significantly enhance both
the trajectory tracking accuracy and robustness of the robotic fish.

To verify the advantages of the disturbance observer - based
inverse sliding mode control over the conventional sliding mode
control with observer, this paper conducts simulation experiments
of the two control methods after introducing near - sea area
disturbances, as shown in Figure 5.
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FIGURE 3

Trajectory tracking control diagram of bionic fish.

Figure 6 shows that both the conventional sliding mode control
with observer and the disturbance observer-based inverse sliding
mode control achieve good tracking performance in a disturbance-
free environment. However, for the conventional sliding mode
control with observer, the error between the actual trajectory and
the reference trajectory expands significantly within the Post-
Disturbance Introduction Interval. When the disturbance
observer-based inverse sliding mode control is activated, the
system’s tracking performance stabilizes rapidly over a very short
distance. The error amplitude decreases sharply and remains at an
extremely low level throughout the entire interval. This result
confirms that the disturbance observer-based inverse sliding
mode control can accurately counteract the effects of offshore
disturbances. Quantitative analysis further indicates that, under
otherwise identical conditions, compared with the conventional
sliding mode control with observer, the adoption of the disturbance

observer-based inverse sliding mode control reduces the trajectory
tracking error by approximately 82.3%, effectively improving both
the trajectory tracking accuracy and robustness of the robotic fish.

To evaluate the effectiveness of the designed controller, the output
data for the controller with the interference observer is analyzed.
Figure 6 shows the comparison between the actual input interference
value and the observed estimated interference value from the nonlinear
disturbance observer. The results indicate that the observed
interference value can accurately track the actual interference and
reaches a steady state after approximately 3 seconds. After this
transient period, the two values coincide closely. Although there is a
transient fluctuation when the interference signal changes suddenly
(with a peak error of about 10%), the observer quickly restores stable
tracking, demonstrating good dynamic response capability. Only small
high-frequency fluctuations are observed in the steady-state phase
(amplitude < 2%), and the overall tracking error is less than 5%,

1 1 | I 1
02 i 4
Disturbance-Free Observation I Disturbance-Compensated Observation
0.15 : i
I
0.1 i
E 0.05 : 4
> I
0 | 4
I
I
-0.05 I i
I
|
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-0.15E i i : i — Actual trajectoryH
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FIGURE 4
Effect of nonlinear interfering observer.
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FIGURE 5
Comparison between conventional sliding mode control with observer and disturbance observer - based inverse sliding mode control.

verifying the effectiveness of the designed controller. The error is less The following demonstrates the effectiveness of the adaptive
than 5%, verifying the accuracy and robustness of the interference  inverse sliding mode controller, with Figure 7 showing the
observer. The simulation results show that the observed interference ~ comparison between the actual current velocity and the observed
value closely matches the given interference value. After approximately ~ velocity from the controller. The simulation results show that,
3 seconds of pre-estimation time, the interference curve stabilizes and ~ under a strong current velocity of 3 m/s, the controller remains in
coincides with the actual interference value. the pre-estimation stage with minimal changes during the first 1
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FIGURE 6
Actual disturbance vs. estimated disturbance.
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FIGURE 7
Actual current speed vs. estimated current speed.

second. At around 1.5 seconds, it begins to rise sharply,
approaching the given actual current velocity, and stabilizes after
a short adjustment within approximately 3 seconds, aligning closely
with the given actual current value.

As shown in Figure 8, the trajectory tracking error reveals that,
in the initial stage of the simulation, there is a large error due to the
difference between the initial position and the starting point of the
desired trajectory. After 2 seconds, the trajectory tracking error is
less than 0.01 m, which is about 2.2% of the robotic fish’s body
length. The error exhibits periodic fluctuations with small
amplitude due to external perturbations. This demonstrates that

the controller can effectively compensate for the steady-state error
and has good dynamic disturbance suppression capability.

To evaluate the effectiveness of the velocity correction
controller, the velocity output data of the robotic fish is analyzed.
Figure 9 presents the simulation results of the robotic fish velocity
under the DOB-ASMC controller. Specifically, Figure 9A illustrates
the forward speed variation, while Figure 9) illustrates the lateral
speed variation of the robotic fish. As shown in Figure 9A, the
forward speed of the robotic fish exhibits periodic fluctuations,
ranging approximately from 0.05 m/s to 0.15 m/s. This periodic
fluctuation results from the robotic fish mimicking the swinging

0. 1 1 1 1 1 1

0.08 1
- - =Forward direction error
——Lateral direction error

0.06 F -

0.04 F -

Error [m]

-0.02

-0.04 . .
10

FIGURE 8
Trajectory tracking error.
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FIGURE 9

Velocity change of machine fish. (A) Forward speed of the robot fish, (B) Lateral speed of the robot fish.

motion of real fish to achieve effective propulsion. Despite the
fluctuations, the forward velocity remains above 0.05 m/s,
consistent with the characteristic that the robotic fish can only
swim forward. Figure 9B shows that the lateral velocity of the
robotic fish fluctuates periodically between -0.03 m/s and 0.02 m/s.
This fluctuation reflects the velocity variation during lateral
maneuvers, indicating that the robotic fish can flexibly perform
side movements in an underwater environment.

The tracking error of the robotic fish’s velocity is analyzed
below, as shown in Figure 10. Figure 10A illustrates the forward
velocity error, while Figure 10B shows the lateral velocity error. The
simulation results show that the forward velocity error exhibits
small periodic fluctuations between approximately -0.004 m/s and
0.001 m/s. These fluctuations are caused by the swinging motion
used by the robotic fish to mimic real fish swimming, and also
reflect the dynamic response characteristics of the velocity
correction system as it adjusts the robotic fish’s velocity to match
the target. In contrast, the lateral velocity error remains close to
zero, except during the initial phase, which is attributed to the small
magnitude and slow variation of the lateral velocity. Both forward
and lateral velocity errors remain within a small range, indicating

Frontiers in Marine Science

12

that the velocity control system exhibits good tracking performance
and stability, and can effectively minimize the deviation between the
actual and desired velocities of the robotic fish.

To verify the effectiveness of directly using the tailfin’s swing
frequency and bias as control inputs, the tailfin input signals are
analyzed, as shown in Figure 11. The caudal fin frequency curve in
Figure 11A shows frequent fluctuations between 2.5 Hz and 3.3 Hz,
occasionally reaching the saturation upper limit of 3.3 Hz. This
saturation mainly occurs when the robotic fish needs to accelerate
rapidly or execute highly dynamic maneuvers, such as sharp turns.
Notably, the duration of frequency saturation is relatively short,
indicating that the controller ensures maneuverability while
avoiding potential stability issues associated with prolonged
actuator operation in saturated conditions. This control behavior
enables the system to respond quickly to sudden commands while
maintaining robustness through intermittent saturation. The tailfin
bias curve in Figure 11B also exhibits clear saturation behavior,
with fluctuations fully covering the design range from -m/4 to m/4
and reaching both limits in several control cycles. Bias saturation
primarily occurs in segments with high trajectory curvature,
where extreme tailfin deflection is needed to produce sufficient
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steering torque. Similar to the frequency signal, the bias
saturation is impulsive rather than continuous, reflecting the
controller’s optimal trade-off between rapid heading adjustment
and energy efficiency. Several significant bias fluctuations
appear in the bias curve, mainly due to the controller’s input
compensation in response to external disturbances. The rapid
return to a steady state further demonstrates the controller’s
strong robustness.

To evaluate the effectiveness and robustness advantages of the
Disturbance Observer-based Adaptive Sliding Mode Control
(DOB-ASMC) controller under strong disturbance conditions,
this study designs comparative simulation experiments to
benchmark its performance against two categories of control
methods: one category consists of basic control methods without
disturbance compensation, including conventional Proportional-
Integral-Derivative (PID) control and standard sliding mode
control (SMC); the other category comprises mainstream
advanced control methods also integrated with disturbance
observers, namely Disturbance Observer-based PID (DOB-PID)
control and Disturbance Observer-based Model Predictive Control
(DOB-MPC).

For the simulation tests, two types of typical complex trajectory
tracking tasks are selected: Archimedean spiral tracking and
cloverleaf trajectory tracking. Specifically, Figure 12 focuses on
comparing the performance differences between DOB-ASMC and
the basic control methods (standard PID, standard SMC); Figure 13
presents the result differences of all comparative methods in the
Archimedean spiral trajectory tracking task; and Figure 14

Frontiers in Marine Science

13

demonstrates the performance comparison of each method in the
cloverleaf trajectory tracking task.

r =20+ 15t
x = 0.05rcos(t),
y = 0.05rsin(t)

where the spiral trajectory is defined by

r = 10sin(2t)
and the cloverleaf trajectory is defined by < x = rcos(t)

y = rsin(t)

The MPC controller parameters are: K, = diag(2,2,2), Ky = diag
(10,0,10), control time domain N, = 30, prediction time domain
Np =60, and relaxation factor p =10. The PID controller
parameters are: proportional gain K, = 19.08, integral gain K =
1.02, differential gain K = 0.1.

Figure 12 depicts the trajectory tracking results of different
control methods for a robotic fish under strong disturbance
conditions. It can be observed that the STA-PID and STA-SMC
trajectories deviate significantly from the reference trajectory, with
large fluctuations and obvious tracking errors. In contrast, the
DOB-ASMC trajectory is much closer to the reference trajectory.
The local magnification in the upper right corner further illustrates
that DOB-ASMC maintains a very small deviation from the
reference trajectory throughout the tracking process, while the
other two methods exhibit larger deviations. This indicates that
the DOB-ASMC controller demonstrates superior trajectory
tracking accuracy and robustness under strong disturbances
compared to STA-PID and STA-SMC.
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Tail fin input. (A) Frequency, (B) Bias

As shown in Figure 13, the DOB-ASMC controller closely
follows the reference trajectory, with the tracking path nearly
overlapping it—particularly evident in the zoomed-in view. It is
evident that this control method provides higher accuracy and
lower fluctuation compared to the other control strategies,
indicating its superior accuracy and robustness in tracking
complex trajectories. Although the DOB-MPC controller exhibits
relatively stable tracking performance, its control output displays
noticeable steady-state fluctuations, revealing that its control
architecture is inherently less robust against high-intensity
external disturbances. In contrast, the DOB-PID controller
demonstrates poor tracking performance, particularly in certain
segments of the trajectory, with noticeable deviations. This is
mainly attributed to the lack of robustness of PID control when
subjected to system parameter variations and external disturbances.

Frontiers in Marine Science

As shown in the simulation results in Figure 14, the
DOB-ASMC control method exhibits noticeable tracking errors in
regions with high reference trajectory curvature. This phenomenon
is primarily attributed to two factors: (1) the dynamics of the robotic
fish’s tail-fin propulsion system introduce an inherent response
delay during high-speed steering; and (2) actuator input saturation
constraints further limit the system’s instantaneous steering
capability. However, the DOB-ASMC controller still demonstrates
excellent tracking accuracy and robustness in trajectory segments
with low curvature. In contrast, the other control methods are more
susceptible to disturbances and exhibit poorer trajectory tracking
performance. Although the DOB-MPC controller exhibits relatively
small overall fluctuation amplitudes, it faces two major issues
during the recovery phase following a trajectory deviation: (1) the
transient process required to return to the desired trajectory is
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Performance comparison between DOB-ASMC and basic control methods.
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FIGURE 13
Comparison of spiral trajectory tracking by different control methods.
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Comparison of cloverleaf trajectory tracking with different control methods.

prolonged; and (2) significant oscillations persist during the
transition. Specifically, when the system deviates from the
reference trajectory, the controller exhibits slow convergence, and
high-frequency oscillations cannot be effectively suppressed during
this process. Moreover, the DOB-PID controller shows poor
performance in terms of both tracking accuracy and robustness.

5 Conclusion

To address the demand for highly robust trajectory tracking
control of a bionic robotic fish operating in a strongly perturbed
underwater environment near coastal areas, this paper proposes an
adaptive inverse sliding mode control method based on a
disturbance observer. The controller incorporates the dynamic
model of total disturbances and the caudal fin force formulation,
and directly uses the caudal fin oscillation frequency and bias as
control inputs. The following main conclusions are drawn based on
simulation results:

1. The disturbance observer designed in this paper, which
relies on a single gain parameter K for convergence
accuracy, is simple yet effective. It can accurately
compensate for disturbances and model uncertainties,
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thereby improving the stability of the control system. In
addition, the inverse sliding mode controller adaptively
compensates for strong near-sea currents, enabling rapid
convergence and accurate current estimation that closely
matches the actual environmental conditions.

. In trajectory tracking performance tests, the proposed

control system demonstrates strong convergence
characteristics and robustness. The tracking error remains
significantly smaller than the body length of the robotic
fish, fully validating the effectiveness of the proposed
control algorithm.

. The speed correction module in the controller enables

effective velocity regulation of the robotic fish. The
system maintains a small tracking error in both forward
and lateral directions, particularly during the stabilization
phase, demonstrating excellent control accuracy and
providing a reliable foundation for high-precision
trajectory tracking.

. The tail-fin frequency and bias control strategy

effectively enables high-maneuverability motion in the
robotic fish. During maneuvering, both frequency and
bias signals saturate rapidly to ensure fast dynamic
response, while intermittent saturation protects the
actuators. The pulsed regulation of bias and the fast
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recovery from disturbances confirm the controller’s
superior balance between agility and robustness.
5. The disturbance observer-based adaptive inverse sliding

mode control (DOB-ASMC) significantly outperforms
DOB-PID and DOB-MPC in trajectory tracking under
strongly perturbed conditions. Its adaptive sliding mode
structure effectively suppresses external disturbances and
model uncertainties. Furthermore, the integration of a
disturbance observer enhances the overall robustness,
providing a reliable solution for trajectory tracking of
bionic robotic fish in complex underwater environments.

In future work, we plan to determine the optimal controller
parameters through optimization analysis and further optimize the
control strategy within the saturation range. An adaptive
mechanism will be introduced to dynamically adjust saturation
limits according to varying operating conditions. Additionally,
experimental validation will be conducted to evaluate the
trajectory tracking performance of the robotic fish under real-
world aquatic conditions using the proposed control method.
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