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Editorial on the Research Topic

Degradation, conservation and ecological restoration of seagrass beds
under intensifying global changes
Global changes (including warming, ocean acidification, and intensified human

disturbances) have profoundly impacted marine environments, threatening foundational

species and their critical habitats (Hoegh-Guldberg and Bruno, 2010). Addressing these

compounded pressures requires an enhanced understanding of marine ecosystems

alongside intensified protection and restoration efforts.

Seagrasses, a group of foundational marine species, are widely distributed along tropical

and temperate coastlines, where their meadows support essential ecosystem functions

(Unsworth et al., 2019b). These meadows, one of the three primary nearshore ecosystems,

provide habitat, food, and nurseries to numerous marine species (Costanza et al., 1997).

Moreover, they contribute to water quality by enhancing sediment deposition and

removing excess nutrients (Dennison et al., 1993), while their role as carbon sinks helps

mitigate climate change (Fourqurean et al., 2012). It is estimated that 19% of the surveyed

seagrass area has been lost since 1880, with individual meadows declining globally at a rate

of 1–2% per year (Dunic et al., 2021), driven by both natural and anthropogenic factors,

including physical disturbances, sediment and nutrient runoff, invasive species, algal

overgrowth, and warming waters (Waycott et al., 2009). These threats have catalyzed a

global push to conserve seagrasses, aiming to reduce their loss and strengthen their

ecosystem functions. The success of the efforts relies on the knowledge exchange and

integration of scientific research into conservation/restoration practices, aiming to develop
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more effective restoration techniques that promote the resilience of

seagrass ecosystems and their services.

Our aim for this Research Topic in Frontiers inMarine Science was

to bring together studies that improve the understanding of the

mechanisms underpinning seagrass degradation and ecological

responses to environmental change, as well as the technological

approaches that can enhance restoration success. This Research

Topic includes nine scientific papers (one review and eight original

research articles) covering diverse species from temperate to tropical

waters. The main focus was on the assessment of ecological impacts of

environmental stressors, adaptive physiological responses to climate

change, advances in restoration techniques, ecological restoration

benefits, and microbial contributions to restoration success.
Seagrass degradation drivers

Despite their critical ecological roles sustaining biodiversity and

ecosystem functions, seagrasses are experiencing significant global

degradation (Duarte et al., 2025; Jones et al., 2025). Long-term

observations highlight anthropogenic activities as primary drivers.

While some of these activities (e.g., oyster aquaculture) may have

minor effects on seagrass meadows, at least in the short-term and at

small geographic scales (Rubino et al.), others can result in

detrimental changes of the seagrass ecosystems in the long-term

(Green et al., 2021). For example, in Bohai Bay, Tangshan, extensive

alterations in Z. marina meadows occurred between 1974 and 2019

due to land reclamation. Partial recovery followed the construction

of artificial “longshore sandbanks” after 2012, but meadows remain

threatened by fishing, dredging, and aquaculture activities (Xu et al.,

2021b). Similarly, the increase in anthropogenic heavy metal

pollution (e.g., copper and cadmium) has negative effects on

seagrass meadows by suppressing the growth and photosynthesis

of these marine plants. This effects can vary among species and

populations depending on their specific sensitivities and tolerances

(e.g., Z. marina: copper EC50 = 28.9 mM; Ruppia sinensis: copper

EC50 = 50 mM), and the interactions with other environmental

stressors (e.g., elevated temperatures) (Gu et al., 2021; Qiao

et al., 2022).

Natural environmental changes can also represent ecological

challenges that further compromise meadow stability (Unsworth

et al., 2012). For instance, natural biochemical changes in the

sediments of seagrass meadows (e.g., accumulation of sulfides),

can interact with temporal changes in other environmental drivers

(e.g., elevated temperature), impacting the performance (e.g.,

photosynthesis and growth) of seagrasses. While short-term

removal of the stress allows recovery, the prolonged exposure can

result in irreversible mortality (Zhang et al., 2024). Similar negative

effects can be observed in response to natural environmental

changes in oxygen availability and irradiance, in which low

oxygen conditions under low light can trigger severe

photosynthetic impairment and metabolic alterations (Zhang

et al., 2021). The scale of the effects of natural environmental

changes on seagrass meadows depends on the magnitude and

intensity of the changes. For example, natural extreme events
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such as the super Typhoon Lekima, nearly eradicated 1031.8 ha

of Z. japonica in the Yellow River Delta, accompanied by substantial

losses of organic carbon (>35%) and nitrogen (>65%) in the top 35

cm of sediments. The long-term detrimental effects of this extreme

event together with the absence of seeds and overwintering shoots

prevented natural recovery of the seagrass populations (Yue

et al., 2021a).

Anthropogenic-driven climate change is another major threat to

seagrass ecosystems, altering their ecological dynamics at a global

scale. For instance, ocean warming, which is associated to the increase

in atmospheric CO2, has shifted the geographic distribution of

seagrasses (Z. marina) in the Northeast Pacific (eastern China).

Such ecological alterations are further exacerbated by the influence

of anomalous extreme temperatures (e.g., marine heatwaves),

resulting in drastic declines in the survival and functioning of these

marine plants (Xu et al., 2022a; Pei et al.), despite their short-term

capacity to regulate the oxidative stress associated to elevated

temperatures (Pei et al.). Elevated atmospheric CO2 can also alter

the carbonate chemistry of the seawater resulting in ocean

acidification. Contrary to ocean warming, ocean acidification has

shown positive effects promoting seagrass growth. However, these

beneficial effects cannot offset the functional impacts of heat-

induced stress (Wang et al.).

Indirect anthropogenic environmental changes can also result

from biological sources in which biotic stressors, such as algal

blooms and invasive species, represent important ecological

challenges that threaten the stability and distribution of

seagrasses. In the Swan Lake lagoon, large meadows of Z. marina

(199–232 ha), have been impacted by the rapid expansion of green

tides of Chaetomorpha linum, enhancing the ecological competition

for resources (e.g., space and light) (Xu et al., 2019a). Similar

competition with invasive plants (e.g., Spartina alterniflora) has

resulted in the suppression of seagrass growth and the contraction

of Z. japonica habitats in the Yellow River Delta (Yue et al., 2021b).

Collectively, seagrass degradation results from anthropogenic

pressures, natural disturbances, biological invasions, and climate

change, involving light limitation, physical disturbance, chemical

stress, and metabolic imbalance, which often act synergistically to

accelerate decline and reduce resilience (de Fouw et al.). Therefore,

future management must simultaneously alleviate local stress and

adapt to global change to maintain ecosystem resilience.
Seagrass restoration

Restoration predominantly relies on transplantation and seed-

based approaches. Transplantation, while potentially damaging

donor beds and resource-intensive, offers relatively high survival

and remains the most widely applied method. However, with

restoration scaling to hundreds of hectares in China, overreliance

on donor beds creates a “destructive-restorative” paradox. Seed-

based restoration minimally impacts donor populations and

enhances genetic diversity, making it a promising future strategy.

Seed- and seedling-based approaches have emerged as a key focus

for sustainable, large-scale restoration.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1382153
https://doi.org/10.3389/fmars.2024.1390074
https://doi.org/10.3389/fmars.2024.1390074
https://doi.org/10.3389/fmars.2023.1304132
https://doi.org/10.3389/fmars.2024.1366939
https://doi.org/10.3389/fmars.2025.1694098
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Xu et al. 10.3389/fmars.2025.1694098
Seed-based methods offer potential for large-scale implementation

but face high failure rates and technical bottlenecks (Unsworth et al.,

2023; Unsworth and Rees, 2025). Seed selection and storage are critical:

high-quality Z. marina seeds with >72% integrity can be obtained via

saline flotation (>1.20 specific gravity) and maintained at 0°C with

nanosilver or copper sulfate treatment, preserving 80–90% viability (Xu

et al., 2019b). Long-term storage at 0°C and 40–50 psm salinity can

potentially extend viability up to 17months, providing a foundation for

seed banks (Xu et al., 2020).

Environmental conditions (including burial depth, water depth,

salinity, and temperature) critically influence germination and seedling

establishment. Field experiments show optimal emergence for Z.

marina at 2 cm burial depth (21.33 ± 9.30%), while 10 cm prevents

germination (Xu et al., 2021a). Freshwater favors germination (up to

88.67%) but compromises seedling morphology and survival; salinity

>20 psm is required for stable establishment (Xu et al., 2016). Various

techniques, such as mudball sowing (Xu et al., 2022b), bag fixation

(Unsworth et al., 2019a), nutrient supplementation (Unsworth et al.,

2022), and seed injection (Govers et al., 2022), demonstrate practical

potential. For example, bag sowing achieved 94% mature plant

emergence, though storm-induced sediment burial poses risks

(Unsworth et al., 2019a).

Regional applications reveal species- and site-specific differences. In

the Yellow River Delta, optimal burial depth varies with sediment type

(sand 4 cm, silt 2 cm), and Z. japonica seed source affects performance

(Yue et al., 2024). Transplantation studies on Z. pacifica, T. hemprichii,

and E. acoroides further illustrate interspecific and regional variability.

For instance, E. acoroides in Hainan exhibits 90% survival,

outperforming T. hemprichii (Shen et al.), while Z. pacifica

restoration on the US west coast is highly dependent on light,

wave exposure, and dissolved oxygen thresholds (Sanders et al.).

Rhizosphere microbial communities also influence seedling

resource allocation, highlighting the need to integrate microbial

factors into restoration planning (Randell et al.).
Ecological benefits

Restored meadows rapidly enhance benthic biodiversity,

approaching natural meadow levels (Gräfnings et al.). Long-term

monitoring indicates gradual increases in sediment carbon storage

and microbial diversity, although short-term carbon sequestration

gains are modest (Xu et al., 2025). Across 228 Southeast Asian

restoration cases, moderate depths (2–4 m), adequate light, and

low-to-moderate energy environments optimize success, with

vegetative transplantation yielding the highest survival rates

(Thorhaug et al.).
Future directions

With the increasing frequency, magnitude, and duration of

global change, research on seagrass degradation mechanisms,

management, restoration, and ecosystem function assessment is

increasingly urgent. The studies summarized herein contribute
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critical insights into seagrass ecology, identify knowledge gaps,

and highlight new directions. Future research should integrate

climate change and anthropogenic pressures, advance precision

management, innovate restoration techniques—including

mechanization to improve efficiency—quantify carbon storage

and ecosystem services, and leverage interdisciplinary approaches

and predictive modeling to support sustainable management. We

anticipate that this field will attract broad scientific interest, uniting

researchers with diverse and complementary expertise to

collectively advance seagrass conservation and restoration.
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