
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Ting Zou,
Memorial University of Newfoundland, Canada

REVIEWED BY

Mingxin Liu,
Guangdong Ocean University, China
Hao Wang,
Laoshan National Laboratory, China

*CORRESPONDENCE

Gang Xue

sduxuegang@163.com

RECEIVED 24 August 2025
ACCEPTED 29 September 2025

PUBLISHED 22 October 2025

CITATION

Sun J, Liu Y, Bai F, Yan X, Quan E
and Xue G (2025) Trajectory tracking
control of robotic fish in offshore
disturbance environments via disturbance
observer-based inverse sliding mode.
Front. Mar. Sci. 12:1691667.
doi: 10.3389/fmars.2025.1691667

COPYRIGHT

© 2025 Sun, Liu, Bai, Yan, Quan and Xue. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 22 October 2025

DOI 10.3389/fmars.2025.1691667
Trajectory tracking control
of robotic fish in offshore
disturbance environments via
disturbance observer-based
inverse sliding mode
Juntao Sun1, Yanjun Liu1,2, Fagang Bai1, Xianglei Yan1,
Enzhi Quan2 and Gang Xue1,2*

1Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China,
2School of Mechanical Engineering, Key Laboratory of High-Efficiency and Clean Mechanical
Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical
Engineering Education, Shandong University, Jinan, Shandong, China
Considering the complex offshore environment, where small robotic fish are

exposed to surface disturbances from wave forces, suspended particles, and

model uncertainties, as well as deep-water disturbances from bottom currents,

this paper proposes an inverse sliding mode control strategy based on a

disturbance observer to enhance trajectory tracking robustness. The research

focuses on a tail-fin-driven bionic robotic fish. Utilizing its kinematic and dynamic

models, a virtual control law based on an agent dynamics model is proposed,

with the tail fin integrated as a real control input. A nonlinear disturbance

observer with controllable convergence characteristics is developed to

estimate and compensate for disturbances, including wave forces and model

uncertainties. Additionally, a velocity error correction function is introduced to

mitigate the impact of strong disturbances. Based on Lyapunov theory, an

adaptive sliding mode control law is derived to ensure system stability. The

control law for the caudal fin swing angle and bias is obtained by inverting the

virtual control inputs, applied to the robotic fish’s accurate model. Numerical

simulations show that the disturbance observer’s tracking error remains below

5%, and the trajectory tracking error is within 0.1 meters, representing only 2.2%

of the robotic fish’s body length. Compared to mainstream control methods, the

proposed approach significantly enhances robustness in contrast to the

conventional sliding mode control with observers, and exhibits substantially

smaller tracking errors, especially during trajectory transitions.
KEYWORDS

inverse sliding mode control, nonlinear disturbance observer, trajectory tracking, tail-
fin-driven robotic fish, adaptive robust control
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1 Introduction

In recent years, as the global energy structure transforms and

marine resource development deepens, the strategic value of marine

energy has become more prominent (Li M. et al., 2025; Rehman et al.,

2023). The complexity and significance of exploration tasks, such as

marine environmental monitoring, resource exploration, and seabed

mapping, are steadily increasing. This raises higher demands for the

performance of underwater exploration equipment and stimulates

widespread interest and enthusiasm among researchers.

Breakthrough progress has been made in current underwater tasks,

resulting in a wealth of research achievements. Examples include

Visual-textual Fusion Empowered Underwater Image Enhancement

(Wang H. et al., 2026), underwater scene clarity reconstruction via

multilayer information fusion and self-organized stitching (Wang H.

et al., 2024), and Underwater Image Captioning AquaSketch (Li H.

et al., 2025). However, Traditional underwater unmanned vehicles

typically use propeller propulsion systems driven by hydraulic or

electromagnetic principles. Although this mechanical propulsion is

well-established in engineering applications, it has significant

limitations in energy efficiency, environmental friendliness, and

stealth, which hinder its effectiveness for underwater operations.

With advances in robotics and bionics research, particularly in the

study of efficient propulsion mechanisms in aquatic organisms (e.g.,

fish BCF movement mode, cephalopod jet propulsion), the

development of bionic underwater robots has emerged as a new

solution to the limitations of traditional propulsion systems (Ma

et al., 2019; Sfakiotakis et al., 1999; Yan et al., 2024). By simulating

the flexible deformation of living organisms, vortex control, and other

mechanisms, these systems offer significant advantages in propulsion

efficiency, maneuverability, and environmental adaptability,

representing a key direction for the future of underwater propulsion

technology (Nash et al., 2021).

The bionic robotic fish is one of the most iconic underwater

robots. The most common bionic fish uses both pectoral and caudal

fins in concert for propulsion, with horizontal motion driven either

by the caudal fins, a pair of pectoral fins, or a combination of both

(Kadiyam and Mohan, 2019). The most common bionic fish tails

employ a multilink mechanism with multiple motors working in

coordination to drive the fish’s body, enabling oscillation and

propulsion. Clapham et al. from Harvard University present a

small-scale robotic fish with independent monoarticulated fins,

utilizing a binocular fisheye camera for perception and optical

communication. This system successfully replicates and interprets

autonomous behaviors observed in real fish (Clapham andHu, 2014).

Ning Wang et al. simulated the dorso-ventral motion of a dolphin’s

caudal fin and found that a variable thickness flexible caudal fin can

enhance propulsive performance (WangN. et al., 2025). DeqiangWei

et al. found through numerical simulation that the flexible tail fin,

driven by a magnetic actuator, offers advantages of high speed and

compact size, making it suitable for pipeline surveys (Wei et al.,

2023). Fengran Xie et al. designed a wire-driven bionic fish tail that

swings by alternately pulling ropes on both sides through a turntable.

They also built an experimental platform and proposed a pivotal

pattern generator capable of producing four characteristic motion
Frontiers in Marine Science 02
patterns (Xie et al., 2019, 2020). Two rigid-body actuators are used to

control the tail motion. Numerical simulations reveal that changes in

the shape of the robotic fish increase the total drag force, limiting its

maximum speed (Vignesh et al., 2024). Qixin Wang et al. proposed a

robotic fish with modular adaptive variable-stiffness passive joints,

enabling adaptive stiffness variation without the need for an external

drive source (Wang Q. et al., 2025). Currently, bionic fish tail designs

primarily use multi-motor drives, linkage mechanisms, and linear

drives. However, these methods often suffer from complex drive

systems, bulky mechanical structures, insufficient swinging precision,

and limited motion range, resulting in a poor overall bionic effect.

Given that the control strategy developed for a single-joint robotic

fish can be theoretically extended to multi-joint configurations, this

study focuses on a single-joint structure to facilitate analysis and

controller design (Cao et al., 2022).

Despite the variety of mechanical forms of robotic fish, precise

trajectory tracking control mechanisms are required to ensure stable

following of the desired path. Kim Donghee et al. proposed a three-

degree-of-freedom CPG controller to track in-plane motion

trajectories, enabling the bionic fish to move along the desired path

(Kim et al., 2008). Longxin Lin et al. proposed a Q-learning controller

that incorporates supervised neural networks to control the body

oscillations of a bionic fish (Lin et al., 2010). Zheping Yan et al.

optimized the parameters of the bionic fish tail using the fish body

wave equation and penalty function, integrated the pivotal mode

generator with the sliding mode controller, and experimentally

verified the effectiveness of the proposed SMC-CPG controller and

tail structure (Yan et al., 2022). MingWang et al. designed an iterative

learning controller for a bionic robotic fish and verified its

effectiveness through control simulation experiments (Wang et al.,

2020). Pengfei Zhang et al. proposed a two-stage nonlinear model

predictive solution for orientation-velocity, which is applicable

not only to bionic robotic fish but also to other underwater

underdriven robots (Zhang et al., 2020). Xiao Yan and Yue Ma

proposed a new control method for flexible robotic fish, offering over

10% greater propulsion compared to conventional control methods

(Yan and Ma, 2023). Ruilong Wang et al. proposed an algorithm for

trajectory tracking and obstacle avoidance of a robotic fish using

nonlinear model predictive control, which leverages current state and

environmental data to efficiently regulate its motion in a highly agile

manner (Wang R. et al., 2023). Ming Wang et al. proposed a discrete

linear quadratic regulator optimization strategy based on the particle

swarm optimization algorithm and verified its feasibility and

effectiveness in tracking complex trajectories (Wang M. et al.,

2023). In the complex underwater operating environment, a single

control strategy struggles to meet both the accuracy and robustness

requirements for trajectory tracking of the robotic fish. As a result,

researchers have begun exploring composite control strategies that

integrate the advantages of multiple methods.

In order to simultaneously improve system robustness and control

precision, an increasing number of studies have explored composite

control frameworks that integrate multiple control paradigms.

Ming Wang et al. proposed a novel motion control method for

robotic fish based on an impulse neural network and a central

pattern generator, and verified the effectiveness of this hybrid control
frontiersin.org
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approach (Wang M. et al., 2022). Yizhuo Mu et al. dynamically

adjusted the objective function of optimal control using a model

predictive control method based on multilayer perceptron, effectively

overcoming the complexity of kinematic modeling in robotic fish (Mu

et al., 2022). Kewei Ning et al. introduced inverse learning for feed-

forward neural networks to achieve real-time trajectory control (Ning

et al., 2022). South China University of Technology proposed a hybrid

control method based on a model predictive decision-making strategy,

which significantly reduces computational errors and achieves fast

system convergence (Wang K. et al., 2024). QixinWang et al. proposed

a deep reinforcement learning-based approach for online control of a

machine eel with multiple passive structures, enabling control without

relying on underlying control models or strategies (Wang Q. et al.,

2022). YuWang et al. designed a nonlinear model predictive controller

with reinforcement learning to track the trajectory of a machine fish

and verified the effectiveness of the proposed approach (Wang Y. et al.,

2024). Sijie Li et al. proposed a gliding-oscillating-strategy-based

backstepping-adaptive control method to attenuate tracking error

jitter (Li et al., 2024). Dongfang Li et al. introduced a fast global

terminal sliding mode fuzzy controller that considers tangential

displacements and employs a fuzzy adaptive approach to address

complex uncertainties, improving the error convergence speed and

accuracy of the machine fish system (Li D. et al., 2025). The

aforementioned methods have significantly contributed to the

research on trajectory tracking of robotic fish. However, the unique

challenges of offshore environments—characterized by high-velocity

currents, sediment-laden waters, and strong external disturbances—

significantly limit the direct applicability of existing control approaches

to such scenarios.

The main innovations presented in this paper to address the

gaps in current research are as follows:
Fron
I. In this paper, we decompose the robotic fish dynamics

model into an agent model and an exact model, utilizing

both in conjunction.

II. Improving the robustness of robotic fish trajectory

tracking through a nonlinear disturbance observer and

an adaptive inverse sliding mode control strategy with

velocity correction.

III. By directly using the oscillation frequency and bias of the

caudal fin as control inputs, the influence of

environmental disturbances on the robotic fish is

effectively attenuated, thereby reducing the adverse

effects caused by the nonlinear mapping relationship in

highly perturbed environments.
The rest of the paper is organized as follows: Section II presents

the exact dynamics model of the robotic fish and the agent model to

reduce computational intensity. Section III outlines the design of

the nonlinear disturbance observer, the velocity correction method,

and the derivation process of the adaptive inverse sliding mode

controller. Additionally, the tail fin model is updated, and the

control inputs are derived. Simulation experiments and a

discussion of the results are provided in Section IV. Finally,

Section V offers concluding remarks.
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2 Modeling of dynamics

This section explains the problems related to the robotic fish,

including the definition of the two coordinate systems, its kinematics,

and the dynamic equations. The dynamic model used in this study is

derived from the physical robotic fish prototype (Figure 1) through

feature extraction and physics-based simplification.

The modeling of the robotic fish is divided into two parts:

kinematics and dynamics. To clearly characterize the motion of the

robotic fish in the horizontal plane, Figure 2 shows the geometric

relationship between the ground-fixed coordinate system {CE} and

the body-fixed coordinate system {Cb}.

The horizontal rocking motion, primarily related to the symmetry

of the robotic fish, is not considered in the modeling. The kinematic

equations of the robotic fish in the horizontal plane are given in

Equation 1.

_x = u cosy − v siny

_y = u siny + v cosy

_y = r

8>><
>>: (1)

Here x and y denote the positional coordinates of the robotic

fish in the Earth’s fixed coordinate system {CE}; y denotes the yaw

angle; r denotes the yaw angular velocity; and u and v are the

forward and traverse velocities, respectively.

In this paper, the higher-order hydrodynamic drag term is

neglected, ensuring that the center of gravity of the robotic fish

coincides with the center of buoyancy. The exact dynamic equations

of the robotic fish are given in Equation 2.

_u = vr + h1(u, v)=Ms,b − Ktk1h5(wd , d0)=Ms,b

_v = −ur + h2(u, v) + Ktk1h6(wd , d0)=Ms,b

_r = − rj jrKt=Js,b,z − k2h6(wd , d0)=Js,b,z

8>><
>>: (2)

To simplify the computation and facilitate control, a simplified

agent model is used as the mathematical model for the controller of

the robotic fish. Directly using the exact model in combination with

the interference observer and the adaptive inverse sliding mode

controller complicates the solution process and poses significant

difficulty in inversely solving the caudal fin parameters. The

primary focus of this study is not on the detailed derivation of the

agent model, but rather on the integrated application of the model

with the proposed control strategy. Therefore, this study adopts the

well-established underdriven autonomous underwater vehicle (AUV)

dynamics model and integrates it with the dynamics modeling of the

robotic fish to construct an agent model. By inputting the solved

caudal fin parameters into the exact model, the velocity and position

of the robotic fish are obtained, completing the control process. The

agent model of the robotic fish is given as follows:

M _n + B(n)n = t + d (3)

where v is the velocity and angular velocity vector in the attached

coordinate system; M is the inertia matrix; B(v) = MC(v) is the

composite term of the dynamics model; t is the virtual control input;

and d is the environmental disturbance force and model uncertainty.
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3 Controller design

The control objective is to achieve horizontal trajectory tracking of

the robotic fish. To address the strong disturbance environment, a

nonlinear observer is designed to stabilize the system, even in the

presence of significant disturbances. The velocity correction controller is

used to reduce the impact of strong disturbances on the motion of the

robotic fish; The inverse sliding mode control method is used to derive

the virtual control law for the agent model, adapting it to sea currents.

3.1 Nonlinear interference observer design

Under the influence of strong ocean currents, wave-induced

forces, and sediment-induced uncertainties, system stabilization is
Frontiers in Marine Science 04
difficult to achieve by solely relying on adaptive sliding mode

control to compensate for environmental disturbances. The

nonlinear disturbance observer can reduce the steady-state error

of the robotic fish by incorporating the external environmental

force into measurement or estimation. The nonlinear disturbance

observer can inject the external disturbance into the adaptive sliding

mode controller as additional signals to enhance the robustness of

the system. Given the highly nonlinear nature of the robotic fish’s

mathematical model, an exponentially convergent disturbance

observer is employed. However, the disturbances measured or

estimated are external forces that vary slowly with time but

exhibit large peaks.

Let _̂d = K(d − d̂ ), where d̂ is the interference observation and K

is the gain parameter of the nonlinear disturbance observer. Define

the auxiliary parameter vector as given in Equation 4.

z = d̂ − KMdotv (4)

Then, taking the derivative yields Equation 5.

_z = _̂d − KM _v (5)

From the machine fish agent model in Equation 3, we obtain the

disturbance mathematical model in Equation 6.

d = M _n + B(n)n − t (6)

Then Equation 7 can be derived.

_̂d = K(M _n + B(n)n − t) − Kd̂ (7)

This, in turn, leads to

_z = K(M _n + B(n)n − t) − Kd̂ − KM _v

= K(B(n)n − t) − Kd̂
(8)

By combining Equation 4 and Equation 8, the disturbance

observer can be designed as Equation 9.
FIGURE 1

Photograph of the physical robotic fish.
FIGURE 2

Schematic diagram of robot fish coordinate system.
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_z = K(B(n)n − t) − Kd̂

d̂ = z + KMv

(
(9)

Which can be further obtained as Equation 10.

_z = K(B(n)n − t) − K(z + KMv)

= K(B(n)n − t − KMv) − Kz
(10)

Since the targeted disturbance is slowly varying, it can be

assumed that _d = 0, and consequently, the disturbance error is

given in Equation 11.

_~d = _d − _̂d = − _̂d = − _z − KM _v (11)

Substituting Equation 10 into the above equation results in

_~d = −(K(B(n)n − t − KMv) − Kz) − KM _v

= −K(B(n)n − t − KMv) + Kz − KM _v

= K(z + KMv) − K(M _v + B(v) − t)

= K(d̂ − d)

= −K~d

(12)

Therefore, rearranging Equation 12, the observation error

equation can be expressed as Equation 13.

_~d + K~d = 0 (13)

This resolves to Equation 14.

~d(t) = ~d(t0) · exp (−Kt) (14)

Since ~d(t0) is a constant and K > 0, the observer error equation

converges, and the convergence accuracy depends on the value of

the gain K.
3.2 Velocity correction

In the trajectory tracking problem of a robotic fish, the reference

trajectory is directly provided by the navigation system. Let hd =

½xd(t), yd(t)�T = ½xd , yd�T be in the Earth’s fixed coordinate system

{CE}, where xd and yd are sufficiently smooth functions with at least

three derivatives. Since the horizontal motion of the robotic fish in

the plane is driven solely by the tail fin, its reference trajectory must

satisfy the conditions given in Equation 15.

Cd =
_xd€yd − €xd _ydj j
( _x2d + _y2d)

3
2=

≤
1
x0

(15)

where Cd is the curvature of the desired trajectory, and x0 is the
minimum radius of gyration of the robotic fish.

For control purposes, the position error equation of the robotic

fish is expressed as Equation 16.

xe

ye

" #
=

cosy siny

− siny cosy

" #
x − xd

y − yd

" #
(16)
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where xe and ye are the trajectory tracking errors of the robotic

fish in the body coordinate system {B}; x, y and hd are the actual and

desired trajectories of the robotic fish in the Earth coordinate

system {E}, respectively. The coordinate transformation matrices

are non-singular, so the position errors defined in both coordinate

systems are equivalent, and their stability is also equivalent. The

desired yaw angle of the robotic fish can be directly calculated from

the reference trajectory:

yd = arctan ( _yd= _xd) (17)

Therefore, by means of Equation 17, the tracking error of the

yaw angle can be expressed as Equation 18.

ye = y − yd (18)

The following differential equation for the tracking error is

derived by substituting the derivatives of the desired trajectory and

yaw angle into the kinematic equations of the robotic fish, as given

in Equation 19.

_xe = u − ud cosye + rye

_ye = v + ud sinye − rxe

_ye = r − rd

8>><
>>: (19)

where ud is t the desired velocity, directly calculated from the

desired trajectory of the robotic fish, and its direction is aligned with

the straight line connecting the head and tail of the robotic fish,

ud =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2d + _y2d

p
; rd is the bow angular velocity, also directly

calculated from the desired trajectory of the robotic fish, rd = _yd =

(€yd _xd − _yd€xd)=u
2
d .

Construct the Lyapunov function for the tracking error of the

robotic fish and complete the stability proof for xe, ye and ye.

Ve =
1
2
x2e +

1
2
y2e + (1 − cosye) (20)

This can be obtained by taking the derivative with respect to

time and substituting Equation 20.

_Ve = xe _xe + ye _ye + _ye sinye

= (u − ud cosye)xe + vye + (r − rd + udye) sinye

(21)

Subsequently, the desired virtual forward speed and angular

velocity of the robotic fish are designed based on the above equation.

To ensure that the forward speed and angular velocity control inputs

correct the tracking error, it is required that these control inputs match

the desired virtual forward speed and angular velocity when the

positional tracking error xe, ye and the bow angle tracking error ye

are zero. The specific expressions are given in Equation 22.

ur = ud cosye − kxxe

rr = rd − udye − ky sinye

(
(22)

where kx and ky are gain coefficients and kx > 0, ky > 0.

Substituting ur and rr into Equation 21 yields Equation 23.

_Ve = −kxx
2
e − ky sin2 ye + vye (23)
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It can be observed that due to the presence of the nonlinear term

vye, the current system cannot guarantee that _Ve remains negative,

thus preventing stability in the speed correction system. However, if

the longitudinal trajectory tracking error ye can be reduced to zero

or approximately zero, and by appropriately adjusting the gain

coefficients kx and ky , it is possible to ensure _Ve ≤ 0, thereby

stabilizing the speed correction system. Therefore, further design of

the trajectory tracking controller is required to ensure the overall

stability of the control system.
3.3 Adaptive inverse sliding mode control
controller design

An adaptive inverse sliding mode controller is designed based

on an exponentially converged nonlinear disturbance observer,

which compensates for large external disturbances. This

controller enables the robotic fish to adjust to real-time current

variations in the water, ensuring that these disturbances do not

affect the system’s robustness, thereby further reducing the

tracking error.

Assumption 1: The value of currents in the robotic fish

dynamics model is bounded above and compensated for by the

adaptive rate, i.e., vf ≤ �vf .

Assumption 2: The tracking reference trajectory and its

derivative, _hd , are both bounded.

Define the trajectory-tracking error as Equation 24.

z1 = h − hd (24)

where h represents the actual trajectory of the robotic fish

(h = ½x, y,y �T ), and hd denotes the reference trajectory

(hd = ½xd , yd ,yd�T ).
Then

_z1 = _h − _hd

= J(h)v + vf − _hd

(25)

Constructing Lyapunov functions:

V1 =
1
2
z21 (26)

Derivation of the Equation 26, followed by substitution of

Equation 25, yields the following result:

_V1 = z1(J(h)v + vf − _hd) (27)

Assume J(h)v + vf − _hd = −c1z1 + z2, so that the sliding mold

surface becomes s = z2 = J(h)v + vf − _hd + c1z1. It is designed to

guide the system state toward the desired dynamic behavior. Among

them, c1z1 introduces the proportional feedback of the position error

into the sliding surface. This ensures that if the robotic fish deviates

from the target position (z ≠ 0), the sliding surface s will be adjusted to

“pull” the system back to the desired trajectory, achieving faster

convergence with the help of error feedback.

Let ~vf = vf − v̂ f , where v̂ f is the current adaptive compensation

value, and substituting into Equation 27 yields.
Frontiers in Marine Science 06
Construct a Lyapunov function that integrates position error

and sliding surface error:

V2 = V1 +
1
2
s2 (28)

Differentiating Equation 28 yields Equation 19.

_V2 = _V1 + z2 _z2 = −c1z
2
1

+z1z2 + z1~vf + z2½_J(h)v + J(h)(M−1

(−B(v)v + t + d)) + _̂v f − €hd + c1 _z1�
(29)

The control law can thus be designed as Equation 30.

t = MJ−1(h)(− z1 − _J(h)v − _̂v f + €hd − c1(J(v)v + v̂ f − _hd)

−c2sgn(z2) − hz2) −MB(v) − d̂

(30)

It is used to generate the virtual control input t(the thrust and
torque required by the robotic fish) to drive the system to track the

reference trajectory. Where c1, c2, h are constants and c1, c2, h > 0,

v̂ f ≤ �vf , �vf are current compensation errors.

Then

_V2 = −c1z
2
1 − hz22 − c2 z2j j + (z1 + c1z2)~vf (31)

This part solves the stability problem of the sliding surface, so

that if ~vf = 0, then _V2 ≤ 0. Therefore, continue to construct the

Lyapunov function to completely eliminate the influence of the

disturbance term.

V3 = V2 +
1
2g

~v2f (32)

Here, g is the gain constant, and g > 0. Differentiating Equation

32 gives Equation 33.

_V3 = _V2 +
1
g ~vf

_~vf

= _V2 +
1
g ~vf ( _vf −

_̂v f )

= _V2 −
1
g ~vf

_̂v f

(33)

Among them, since the ocean current changes slowly, then _vf = 0.

Substituting Equation 31 gives

_V3 = −c1z
2
1 − hz22 − c2 z2j j + ~vf z1 −

1
g
_̂v f + c1z2

� �
(34)

The adaptive rate is designed as

_̂v f = g(z1 + c1z2) (35)

Substituting Equation 35 into Equation 34 results in the

following expression:

_V3 = −c1z
2
1 − hz22 − c2 z2j j ≤ 0

Since _V3 is negative definite, it follows that z1, z2,~vf → 0. Using

Lyapunov’s stability theory, it was proven that the system is

asymptotically stable, which verifies the effectiveness of the

controller in robotic fish trajectory tracking control.
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3.4 Solution for tail fin control

Since the robotic fish is powered by its caudal fin, there exists a

mapping between the driving force and torque of the caudal fin and the

fish’s movement. This implies that directly using the motor’s output

torque to control the robotic fish’s caudal fin may reduce accuracy due

to environmental interference. The virtual control input derived from

the proxy model is not the actual control input for the tail fin motor.

However, the required frequency and bias angle of the tail fin can be

determined by solving inversely from this virtual control input. Next, a

force analysis and modeling of the robotic fish’s caudal fin is needed to

establish the relationship between the caudal fin’s force and the swing

frequency and offset angle.

The swing angle of a caudal fin-driven robotic fish is defined as

Equation 36.

d (t) = d0 + dA sinwd t (36)

Among them, d0 represents the bias of the tail fin swing angle

function. By adjusting the value of d0, the forward direction of the

robotic fish can be altered. dA and wd represent the amplitude and

frequency of the tail fin swing angle function, respectively, which

control the forward speed of the robotic fish. To reduce the number

of control variables and enhance the robustness of the control system,

in this paper, dA is set as a constant with a value of dA = p=4. The
control variables for the tail fin inverse solution are d0 and wd .

Let the tail length of the robotic fish be L, and any action point

on the tail be represented as k . When k = 0, it indicates the joint

where the tail fin connects to the body of the robotic fish. When

k = L, it indicates the end of the caudal fin. If the x-coordinate of

point k relative to the body coordinate system {Cb} is defined as

(X(k , t),Y(k , t)), then the velocity at point k is vt = ( ∂X∂ t ,
∂Y
∂ t )

T =

(v∥, v⊥)
T , the vector along the tail fin direction is represented as j =

( − ∂X
∂ k ,

∂Y
∂ k )

T , and the vector perpendicular to the tail fin direction is

represented as i = ( − ∂Y
∂ k , −

∂X
∂ k )

T . The swinging tail can be modeled

as a slender body. According to Lighthill’s slender-body theory, the

force at any point can be expressed as Equation 37.

f (k ) = −mt
d
dt

(v⊥i) (37)

Where mt is the virtual mass per unit length of the caudal fin

according to the elongate body theory, mt =
1
4 rpd

2; r is the density

of the water, and d is the immersion depth. For the end of the caudal

fin when k = L, a concentrated force is generated, as given in

Equation 38 (Behbahani and Tan, 2017):

f (L) = −
1
2
mtv

2
⊥
j −mtv⊥v∥i (38)

The value of the component of the velocity at any point k on the

caudal fin relative to the body coordinate system {Cb} in both the j

and i directions can be approximated as v⊥ = k _d , v∥ = 0. Therefore,

f (L) can be simplified as Equation 39.

f (L) = −
1
2
mtv

2
⊥
j (39)
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Further, assuming an inviscid fluid, the virtual mass force

component parallel to the tail’s motion is negligible. Therefore, the

force at any point k on the caudal fin can be approximately written as

Equation 40.

f (k ) = −mt(k €d i − k _d 2j) = −mtk €d i

f (L) = − 1
2 mtv

2
⊥j −mtv⊥v∥i = 0

(40)

By integrating the pointwise force distribution across the caudal

fin, the total force generated by the caudal fin is given by Equation

41.

Ft =
Z L

0
f (k )dk

=
Z L

0
−mtk €d idk

= − 1
2 mtL

2€d sin d
� �

m̂ + 1
2 mtL

2€d cos d
� �

n̂

TT =
Z L

0
rCbk � fk
� �

dx + rCbL � fL

=
Z L

0
−ctmtk €d cos d −mtk

2€d
� �

k̂ dk

= − mtL
2ct
2

€d cos d − mtL
3

3
€d

� �
k̂

(41)

where i = m̂sind − n̂cosd, j = −m̂cosd − n̂sind :Let rCbk = −(ct +

kcosd)m̂ − (ksind)n̂ denote the vector from the center of mass of

the robotic fish (origin of the body-coordinate system {Cb}) to an

arbitrary point k on the caudal fin, and let rCbL denote the vector

from the same origin to the tip of the caudal fin.; Let ct be a scalar

parameter characterizing the tail’s geometry. Finally, let m̂ , n̂ , k̂

represent the unit vectors along the three axes of the body

coordinate system {Cb}; and derive Equation 42 below.

rCbk � fk =

m̂ n̂ k̂

−(ct + k cos d ) −k sin d 0

−mtk €d sin d mtk €d cos d 0

0
BB@

1
CCA

= −(ct + k cos d )mtk €d cos d k̂ −mtk 2€d sin2 d k̂

= ( − ctmtk €d cos d −mtk 2€d )k̂

(42)

The total force on the caudal fin can be written as:

Ft,x = − 1
2 mtL

2€d sin d

Ft,y =
1
2 mtL

2€d cos d

Tt,z = − 1
2 mtL

2ct€d cos d − mtL
3

3
€d

8>>><
>>>:

(43)

The sinusoidal oscillatory terms present in the caudal fin’s force

function, which includes both sine and cosine components, complicate

the separation of the control variables for the caudal fin. To invert the

caudal fin control function, this paper applies the method of averaging

combined with Taylor expansion. It uses polynomials to approximate

the oscillatory terms (e.g., trigonometric functions) in the caudal fin

force, thereby equivalently simplifying the force expression (Wang

et al., 2013). The averaging method is given in Equation 44.
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fav x, tð Þ = 1
T

Z T

0
f �x, tð Þdt (44)

where T represents the period. For the oscillatory term f1(d , t) =
€d sin d , the average system is expressed as Equation 45.

1
T

Z T

0
f1(�d , t)dt ≈

wd

2p

Z 2p
wd

0
dAw

2
d sin (wd t)(d −

1
6
d 3)dt

= − 1
2 d

2
Aw2

d 1 − 1
2 d

2
0 − 1

8 d
2
A

� � (45)

Similarly, for f2(d , t) = €d cos d , the mean system is 1
T

Z T

0
f2(�d , t)

dt =
1
2
d 2
Aw

2
d d0; for f3(d , t) = €d , the mean system value is zero.

Substituting the approximate value of the averaged system into

Equation 43 results in Equation 46.

Ft,x =
1
4 mtL

2d 2
Aw2

d 1 − 1
2 d

2
0 −

1
8 d

2
A

� �
Ft,y =

1
4 mtL

2d 2
Aw2

d d0

Tt,z = − 1
4 mtL

2ctd 2
Aw2

d d0

8>><
>>: (46)

The external forces acting on the robotic fish in this study

include gravity, buoyancy, water damping force, and caudal fin

force. It is assumed that the center of buoyancy coincides with the

center of mass of the head, ensuring a perfect balance between

gravity and buoyancy. Additionally, B(v) is a composite term that

contains the matrix of the Coriolis and damping effects, and its

multiplication by the velocity vector v produces the effect of water

damping force on the robotic fish’s motion. At this point, the virtual

control input t obtained from the adaptive inverse sliding mode

controller is approximately equal to the caudal fin force, i.e., t =

½Ft,x , Ft,y ,Tt,z�T , due to the effect of this force.

The actual control quantities, tailfin frequency wd and bias d0,
are obtained by inverting the above system of nonlinear equations

in MATLAB using the fsolve function from the Optimization

Toolbox. The tailfin frequency wd and bias d0 values are

determined using the fsolve function in the Optimization

Toolbox. However, considering the tail motor parameters and the

safety requirements, saturation limits are imposed on the tailfin

control quantities: the tailfin frequency is constrained to �wd ≤ 50Hz

and the tailfin swing bias is constrained to �d0
		 		 ≤ 45∘.
4 Simulation and analysis

To evaluate the effectiveness of the designed controller, MATLAB/

Simulink is used for simulation and analysis. Additionally, a nonlinear

disturbance observer-model predictive control (NDO-MPC) was

designed for comparison, highlighting the advantages of the

robustness of the proposed controller in handling strong

disturbances, compared to mainstream control methods.

Table 1 presents the required parameters for dynamic and

simulation modeling. These parameters are derived from

estimates of the object’s size and shape.

The control block diagram of the bionic robot developed in this

study is shown in Figure 3.

In the simulation verification, a trajectory tracking task for

sinusoidal curves was designed. The controller parameters kx = 1:35,
Frontiers in Marine Science 08
kj = 3:2, c1 = 1:25, c2 = 1:06, h = 15, g = 0:85 and the nonlinear

disturbance observer gain parameter K = 0:78. The desired trajectory

is: hd = ½t, sin t, arctan ( cos t)�T, defining the initial velocity of the

machine fish v0 = ½0:05, 0:01, 0:01�m, define the initial position of the

robotic fish as h0 = ½0:005, 0:001, 0:005�m, define the environmental

disturbance and uncertainty as F = 5 sin t, and define the current

perturbation as vf = 3m=s, and the simulation time is set to 30s. The

parameters of the proposed robotic fish model are derived from those

of existing robotic fish prototypes, with its physical dimensions

specified as length (L) × width (W) × height (H) = 1.6 m × 0.7 m ×

0.4 m.

To validate the effectiveness of the nonlinear disturbance

observer, the basic inverse sliding mode controller and the

controller with the nonlinear disturbance observer are compared

under the same initial conditions. The simulation results are

presented in Figure 4.

Figure 4 demonstrates that, in the absence of the nonlinear

disturbance observer, the error between the actual and reference

trajectories exhibits a monotonic increase within the 0–15 s interval

(approximately 1.5 m forward displacement), indicating that model

uncertainties and external disturbances significantly affect the

dynamic behavior of the robotic fish. Upon the introduction of the

nonlinear disturbance observer at 15 s, the system’s transient

response quickly converges over a minimal transition distance, with

the error amplitude rapidly decaying and remaining at a very low

level for the subsequent 15 s. This result validates the nonlinear

disturbance observer’s ability to provide accurate online estimation

and real-time compensation for aggregate disturbances. Quantitative

analysis further shows that, with the controller gain held constant, the

incorporation of the nonlinear disturbance observer reduces

trajectory tracking error by approximately 95.6%, while effectively

mitigating periodic disturbances induced by nearshore wave forces

and sediment disturbances. These findings significantly enhance both

the trajectory tracking accuracy and robustness of the robotic fish.

To verify the advantages of the disturbance observer - based

inverse sliding mode control over the conventional sliding mode

control with observer, this paper conducts simulation experiments

of the two control methods after introducing near - sea area

disturbances, as shown in Figure 5.
TABLE 1 Parameters of the fish robot.

Parameter Symbol Valve Unit

Length l 0.45 m

Width w 0.08 m

Mass m 3.68 kg

Moment of inertia in x-axis Ixx 0.0019 kg/m2

Moment of inertia in y-axis Iyy 0.042 kg/m2

Moment of inertia in z-axis Izz 0.0123 kg/m2

Caudal fin area Scf 0.0062 m2

Equivalent cylindrical length of the tail lcl 0.258 m

Equivalent cylindrical weight of the tail St 0.98 kg
fro
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Figure 6 shows that both the conventional sliding mode control

with observer and the disturbance observer-based inverse sliding

mode control achieve good tracking performance in a disturbance-

free environment. However, for the conventional sliding mode

control with observer, the error between the actual trajectory and

the reference trajectory expands significantly within the Post-

Disturbance Introduction Interval. When the disturbance

observer-based inverse sliding mode control is activated, the

system’s tracking performance stabilizes rapidly over a very short

distance. The error amplitude decreases sharply and remains at an

extremely low level throughout the entire interval. This result

confirms that the disturbance observer-based inverse sliding

mode control can accurately counteract the effects of offshore

disturbances. Quantitative analysis further indicates that, under

otherwise identical conditions, compared with the conventional

sliding mode control with observer, the adoption of the disturbance
Frontiers in Marine Science 09
observer-based inverse sliding mode control reduces the trajectory

tracking error by approximately 82.3%, effectively improving both

the trajectory tracking accuracy and robustness of the robotic fish.

To evaluate the effectiveness of the designed controller, the output

data for the controller with the interference observer is analyzed.

Figure 6 shows the comparison between the actual input interference

value and the observed estimated interference value from the nonlinear

disturbance observer. The results indicate that the observed

interference value can accurately track the actual interference and

reaches a steady state after approximately 3 seconds. After this

transient period, the two values coincide closely. Although there is a

transient fluctuation when the interference signal changes suddenly

(with a peak error of about 10%), the observer quickly restores stable

tracking, demonstrating good dynamic response capability. Only small

high-frequency fluctuations are observed in the steady-state phase

(amplitude < 2%), and the overall tracking error is less than 5%,
FIGURE 3

Trajectory tracking control diagram of bionic fish.
FIGURE 4

Effect of nonlinear interfering observer.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1691667
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Sun et al. 10.3389/fmars.2025.1691667
verifying the effectiveness of the designed controller. The error is less

than 5%, verifying the accuracy and robustness of the interference

observer. The simulation results show that the observed interference

value closely matches the given interference value. After approximately

3 seconds of pre-estimation time, the interference curve stabilizes and

coincides with the actual interference value.
Frontiers in Marine Science 10
The following demonstrates the effectiveness of the adaptive

inverse sliding mode controller, with Figure 7 showing the

comparison between the actual current velocity and the observed

velocity from the controller. The simulation results show that,

under a strong current velocity of 3 m/s, the controller remains in

the pre-estimation stage with minimal changes during the first 1
FIGURE 5

Comparison between conventional sliding mode control with observer and disturbance observer - based inverse sliding mode control.
FIGURE 6

Actual disturbance vs. estimated disturbance.
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second. At around 1.5 seconds, it begins to rise sharply,

approaching the given actual current velocity, and stabilizes after

a short adjustment within approximately 3 seconds, aligning closely

with the given actual current value.

As shown in Figure 8, the trajectory tracking error reveals that,

in the initial stage of the simulation, there is a large error due to the

difference between the initial position and the starting point of the

desired trajectory. After 2 seconds, the trajectory tracking error is

less than 0.01 m, which is about 2.2% of the robotic fish’s body

length. The error exhibits periodic fluctuations with small

amplitude due to external perturbations. This demonstrates that
Frontiers in Marine Science 11
the controller can effectively compensate for the steady-state error

and has good dynamic disturbance suppression capability.

To evaluate the effectiveness of the velocity correction

controller, the velocity output data of the robotic fish is analyzed.

Figure 9 presents the simulation results of the robotic fish velocity

under the DOB-ASMC controller. Specifically, Figure 9A illustrates

the forward speed variation, while Figure 9) illustrates the lateral

speed variation of the robotic fish. As shown in Figure 9A, the

forward speed of the robotic fish exhibits periodic fluctuations,

ranging approximately from 0.05 m/s to 0.15 m/s. This periodic

fluctuation results from the robotic fish mimicking the swinging
FIGURE 7

Actual current speed vs. estimated current speed.
FIGURE 8

Trajectory tracking error.
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motion of real fish to achieve effective propulsion. Despite the

fluctuations, the forward velocity remains above 0.05 m/s,

consistent with the characteristic that the robotic fish can only

swim forward. Figure 9B shows that the lateral velocity of the

robotic fish fluctuates periodically between -0.03 m/s and 0.02 m/s.

This fluctuation reflects the velocity variation during lateral

maneuvers, indicating that the robotic fish can flexibly perform

side movements in an underwater environment.

The tracking error of the robotic fish’s velocity is analyzed

below, as shown in Figure 10. Figure 10A illustrates the forward

velocity error, while Figure 10B shows the lateral velocity error. The

simulation results show that the forward velocity error exhibits

small periodic fluctuations between approximately -0.004 m/s and

0.001 m/s. These fluctuations are caused by the swinging motion

used by the robotic fish to mimic real fish swimming, and also

reflect the dynamic response characteristics of the velocity

correction system as it adjusts the robotic fish’s velocity to match

the target. In contrast, the lateral velocity error remains close to

zero, except during the initial phase, which is attributed to the small

magnitude and slow variation of the lateral velocity. Both forward

and lateral velocity errors remain within a small range, indicating
Frontiers in Marine Science 12
that the velocity control system exhibits good tracking performance

and stability, and can effectively minimize the deviation between the

actual and desired velocities of the robotic fish.

To verify the effectiveness of directly using the tailfin’s swing

frequency and bias as control inputs, the tailfin input signals are

analyzed, as shown in Figure 11. The caudal fin frequency curve in

Figure 11A shows frequent fluctuations between 2.5 Hz and 3.3 Hz,

occasionally reaching the saturation upper limit of 3.3 Hz. This

saturation mainly occurs when the robotic fish needs to accelerate

rapidly or execute highly dynamic maneuvers, such as sharp turns.

Notably, the duration of frequency saturation is relatively short,

indicating that the controller ensures maneuverability while

avoiding potential stability issues associated with prolonged

actuator operation in saturated conditions. This control behavior

enables the system to respond quickly to sudden commands while

maintaining robustness through intermittent saturation. The tailfin

bias curve in Figure 11B also exhibits clear saturation behavior,

with fluctuations fully covering the design range from –p/4 to p/4
and reaching both limits in several control cycles. Bias saturation

primarily occurs in segments with high trajectory curvature,

where extreme tailfin deflection is needed to produce sufficient
FIGURE 9

Velocity change of machine fish. (A) Forward speed of the robot fish, (B) Lateral speed of the robot fish.
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steering torque. Similar to the frequency signal, the bias

saturation is impulsive rather than continuous, reflecting the

controller’s optimal trade-off between rapid heading adjustment

and energy efficiency. Several significant bias fluctuations

appear in the bias curve, mainly due to the controller’s input

compensation in response to external disturbances. The rapid

return to a steady state further demonstrates the controller’s

strong robustness.

To evaluate the effectiveness and robustness advantages of the

Disturbance Observer-based Adaptive Sliding Mode Control

(DOB-ASMC) controller under strong disturbance conditions,

this study designs comparative simulation experiments to

benchmark its performance against two categories of control

methods: one category consists of basic control methods without

disturbance compensation, including conventional Proportional-

Integral-Derivative (PID) control and standard sliding mode

control (SMC); the other category comprises mainstream

advanced control methods also integrated with disturbance

observers, namely Disturbance Observer-based PID (DOB-PID)

control and Disturbance Observer-based Model Predictive Control

(DOB-MPC).

For the simulation tests, two types of typical complex trajectory

tracking tasks are selected: Archimedean spiral tracking and

cloverleaf trajectory tracking. Specifically, Figure 12 focuses on

comparing the performance differences between DOB-ASMC and

the basic control methods (standard PID, standard SMC); Figure 13

presents the result differences of all comparative methods in the

Archimedean spiral trajectory tracking task; and Figure 14
Frontiers in Marine Science 13
demonstrates the performance comparison of each method in the

cloverleaf trajectory tracking task.

where the spiral trajectory is defined by

r = 20 + 15t

x = 0:05rcos(t)

y = 0:05rsin(t)

8<
: ,

and the cloverleaf trajectory is defined by

r = 10sin(2t)

x = rcos(t)

y = rsin(t)

8<
: .

The MPC controller parameters are: K0 = diag(2, 2, 2), Kk = diag

(10, 0, 10), control time domain Nc = 30, prediction time domain

Np = 60, and relaxation factor r = 10. The PID controller

parameters are: proportional gain Kp = 19:08, integral gain KI =

1:02, differential gain KD = 0:1.

Figure 12 depicts the trajectory tracking results of different

control methods for a robotic fish under strong disturbance

conditions. It can be observed that the STA-PID and STA-SMC

trajectories deviate significantly from the reference trajectory, with

large fluctuations and obvious tracking errors. In contrast, the

DOB-ASMC trajectory is much closer to the reference trajectory.

The local magnification in the upper right corner further illustrates

that DOB-ASMC maintains a very small deviation from the

reference trajectory throughout the tracking process, while the

other two methods exhibit larger deviations. This indicates that

the DOB-ASMC controller demonstrates superior trajectory

tracking accuracy and robustness under strong disturbances

compared to STA-PID and STA-SMC.
FIGURE 10

Machine fish speed error. (A) Error in forward speed of robot fish, (B) Error in lateral speed of robot fish
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As shown in Figure 13, the DOB-ASMC controller closely

follows the reference trajectory, with the tracking path nearly

overlapping it—particularly evident in the zoomed-in view. It is

evident that this control method provides higher accuracy and

lower fluctuation compared to the other control strategies,

indicating its superior accuracy and robustness in tracking

complex trajectories. Although the DOB-MPC controller exhibits

relatively stable tracking performance, its control output displays

noticeable steady-state fluctuations, revealing that its control

architecture is inherently less robust against high-intensity

external disturbances. In contrast, the DOB-PID controller

demonstrates poor tracking performance, particularly in certain

segments of the trajectory, with noticeable deviations. This is

mainly attributed to the lack of robustness of PID control when

subjected to system parameter variations and external disturbances.
Frontiers in Marine Science 14
As shown in the simulation results in Figure 14, the

DOB-ASMC control method exhibits noticeable tracking errors in

regions with high reference trajectory curvature. This phenomenon

is primarily attributed to two factors: (1) the dynamics of the robotic

fish’s tail-fin propulsion system introduce an inherent response

delay during high-speed steering; and (2) actuator input saturation

constraints further limit the system’s instantaneous steering

capability. However, the DOB-ASMC controller still demonstrates

excellent tracking accuracy and robustness in trajectory segments

with low curvature. In contrast, the other control methods are more

susceptible to disturbances and exhibit poorer trajectory tracking

performance. Although the DOB-MPC controller exhibits relatively

small overall fluctuation amplitudes, it faces two major issues

during the recovery phase following a trajectory deviation: (1) the

transient process required to return to the desired trajectory is
FIGURE 11

Tail fin input. (A) Frequency, (B) Bias
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FIGURE 12

Performance comparison between DOB-ASMC and basic control methods.
FIGURE 13

Comparison of spiral trajectory tracking by different control methods.
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prolonged; and (2) significant oscillations persist during the

transition. Specifically, when the system deviates from the

reference trajectory, the controller exhibits slow convergence, and

high-frequency oscillations cannot be effectively suppressed during

this process. Moreover, the DOB-PID controller shows poor

performance in terms of both tracking accuracy and robustness.
5 Conclusion

To address the demand for highly robust trajectory tracking

control of a bionic robotic fish operating in a strongly perturbed

underwater environment near coastal areas, this paper proposes an

adaptive inverse sliding mode control method based on a

disturbance observer. The controller incorporates the dynamic

model of total disturbances and the caudal fin force formulation,

and directly uses the caudal fin oscillation frequency and bias as

control inputs. The following main conclusions are drawn based on

simulation results:
Fron
1. The disturbance observer designed in this paper, which

relies on a single gain parameter K for convergence

accuracy, is simple yet effective. It can accurately

compensate for disturbances and model uncertainties,
tiers in Marine Science 16
thereby improving the stability of the control system. In

addition, the inverse sliding mode controller adaptively

compensates for strong near-sea currents, enabling rapid

convergence and accurate current estimation that closely

matches the actual environmental conditions.

2. In trajectory tracking performance tests, the proposed

control system demonstrates strong convergence

characteristics and robustness. The tracking error remains

significantly smaller than the body length of the robotic

fish, fully validating the effectiveness of the proposed

control algorithm.

3. The speed correction module in the controller enables

effective velocity regulation of the robotic fish. The

system maintains a small tracking error in both forward

and lateral directions, particularly during the stabilization

phase, demonstrating excellent control accuracy and

providing a reliable foundation for high-precision

trajectory tracking.

4. The tail-fin frequency and bias control strategy

effectively enables high-maneuverability motion in the

robotic fish. During maneuvering, both frequency and

bias signals saturate rapidly to ensure fast dynamic

response, while intermittent saturation protects the

actuators. The pulsed regulation of bias and the fast
FIGURE 14

Comparison of cloverleaf trajectory tracking with different control methods.
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Fron
recovery from disturbances confirm the controller’s

superior balance between agility and robustness.

5. The disturbance observer-based adaptive inverse sliding

mode control (DOB-ASMC) significantly outperforms

DOB-PID and DOB-MPC in trajectory tracking under

strongly perturbed conditions. Its adaptive sliding mode

structure effectively suppresses external disturbances and

model uncertainties. Furthermore, the integration of a

disturbance observer enhances the overall robustness,

providing a reliable solution for trajectory tracking of

bionic robotic fish in complex underwater environments.
In future work, we plan to determine the optimal controller

parameters through optimization analysis and further optimize the

control strategy within the saturation range. An adaptive

mechanism will be introduced to dynamically adjust saturation

limits according to varying operating conditions. Additionally,

experimental validation will be conducted to evaluate the

trajectory tracking performance of the robotic fish under real-

world aquatic conditions using the proposed control method.
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