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Editorial on the Research Topic

Degradation, conservation and ecological restoration of seagrass beds
under intensifying global changes

Global changes (including warming, ocean acidification, and intensified human
disturbances) have profoundly impacted marine environments, threatening foundational
species and their critical habitats (Hoegh-Guldberg and Bruno, 2010). Addressing these
compounded pressures requires an enhanced understanding of marine ecosystems
alongside intensified protection and restoration efforts.

Seagrasses, a group of foundational marine species, are widely distributed along tropical
and temperate coastlines, where their meadows support essential ecosystem functions
(Unsworth et al., 2019b). These meadows, one of the three primary nearshore ecosystems,
provide habitat, food, and nurseries to numerous marine species (Costanza et al., 1997).
Moreover, they contribute to water quality by enhancing sediment deposition and
removing excess nutrients (Dennison et al., 1993), while their role as carbon sinks helps
mitigate climate change (Fourqurean et al., 2012). It is estimated that 19% of the surveyed
seagrass area has been lost since 1880, with individual meadows declining globally at a rate
of 1-2% per year (Dunic et al., 2021), driven by both natural and anthropogenic factors,
including physical disturbances, sediment and nutrient runoff, invasive species, algal
overgrowth, and warming waters (Waycott et al., 2009). These threats have catalyzed a
global push to conserve seagrasses, aiming to reduce their loss and strengthen their
ecosystem functions. The success of the efforts relies on the knowledge exchange and
integration of scientific research into conservation/restoration practices, aiming to develop
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more effective restoration techniques that promote the resilience of
seagrass ecosystems and their services.

Our aim for this Research Topic in Frontiers in Marine Science was
to bring together studies that improve the understanding of the
mechanisms underpinning seagrass degradation and ecological
responses to environmental change, as well as the technological
approaches that can enhance restoration success. This Research
Topic includes nine scientific papers (one review and eight original
research articles) covering diverse species from temperate to tropical
waters. The main focus was on the assessment of ecological impacts of
environmental stressors, adaptive physiological responses to climate
change, advances in restoration techniques, ecological restoration
benefits, and microbial contributions to restoration success.

Seagrass degradation drivers

Despite their critical ecological roles sustaining biodiversity and
ecosystem functions, seagrasses are experiencing significant global
degradation (Duarte et al., 2025; Jones et al., 2025). Long-term
observations highlight anthropogenic activities as primary drivers.
While some of these activities (e.g., oyster aquaculture) may have
minor effects on seagrass meadows, at least in the short-term and at
small geographic scales (Rubino et al.), others can result in
detrimental changes of the seagrass ecosystems in the long-term
(Green et al., 2021). For example, in Bohai Bay, Tangshan, extensive
alterations in Z. marina meadows occurred between 1974 and 2019
due to land reclamation. Partial recovery followed the construction
of artificial “longshore sandbanks” after 2012, but meadows remain
threatened by fishing, dredging, and aquaculture activities (Xu et al.,
2021b). Similarly, the increase in anthropogenic heavy metal
pollution (e.g., copper and cadmium) has negative effects on
seagrass meadows by suppressing the growth and photosynthesis
of these marine plants. This effects can vary among species and
populations depending on their specific sensitivities and tolerances
(e.g., Z. marina: copper ECsq = 28.9 UM; Ruppia sinensis: copper
ECso = 50 uM), and the interactions with other environmental
stressors (e.g., elevated temperatures) (Gu et al, 2021; Qiao
et al., 2022).

Natural environmental changes can also represent ecological
challenges that further compromise meadow stability (Unsworth
et al., 2012). For instance, natural biochemical changes in the
sediments of seagrass meadows (e.g., accumulation of sulfides),
can interact with temporal changes in other environmental drivers
(e.g., elevated temperature), impacting the performance (e.g.,
photosynthesis and growth) of seagrasses. While short-term
removal of the stress allows recovery, the prolonged exposure can
result in irreversible mortality (Zhang et al., 2024). Similar negative
effects can be observed in response to natural environmental
changes in oxygen availability and irradiance, in which low
oxygen conditions under low light can trigger severe
photosynthetic impairment and metabolic alterations (Zhang
et al, 2021). The scale of the effects of natural environmental
changes on seagrass meadows depends on the magnitude and
intensity of the changes. For example, natural extreme events
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such as the super Typhoon Lekima, nearly eradicated 1031.8 ha
of Z. japonica in the Yellow River Delta, accompanied by substantial
losses of organic carbon (>35%) and nitrogen (>65%) in the top 35
cm of sediments. The long-term detrimental effects of this extreme
event together with the absence of seeds and overwintering shoots
prevented natural recovery of the seagrass populations (Yue
et al., 2021a).

Anthropogenic-driven climate change is another major threat to
seagrass ecosystems, altering their ecological dynamics at a global
scale. For instance, ocean warming, which is associated to the increase
in atmospheric CO,, has shifted the geographic distribution of
seagrasses (Z. marina) in the Northeast Pacific (eastern China).
Such ecological alterations are further exacerbated by the influence
of anomalous extreme temperatures (e.g., marine heatwaves),
resulting in drastic declines in the survival and functioning of these
marine plants (Xu et al,, 2022a; Pei et al.), despite their short-term
capacity to regulate the oxidative stress associated to elevated
temperatures (Pei et al.). Elevated atmospheric CO, can also alter
the carbonate chemistry of the seawater resulting in ocean
acidification. Contrary to ocean warming, ocean acidification has
shown positive effects promoting seagrass growth. However, these
beneficial effects cannot offset the functional impacts of heat-
induced stress (Wang et al.).

Indirect anthropogenic environmental changes can also result
from biological sources in which biotic stressors, such as algal
blooms and invasive species, represent important ecological
challenges that threaten the stability and distribution of
seagrasses. In the Swan Lake lagoon, large meadows of Z. marina
(199-232 ha), have been impacted by the rapid expansion of green
tides of Chaetomorpha linum, enhancing the ecological competition
for resources (e.g., space and light) (Xu et al, 2019a). Similar
competition with invasive plants (e.g., Spartina alterniflora) has
resulted in the suppression of seagrass growth and the contraction
of Z. japonica habitats in the Yellow River Delta (Yue et al., 2021b).

Collectively, seagrass degradation results from anthropogenic
pressures, natural disturbances, biological invasions, and climate
change, involving light limitation, physical disturbance, chemical
stress, and metabolic imbalance, which often act synergistically to
accelerate decline and reduce resilience (de Fouw et al.). Therefore,
future management must simultaneously alleviate local stress and
adapt to global change to maintain ecosystem resilience.

Seagrass restoration

Restoration predominantly relies on transplantation and seed-
based approaches. Transplantation, while potentially damaging
donor beds and resource-intensive, offers relatively high survival
and remains the most widely applied method. However, with
restoration scaling to hundreds of hectares in China, overreliance
on donor beds creates a “destructive-restorative” paradox. Seed-
based restoration minimally impacts donor populations and
enhances genetic diversity, making it a promising future strategy.
Seed- and seedling-based approaches have emerged as a key focus
for sustainable, large-scale restoration.
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Seed-based methods offer potential for large-scale implementation
but face high failure rates and technical bottlenecks (Unsworth et al,,
2023; Unsworth and Rees, 2025). Seed selection and storage are critical:
high-quality Z. marina seeds with >72% integrity can be obtained via
saline flotation (>1.20 specific gravity) and maintained at 0°C with
nanosilver or copper sulfate treatment, preserving 80-90% viability (Xu
et al, 2019b). Long-term storage at 0°C and 40-50 psu salinity can
potentially extend viability up to 17 months, providing a foundation for
seed banks (Xu et al., 2020).

Environmental conditions (including burial depth, water depth,
salinity, and temperature) critically influence germination and seedling
establishment. Field experiments show optimal emergence for Z.
marina at 2 cm burial depth (21.33 + 9.30%), while 10 cm prevents
germination (Xu et al,, 2021a). Freshwater favors germination (up to
88.67%) but compromises seedling morphology and survival; salinity
>20 psu is required for stable establishment (Xu et al., 2016). Various
techniques, such as mudball sowing (Xu et al., 2022b), bag fixation
(Unsworth et al., 2019a), nutrient supplementation (Unsworth et al,,
2022), and seed injection (Govers et al,, 2022), demonstrate practical
potential. For example, bag sowing achieved 94% mature plant
emergence, though storm-induced sediment burial poses risks
(Unsworth et al., 2019a).

Regional applications reveal species- and site-specific differences. In
the Yellow River Delta, optimal burial depth varies with sediment type
(sand 4 cm, silt 2 cm), and Z. japonica seed source affects performance
(Yue et al., 2024). Transplantation studies on Z. pacifica, T. hemprichii,
and E. acoroides further illustrate interspecific and regional variability.
For instance, E. acoroides in Hainan exhibits 90% survival,
outperforming T. hemprichii (Shen et al.), while Z. pacifica
restoration on the US west coast is highly dependent on light,
wave exposure, and dissolved oxygen thresholds (Sanders et al.).
Rhizosphere microbial communities also influence seedling
resource allocation, highlighting the need to integrate microbial
factors into restoration planning (Randell et al.).

Ecological benefits

Restored meadows rapidly enhance benthic biodiversity,
approaching natural meadow levels (Grifnings et al). Long-term
monitoring indicates gradual increases in sediment carbon storage
and microbial diversity, although short-term carbon sequestration
gains are modest (Xu et al, 2025). Across 228 Southeast Asian
restoration cases, moderate depths (2-4 m), adequate light, and
low-to-moderate energy environments optimize success, with
vegetative transplantation yielding the highest survival rates
(Thorhaug et al.).

Future directions

With the increasing frequency, magnitude, and duration of
global change, research on seagrass degradation mechanisms,
management, restoration, and ecosystem function assessment is
increasingly urgent. The studies summarized herein contribute
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critical insights into seagrass ecology, identify knowledge gaps,
and highlight new directions. Future research should integrate
climate change and anthropogenic pressures, advance precision
management, innovate restoration techniques—including
mechanization to improve efficiency—quantify carbon storage
and ecosystem services, and leverage interdisciplinary approaches
and predictive modeling to support sustainable management. We
anticipate that this field will attract broad scientific interest, uniting
researchers with diverse and complementary expertise to
collectively advance seagrass conservation and restoration.
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