

OPEN ACCESS

EDITED AND REVIEWED BY Stelios Katsanevakis, University of the Aegean, Greece

*CORRESPONDENCE
Shaochun Xu

xushaochun@qdio.ac.cn
Yi Zhou
yizhou@qdio.ac.cn

RECEIVED 28 August 2025 ACCEPTED 02 September 2025 PUBLISHED 10 September 2025

CITATION

Xu S, Unsworth RKF, Gaitan-Espitia JD and Zhou Y (2025) Editorial: Degradation, conservation and ecological restoration of seagrass beds under intensifying global changes. Front. Mar. Sci. 12:1694098. doi: 10.3389/fmars.2025.1694098

COPYRIGHT

© 2025 Xu, Unsworth, Gaitan-Espitia and Zhou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Degradation, conservation and ecological restoration of seagrass beds under intensifying global changes

Shaochun Xu^{1,2,3,4*}, Richard K. F. Unsworth^{5,6}, Juan D. Gaitan-Espitia⁷ and Yi Zhou^{1,2,3,4*}

¹Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China, ²Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China, ³Field Scientific Observation and Research Station of Yellow-Bohai Sea Temperate Seagrass Bed Ecosystems, Ministry of Natural Resources, Qingdao, China, ⁴University of Chinese Academy of Sciences, Beijing, China, ⁵Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom, ⁶Project Seagrass, Bridgend, United Kingdom, ⁷The Swire Institute of Marine Science, School of Biological Sciences, The Hong Kong University, Hong Kong, Hong Kong SAR, China

KEYWORDS

seagrass beds, degradation, human activities, climate change, ecological restoration

Editorial on the Research Topic

Degradation, conservation and ecological restoration of seagrass beds under intensifying global changes

Global changes (including warming, ocean acidification, and intensified human disturbances) have profoundly impacted marine environments, threatening foundational species and their critical habitats (Hoegh-Guldberg and Bruno, 2010). Addressing these compounded pressures requires an enhanced understanding of marine ecosystems alongside intensified protection and restoration efforts.

Seagrasses, a group of foundational marine species, are widely distributed along tropical and temperate coastlines, where their meadows support essential ecosystem functions (Unsworth et al., 2019b). These meadows, one of the three primary nearshore ecosystems, provide habitat, food, and nurseries to numerous marine species (Costanza et al., 1997). Moreover, they contribute to water quality by enhancing sediment deposition and removing excess nutrients (Dennison et al., 1993), while their role as carbon sinks helps mitigate climate change (Fourqurean et al., 2012). It is estimated that 19% of the surveyed seagrass area has been lost since 1880, with individual meadows declining globally at a rate of 1–2% per year (Dunic et al., 2021), driven by both natural and anthropogenic factors, including physical disturbances, sediment and nutrient runoff, invasive species, algal overgrowth, and warming waters (Waycott et al., 2009). These threats have catalyzed a global push to conserve seagrasses, aiming to reduce their loss and strengthen their ecosystem functions. The success of the efforts relies on the knowledge exchange and integration of scientific research into conservation/restoration practices, aiming to develop

Xu et al. 10.3389/fmars.2025.1694098

more effective restoration techniques that promote the resilience of seagrass ecosystems and their services.

Our aim for this Research Topic in Frontiers in Marine Science was to bring together studies that improve the understanding of the mechanisms underpinning seagrass degradation and ecological responses to environmental change, as well as the technological approaches that can enhance restoration success. This Research Topic includes nine scientific papers (one review and eight original research articles) covering diverse species from temperate to tropical waters. The main focus was on the assessment of ecological impacts of environmental stressors, adaptive physiological responses to climate change, advances in restoration techniques, ecological restoration benefits, and microbial contributions to restoration success.

Seagrass degradation drivers

Despite their critical ecological roles sustaining biodiversity and ecosystem functions, seagrasses are experiencing significant global degradation (Duarte et al., 2025; Jones et al., 2025). Long-term observations highlight anthropogenic activities as primary drivers. While some of these activities (e.g., oyster aquaculture) may have minor effects on seagrass meadows, at least in the short-term and at small geographic scales (Rubino et al.), others can result in detrimental changes of the seagrass ecosystems in the long-term (Green et al., 2021). For example, in Bohai Bay, Tangshan, extensive alterations in Z. marina meadows occurred between 1974 and 2019 due to land reclamation. Partial recovery followed the construction of artificial "longshore sandbanks" after 2012, but meadows remain threatened by fishing, dredging, and aquaculture activities (Xu et al., 2021b). Similarly, the increase in anthropogenic heavy metal pollution (e.g., copper and cadmium) has negative effects on seagrass meadows by suppressing the growth and photosynthesis of these marine plants. This effects can vary among species and populations depending on their specific sensitivities and tolerances (e.g., Z. marina: copper $EC_{50} = 28.9 \mu M$; Ruppia sinensis: copper $EC_{50} = 50 \mu M$), and the interactions with other environmental stressors (e.g., elevated temperatures) (Gu et al., 2021; Qiao et al., 2022).

Natural environmental changes can also represent ecological challenges that further compromise meadow stability (Unsworth et al., 2012). For instance, natural biochemical changes in the sediments of seagrass meadows (e.g., accumulation of sulfides), can interact with temporal changes in other environmental drivers (e.g., elevated temperature), impacting the performance (e.g., photosynthesis and growth) of seagrasses. While short-term removal of the stress allows recovery, the prolonged exposure can result in irreversible mortality (Zhang et al., 2024). Similar negative effects can be observed in response to natural environmental changes in oxygen availability and irradiance, in which low oxygen conditions under low light can trigger severe photosynthetic impairment and metabolic alterations (Zhang et al., 2021). The scale of the effects of natural environmental changes on seagrass meadows depends on the magnitude and intensity of the changes. For example, natural extreme events such as the super Typhoon Lekima, nearly eradicated 1031.8 ha of *Z. japonica* in the Yellow River Delta, accompanied by substantial losses of organic carbon (>35%) and nitrogen (>65%) in the top 35 cm of sediments. The long-term detrimental effects of this extreme event together with the absence of seeds and overwintering shoots prevented natural recovery of the seagrass populations (Yue et al., 2021a).

Anthropogenic-driven climate change is another major threat to seagrass ecosystems, altering their ecological dynamics at a global scale. For instance, ocean warming, which is associated to the increase in atmospheric CO2, has shifted the geographic distribution of seagrasses (Z. marina) in the Northeast Pacific (eastern China). Such ecological alterations are further exacerbated by the influence of anomalous extreme temperatures (e.g., marine heatwaves), resulting in drastic declines in the survival and functioning of these marine plants (Xu et al., 2022a; Pei et al.), despite their short-term capacity to regulate the oxidative stress associated to elevated temperatures (Pei et al.). Elevated atmospheric CO2 can also alter the carbonate chemistry of the seawater resulting in ocean acidification. Contrary to ocean warming, ocean acidification has shown positive effects promoting seagrass growth. However, these beneficial effects cannot offset the functional impacts of heatinduced stress (Wang et al.).

Indirect anthropogenic environmental changes can also result from biological sources in which biotic stressors, such as algal blooms and invasive species, represent important ecological challenges that threaten the stability and distribution of seagrasses. In the Swan Lake lagoon, large meadows of *Z. marina* (199–232 ha), have been impacted by the rapid expansion of green tides of *Chaetomorpha linum*, enhancing the ecological competition for resources (e.g., space and light) (Xu et al., 2019a). Similar competition with invasive plants (e.g., *Spartina alterniflora*) has resulted in the suppression of seagrass growth and the contraction of *Z. japonica* habitats in the Yellow River Delta (Yue et al., 2021b).

Collectively, seagrass degradation results from anthropogenic pressures, natural disturbances, biological invasions, and climate change, involving light limitation, physical disturbance, chemical stress, and metabolic imbalance, which often act synergistically to accelerate decline and reduce resilience (de Fouw et al.). Therefore, future management must simultaneously alleviate local stress and adapt to global change to maintain ecosystem resilience.

Seagrass restoration

Restoration predominantly relies on transplantation and seed-based approaches. Transplantation, while potentially damaging donor beds and resource-intensive, offers relatively high survival and remains the most widely applied method. However, with restoration scaling to hundreds of hectares in China, overreliance on donor beds creates a "destructive-restorative" paradox. Seed-based restoration minimally impacts donor populations and enhances genetic diversity, making it a promising future strategy. Seed- and seedling-based approaches have emerged as a key focus for sustainable, large-scale restoration.

Xu et al. 10.3389/fmars.2025.1694098

Seed-based methods offer potential for large-scale implementation but face high failure rates and technical bottlenecks (Unsworth et al., 2023; Unsworth and Rees, 2025). Seed selection and storage are critical: high-quality *Z. marina* seeds with >72% integrity can be obtained via saline flotation (>1.20 specific gravity) and maintained at 0°C with nanosilver or copper sulfate treatment, preserving 80–90% viability (Xu et al., 2019b). Long-term storage at 0°C and 40–50 psµ salinity can potentially extend viability up to 17 months, providing a foundation for seed banks (Xu et al., 2020).

Environmental conditions (including burial depth, water depth, salinity, and temperature) critically influence germination and seedling establishment. Field experiments show optimal emergence for *Z. marina* at 2 cm burial depth (21.33 ± 9.30%), while 10 cm prevents germination (Xu et al., 2021a). Freshwater favors germination (up to 88.67%) but compromises seedling morphology and survival; salinity >20 psµ is required for stable establishment (Xu et al., 2016). Various techniques, such as mudball sowing (Xu et al., 2022b), bag fixation (Unsworth et al., 2019a), nutrient supplementation (Unsworth et al., 2022), and seed injection (Govers et al., 2022), demonstrate practical potential. For example, bag sowing achieved 94% mature plant emergence, though storm-induced sediment burial poses risks (Unsworth et al., 2019a).

Regional applications reveal species- and site-specific differences. In the Yellow River Delta, optimal burial depth varies with sediment type (sand 4 cm, silt 2 cm), and *Z. japonica* seed source affects performance (Yue et al., 2024). Transplantation studies on *Z. pacifica*, *T. hemprichii*, and *E. acoroides* further illustrate interspecific and regional variability. For instance, *E. acoroides* in Hainan exhibits 90% survival, outperforming *T. hemprichii* (Shen et al.), while *Z. pacifica* restoration on the US west coast is highly dependent on light, wave exposure, and dissolved oxygen thresholds (Sanders et al.). Rhizosphere microbial communities also influence seedling resource allocation, highlighting the need to integrate microbial factors into restoration planning (Randell et al.).

Ecological benefits

Restored meadows rapidly enhance benthic biodiversity, approaching natural meadow levels (Gräfnings et al.). Long-term monitoring indicates gradual increases in sediment carbon storage and microbial diversity, although short-term carbon sequestration gains are modest (Xu et al., 2025). Across 228 Southeast Asian restoration cases, moderate depths (2–4 m), adequate light, and low-to-moderate energy environments optimize success, with vegetative transplantation yielding the highest survival rates (Thorhaug et al.).

Future directions

With the increasing frequency, magnitude, and duration of global change, research on seagrass degradation mechanisms, management, restoration, and ecosystem function assessment is increasingly urgent. The studies summarized herein contribute critical insights into seagrass ecology, identify knowledge gaps, and highlight new directions. Future research should integrate climate change and anthropogenic pressures, advance precision management, innovate restoration techniques—including mechanization to improve efficiency—quantify carbon storage and ecosystem services, and leverage interdisciplinary approaches and predictive modeling to support sustainable management. We anticipate that this field will attract broad scientific interest, uniting researchers with diverse and complementary expertise to collectively advance seagrass conservation and restoration.

Author contributions

SX: Writing – original draft. RU: Writing – review & editing. JG-E: Writing – review & editing. YZ: Writing – review & editing.

Funding

The author(s) declare financial support was received for the research and/or publication of this article. This research was supported by the National Natural Science Foundation of China (42206142/32270405), Shandong Provincial Natural Science Foundation (SDCX-ZG-202201018, ZR2024QD102), and the Taishan Scholars Program.

Acknowledgments

We thank the editor Jingwen Luo for her help on this Research Topic application, the authors for their contributions on this Research Topic, the journal for agreeing to its compilation, and the reviewers for their time and effort in improving manuscripts.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Xu et al. 10.3389/fmars.2025.1694098

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., et al. (1997). The value of the world's ecosystem services and natural capital. *Nature* 387, 253–260. doi: 10.1038/387253a0

Dennison, W. C., Orth, R. J., Moore, K. A., Stevenson, J. C., Carter, V., Kollar, S., et al. (1993). Assessing water quality with submersed aquatic vegetation. *BioScience* 43, 86–94. doi: 10.2307/1311969

Duarte, C. M., Apostolaki, E. T., Serrano, O., Steckbauer, A., and Unsworth, R. K. (2025). Conserving seagrass ecosystems to meet global biodiversity and climate goals. *Nat. Rev. Biodiversity*, 1–16. doi: 10.1038/s44358-025-00028-x

Dunic, J. C., Brown, C. J., Connolly, R. M., Turschwell, M. P., and Côté, I. M. (2021). Long-term declines and recovery of meadow area across the world's seagrass bioregions. *Global Change Biol.* 27, 4096–4109. doi: 10.1111/gcb.15684

Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M. A., et al. (2012). Seagrass ecosystems as a globally significant carbon stock. *Nat. Geosci.* 5, 505–509. doi: 10.1038/ngeo1477

Govers, L. L., Heusinkveld, J. H., Gräfnings, M. L., Smeele, Q., and van der Heide, T. (2022). Adaptive intertidal seed-based seagrass restoration in the Dutch Wadden Sea. *PloS One* 17, e0262845. doi: 10.1371/journal.pone.0262845

Green, A. E., Unsworth, R. K., Chadwick, M. A., and Jones, P. J. (2021). Historical analysis exposes catastrophic seagrass loss for the United Kingdom. *Front. Plant Sci.* 12, 629962. doi: 10.3389/fpls.2021.629962

Gu, R., Lin, H., Zhou, Y., Song, X., Xu, S., Yue, S., et al. (2021). Programmed responses of different life-stages of the seagrass *Ruppia sinensis* to copper and cadmium exposure. *J. Hazardous Materials* 403, 123875. doi: 10.1016/j.jhazmat.2020.123875

Hoegh-Guldberg, O., and Bruno, J. F. (2010). The impact of climate change on the world's marine ecosystems. *Science* 328, 1523–1528. doi: 10.1126/science.1189930

Jones, B. L., Coals, L., Cullen-Unsworth, L. C., Lilley, R. J., Bartlett, A., and Unsworth, R. K. (2025). Mapping global threats to seagrass meadows reveals opportunities for conservation. *Environ. Research: Ecol.* 4, 025005. doi: 10.1088/2752-664X/adcacb

Qiao, Y., Zhang, Y., Xu, S., Yue, S., Zhang, X., Liu, M., et al. (2022). Multi-leveled insights into the response of the eelgrass *Zostera marina* L to Cu than Cd exposure. *Sci. Total Environ.* 845, 157057. doi: 10.1016/j.scitotenv.2022.157057

Unsworth, R., Bertelli, C., Coals, L., Cullen-Unsworth, L., Den Haan, S., Jones, B., et al. (2023). Bottlenecks to seed-based seagrass restoration reveal opportunities for improvement. *Global Ecol. Conserv.* 48, e02736. doi: 10.1016/j.gecco.2023.e02736

Unsworth, R. K., Bertelli, C. M., Cullen-Unsworth, L. C., Esteban, N., Jones, B. L., Lilley, R., et al. (2019a). Sowing the seeds of seagrass recovery using hessian bags. *Front. Ecol. Evol.* 7, 311. doi: 10.3389/fevo.2019.00311

Unsworth, R. K. F., Nordlund, L. M., and Cullen-Unsworth, L. C. (2019b). Seagrass meadows support global fisheries production. *Conserv. Lett.* 12, e12566. doi: 10.1111/conl.12566

Unsworth, R. K., Rasheed, M. A., Chartrand, K. M., and Roelofs, A. J. (2012). Solar radiation and tidal exposure as environmental drivers of Enhalus acoroides dominated seagrass meadows. *PloS One* 7, e34133. doi: 10.1371/journal.pone.0034133

Unsworth, R. K., and Rees, S. C. (2025). The road to seagrass restoration at scale using engineering. *Ecol. Eng.* 215, 107607. doi: 10.1016/j.ecoleng.2025.107607

Unsworth, R., Rees, S., Bertelli, C., Esteban, N., Furness, E., and Walter, B. (2022). Nutrient additions to seagrass seed planting improve seedling emergence and growth. *Front. Plant Sci.* 13, 1013222. doi: 10.3389/fpls.2022.1013222

Waycott, M., Duarte, C. M., Carruthers, T. J., Orth, R. J., Dennison, W. C., Olyarnik, S., et al. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. *Proc. Natl. Acad. Sci.* 106, 12377–12381. doi: 10.1073/pnas.0905620106

Xu, S., Wang, L., Wang, Z., Qiao, Y., Zuo, L., Liu, M., et al. (2025). Ecological outcomes of seagrass restoration in the Bohai Sea: Five-year shifts in sediment carbon, microbial diversity, and macrobenthic communities underscore the need for long-term monitoring. *Mar. pollut. Bull.* 215, 117790. doi: 10.1016/j.marpolbul.2025.117790

Xu, S., Wang, P., Wang, F., Zhang, X., Song, X., and Zhou, Y. (2021a). Responses of eelgrass seed germination and seedling establishment to water depth, sediment type, and burial depth: implications for restoration. *Mar. Ecol. Prog. Ser.* 678, 51–61. doi: 10.3354/meps13888

Xu, S., Xu, S., Zhou, Y., Gu, R., Zhang, X., and Yue, S. (2020). Long-term seed storage for desiccation sensitive seeds in the marine foundation species *Zostera marina* L. (eelgrass). Global Ecol. Conserv. 24, e01401. doi: 10.1016/j.gecco.2020.e01401

Xu, S., Xu, S., Zhou, Y., Yue, S., Zhang, X., Gu, R., et al. (2021b). Long-term changes in the unique and largest seagrass meadows in the Bohai Sea (China) using satellite, (1974–2019) and sonar data: Implication for conservation and restoration. *Remote Sens.* 13, 856. doi: 10.3390/rs13050856

Xu, S., Xu, S., Zhou, Y., Zhao, P., Yue, S., Song, X., et al. (2019a). Single beam sonar reveals the distribution of the eelgrass *Zostera marina* L. and threats from the green tide algae *Chaetomorpha linum* K. @ in Swan-Lake lagoon (China). *Mar. pollut. Bull.* 145, 611–623. doi: 10.1016/j.marpolbul.2019.06.022

Xu, S., Zhang, Y., Zhou, Y., Xu, S., Yue, S., Liu, M., et al. (2022a). Warming northward shifting southern limits of the iconic temperate seagrass (*Zostera marina*). *iScience* 25, 104755. doi: 10.1016/j.isci.2022.104755

Xu, S., Zhou, Y., Qiao, Y., Yue, S., Zhang, X., Zhang, Y., et al. (2022b). Seagrass restoration using seed ball burial in northern China. *Restor. Ecol.* 13 (5), e13691. doi: 10.1111/rec.13691

Xu, S., Zhou, Y., Wang, P., Wang, F., Zhang, X., and Gu, R. (2016). Salinity and temperature significantly influence seed germination, seedling establishment, and seedling growth of eelgrass *Zostera marina* L. *PeerJ* 4, e2697. doi: 10.7717/peerj.2697

Xu, S., Zhou, Y., Xu, S., Gu, R., Yue, S., Zhang, Y., et al. (2019b). Seed selection and storage with nano-silver and copper as potential antibacterial agents for the seagrass *Zostera marina*: implications for habitat restoration. *Sci. Rep.* 9, 20249. doi: 10.1038/s41598-019-56376-0

Yue, S., Zhang, X., Liu, M., Qiao, Y., Zhang, Y., Wang, X., et al. (2024). The largest single-species *Nanozostera japonica* seagrass meadow of China: Its decline, restoration attempts, and short-term effects on macrobenthos and soil bacterial communities. *Sci. Total Environ.* 957, 176957. doi: 10.1016/j.scitotenv.2024.176957

Yue, S., Zhang, X., Xu, S., Liu, M., Qiao, Y., Zhang, Y., et al. (2021a). The super typhoon Lekima, (2019) resulted in massive losses in large seagrass (*Zostera japonica*) meadows, soil organic carbon and nitrogen pools in the intertidal Yellow River Delta, China. *Sci. Total Environ.* 793, 148398. doi: 10.1016/j.scitotenv.2021.148398

Yue, S., Zhou, Y., Xu, S., Zhang, X., Liu, M., Qiao, Y., et al. (2021b). Can the nonnative salt marsh halophyte Spartina alterniflora threaten native seagrass (*Zostera japonica*) habitats? a case study in the Yellow River Delta, China. *Front. Plant Sci.* 12, 643425. doi: 10.3389/fpls.2021.643425

Zhang, Y., Yue, S., Gao, Y., Zhao, P., Liu, M., Qiao, Y., et al. (2024). Insights into response of seagrass (*Zostera marina*) to sulfide exposure at morphological, physiochemical and molecular levels in context of coastal eutrophication and warming. *Plant Cell Environ.* 47, 4768–4785. doi: 10.1111/pce.15048

Zhang, Y., Zhao, P., Yue, S., Liu, M., Qiao, Y., Xu, S., et al. (2021). New insights into physiological effects of anoxia under darkness on the iconic seagrass *Zostera marina* based on a combined analysis of transcriptomics and metabolomics. *Sci. Total Environ.* 768, 144717. doi: 10.1016/j.scitotenv.2020.144717