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Within the context of global change, morphological evolution in estuary regions
and the related effects on water resource safety are key concerns for the
sustainable management of river deltas. Channel branching controls the
morphological evolution patterns and sedimentary regime in river deltas and
generally occurs in response to natural conditions and human activities. In this
study, we focused on the impacts of channel branching on saline water intrusion
in the Modaomen Estuary in China. The riverine discharge through the
Modaomen Estuary supplies freshwater source for the Guangdong- Hong
Kong- Macao Greater Bay Area; and morphological evolution greatly affects
saline water intrusion in this region, posing a threat to freshwater security. In this
study, we constructed an idealized model with a prototype of Modaomen Estuary
while considering single and double channels, to explore the impacts of channel
branching on saline water intrusion in estuaries. The results indicated that
channel branching greatly influenced the morphological structure of the
mouth bar in the estuary. The magnitude of saline water intrusion occurred
more significantly during the neap tide than spring tide in both the single- and
double-channel simulations. Channel branching exhibited different effects on
the saline water intrusion during the spring and neap tides, by affecting the
estuarine dynamics and circulation. Furthermore, the mouth bar exerted a
‘blocking effect’ on the intrusion and recession of saline water. Overall, our
study presents scientific guidelines for estuarine regulation projects to ensure
water resource safety and promote effective estuarine management.
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1 Introduction

Large populations inhabit the coastal areas and river delta
regions in the world, which is transition area between land and
ocean. Hence, the maintenance of freshwater sources is crucial for
ensuring sustainable development. Therefore, freshwater security is
a major concern in coastal management, and maintains sustainable
development of estuarine environment. Climate change and human
activities (e.g. sea-level rise, sand excavation, and channel dredging)
exacerbate the issue of saline water intrusion in freshwater sources,
posing a threat to freshwater security (Luo et al., 2007; Nicholls and
Cazenave, 2010; Costa et al., 2023; Hlaing et al., 2024). Therefore,
the patterns and mechanisms of saline water intrusion in estuaries is
garnering worldwide attention, particularly in the field of coastal
and delta management.

Saline water intrusion in estuaries is characterized by salt
transport, which is an important mechanism of material exchange
between estuaries and oceans. Salt transport in estuaries is
controlled by several physical processes, such as estuarine
circulation and tidal pumping (MacCready and Geyer, 2010;
Gong et al,, 2022b), and is affected by several factors, such as
river discharge, tide, wind, and bathymetry (Gong and Shen, 2011;
Gong et al., 2022a; Lin et al.,, 2019; Zhang et al., 2019). Previous
studies analyzed the impacts of these factors on saline water
intrusion in estuaries. Zhu et al. (2018) indicated that the
saltwater intrusion in the Changjiang Estuary was mainly
controlled by river discharge and tide and influenced by wind,
sea-level rise, river basin characteristics, and estuarine projects.
Zhang et al. (2019) analyzed the Yangtze Estuary and revealed that
strong northerly and north-easterly winds induced dramatic water-
level setup, increased the flood-tide current velocities, decreased the
ebb tide velocities, and reduced the freshwater inflow into the North
Branch of the estuary, thereby increasing the intensity of saline
water intrusion. Pokavanich and Guo (2024) reported that the low
freshwater discharge, prevailing down-estuary winds and the
highest annual sea level were natural causes for the enhancement
of estuarine circulation and the greatest saltwater intrusion distance
in the Chao Phraya Estuary. In addition, morphological evolution
was also an important factor affecting saline water intrusion;
however, many studies focused on the impacts of channel incised
or deepen on saline water intrusion in the river estuaries and deltas
(Wu et al, 2016b; Ralston and Geyer, 2019; Binh et al., 2021).
Channel branching often occurs in response to river flooding and
human disturbance and influences the morphological structures of
shoals and channels (Nguyen et al,, 2008). And morphology
alterations can greatly affect estuarine processes, including
estuarine circulation and tidal pumping (Simpson et al, 1990;
Scully and Friedrichs, 2007; Ralston and Geyer, 2019, 2019).
However, the impacts of channel branching on saline water
intrusion in estuaries remain unexplored, and less knowledge on
its influencing mechanism was attained in the previous studies.

In this study, we considered the Modaomen Estuary in the Pearl
River Delta in the southern China as a prototype of idealized
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estuary. The Modaomen Estuary is one of the major outlets for
the water discharge of the Pearl River, which is the main freshwater
source of the Guangdong-Hong Kong-Macao Greater Bay Area.
Due to seasonal variations in river discharge, the river experiences
seasonal changes in the mean water discharge: 11000 m*/s from
May to September and 3500 m’/s from November to February
(Gong et al,, 2022b). Additionally, the Modaomen Estuary is a
microtidal estuary with irregular mixed semidiurnal tides, with the
mean tidal height being 0.87m. In this region, saline water
intrusions mainly occur in the dry seasons, due to the lower
water discharge; this phenomenon threatens the freshwater
supply to large cities, including Macau, Zhuhai, and Zhongshan.
Saline water intrusion has been analyzed in several previous studies
(Gong and Shen, 2011; Liu et al., 2014; Lin et al., 2019; Gong et al.,
2022a, b), however, these studies mainly focused on the impact of
external dynamic forcings (such as riverine discharge, tide, and
wind) on saline water intrusion. The Modaomen Estuary has a
complicated morphological structure, and its bathymetry is
continually evolving since the 1960s; notably, the region is
characterized by channel branching (Tan et al.,, 2019). Note that
channel branching is a common occurrence in estuaries around the
world (e.g. Yellow River estuary, Yangtze River estuary, Rhine-
Meuse river delta). Therefore, the region is an ideal site for
examining the impacts of channel branching on saline water
intrusion in estuaries. Furthermore, the idealized model is a
useful method to conduct a complex research question with a key
concern, for example, Biemond et al. (2025) used an idealized model
to explore the characteristics of salt intrusion in complex estuarine
networks and revealed that the salt transport mechanisms within
the network varied significantly, owing to the differences in the
water depth, discharge, and tidal current phasing. In this study, we
constructed an idealized estuary model as a prototype of
Modaomen estuary to represent similar estuaries across the
world. The main objectives of our study were to explore the
impacts of channel branching on the saline water intrusion in
estuaries and reveal the influencing mechanisms. Our study can
improve the understanding of the cause of accelerated saline water
intrusion in river deltas within the context of global changes and
presents scientific guidelines for the sustainable management of
coastal areas and river deltas.

2 Study area
2.1 Hydrological characteristics

The Pearl River is the second-largest river in China, with a total
length of 2,320 km and a drainage area of approximately 440,000
km?; it has an annual runoff of over 349.2 billion m® (Huang and
Zhang, 2004). It comprises several tributaries, such as Xijiang,
Beijiang, and Dongjiang, which contribute 77%, 15%, and 8% of
the river flow, respectively (Wu et al., 2016a). These three major
tributaries converge in the Pearl River Delta (Figure 1), forming a
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FIGURE 1

The sketch map of the Modaomen estuary in the Pearl River Delta (A, Pearl River Estuary; B, Modaomen estuary).

complex network of waterways characterized by crisscrossing
channels and a dense river network, before flowing into the sea
through eight outlets. The Modaomen Estuary, located in the lower
reaches of the Xijiang River, is the largest of the eight outlets,
carrying approximately 28.3% of the total runoff of the Pearl River
(Tan et al,, 2019); it serves as an important freshwater source for the
Guangdong-Hong Kong-Macao Greater Bay Area, providing
freshwater to over 10 million people in nearby cities, such as
Jiangmen, Zhongshan, Macao, and Zhuhai.

2.2 Evolution of channel branching in
mouth bar area

Morphological changes of the mouth bar in the Modaomen
Estuary occurred since the 1990s. Figures 2a-d shows a planar
distribution map at the 4m isobath of the bar to depict the changes
in mouth bar since the 1990s, and the isobaths deeper than 4m
represented the channels of mouth bar. It is clear that the entire
mouth bar had only one single channel in 1983; however, the bar at
the Modaomen Estuary started to branch in 1994, and by 2000, the
two branches gradually developed with channel widening. With the
formation of the east branch, by 2005, the main branch was
separated from the east and west shoals. The three shoals and two
branches system of the Modaomen Estuary bar were thus formed.
According to the previous studies (He et al., 2018; Tan et al., 2019),
the channel branching was mainly caused by riverine discharge,
especially for riverine flood. Regarding the mouth-bar body, it is
clear that channel branching gradually occurred with bar crest
moving towards sea and its height lowering from 1983 to 2005
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(Figure 2e), which would influence the hydrodynamic structure in
the Modaomen estuary.

3 Methods

3.1 Description of the idealized model
developed in this study

3.1.1 Delft3D model

The Delft3D software, developed by the Deltares Institute in the
Netherlands, is an integrated suite of software modules that
encompass hydrodynamics, sediment transport, and marine
environmental processes. It enables both two- (2D) and three-
dimensional (3D) simulations. The model can simulate diverse
coupled physical and ecological processes, including
hydrodynamic processes, sediment transport, and water quality.
Its flexible grid system and modular design render it effective for
conducting simulations for complex topographical and dynamic
conditions. Based on shallow-water equations, Delft3D can
efficiently simulate hydrodynamic and mass transport processes
driven by coupled factors, such as tides, waves, wind, and river
discharge. The model is widely applied in studies on estuarine
saltwater intrusion, pollutant dispersion, and sediment deposition
(Deltares, 2025).

Furthermore, the Delft3D model demonstrates exceptional
applicability and reliability for salinity simulations. Its coupled
hydrodynamic and salinity transport modules can accurately
simulate the formation of saltwater wedges, vertical salinity
stratification, and salt-dispersion processes driven by tidal forcings
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FIGURE 2

Morphological evolution of the Modaomen estuary during the period of 1983-2005 with the location of longitudinal profile (a, 1983; b, 1994;
c, 2000; d, 2005). Interannual variations in the profile elevation along the longitudinal profile from 1983-2005 (e).

(Ruiz-Reina and Lopez-Ruiz, 2021). By dynamically calculating the
spatial salinity distributions in a region, the Delft3D model captures
the combined effects of tides, river discharge, and morphological
changes on saline water intrusion; thus, the model is suitable for
studying the characteristics of saltwater intrusion in an estuarine
environment. Moreover, the Delft3D model supports multiple
boundary condition settings (Lesser et al., 2004; Deltares, 2025),
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such as tidal harmonic constants and time-series river discharge
inputs, facilitating the simulations of seasonal variations in river
water salinity and the regulatory effects of morphological evolution
on water salinity distribution across the river. Thus, the Delft3D
model is widely recognized as an ideal tool for investigating estuarine
saltwater intrusion, salt flux decomposition, and water-supply
security assessments.
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Model setting of the idealized estuaries. (a) Idealized estuary with dual-channel; (b) idealized estuary with single-channel; (c) partial grid near the
outlet and monitoring sites (dots) in the central longitudinal section (black line) of idealized estuaries; and (d) underwater topography in the central
longitudinal section. The gray and orange lines refer to the scenarios with dual-channel and with single channel, respectively.

3.1.2 Idealized model of Modaomen Estuary

Based on the Delft3D numerical model, considering the estuary’s
geometric characteristics as shown in Figure 3, in this study, we
constructed a 3D idealized numerical model for the Modaomen
Estuary in the Pearl River Delta. The computational domain of the
idealized Modaomen Estuary was set as a rectangular area and
included both the riverine and estuarine regions. To ensure the
accuracy and stability of the model calculations, the upstream river
boundary was placed outside the tidal influence zone (150km from
the river mouth) to avoid tidal wave interference. The river-channel
length and width were set to 150 and 2km, respectively, and the
estuarine region was represented as a square structure of 40km X
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40km. The model employed a structured orthogonal curvilinear grid
with varying density and resolution. The total number of grids was
123,904. The sea boundaries were set as the left, bottom, and right
boundaries. The highest resolution of 50m x 50m was applied at x =
150km near the river mouth, and the lowest resolution of 400m x
500m was used near the sea boundary. The x and y axes were set
parallel and perpendicular to the coastline, respectively. In the 3D
model, the vertical water column was divided into 10 layers using a 6-
coordinate system, and the vertical mixing was calculated using the k-
epsilon (k-€) turbulence model. The bathymetric data for the
idealized model were highly simplified based on the measured
bathymetric data of the Modaomen Estuary. The simulation period
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was 61 days; the salt dynamics in the idealized estuary adjusted
quickly, reaching a near quasi-equilibrium state within 10 days.

The model focused on saltwater intrusion during the dry
season. A total of 42 observation points was established along the
central axis of the model to monitor the key parameters, with
additional measurements conducted along the vertical section near
the estuary mouth. The simulations on Days 46 and 53 were used to
represent the simulation scenarios.

To analyze and evaluate the impact of the evolution of the outer
channel of the Modaomen Estuary on the saltwater intrusion in the
region, we considered two terrain scenarios (Scenarios 1 and 2)
under identical hydrodynamic conditions. Scenario 1 represented
an idealized dual-channel estuary, and scenario 2 represented an
idealized single-channel estuary. Considering the morphological
evolution of actual terrain data shown in Figure 2e during 1994-
2005, the terrain data in two scenarios was designed as shown in
Figure 3. The initial conditions, including the tidal current and
salinity, were set to zero. The upstream river boundary was defined
by a total discharge of 2,500 m?*/s, lower than mean multiple-year
value in the dry season, which was favored to the occurrence of
saline water intrusion (Gong et al., 2022a). The water salinity at the
river boundary and constant water levels were determined based on
the astronomic tidal amplitudes and the phases of eight primary
tides (M,, S,, N, Ky, Q;, Ky, Oy, and P;), which were obtained by
data assimilation (Liu et al., 2016).

3.2 Salt flux decomposition

The mechanism of saltwater intrusion in estuaries can be
decomposed into three key components: advection transport
driven by river discharge, steady shear dispersion caused by
estuarine circulation, and tidal oscillatory transport resulting from
tidal asymmetry (Gong et al., 2022b). The salt flux decomposition
method is widely used to investigate the mechanisms of salt
transport. In this study, we adopted the method proposed by
Lerczak et al. (2006), wherein the tidally averaged salt flux (Fs) is
decomposed into three parts (based on different driving forces):
steady shear dispersion (Fg), which is caused by estuarine
circulation; tidal oscillatory salt flux (Fr), which is driven by tidal
asymmetry; and advection (Fgr), which results from river discharge.
These parameters can be expressed as follows (Equations 1-4):

Fq = </ usdA> (1)
1

m = ( [ oan) @
h

o= (" 0) - @)

Pr=Q— @~ P (4)

where @ represents either the velocity u or salinity s, and A,
denotes the tidally averaged cross-sectional area. Thus, Fs can be
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expressed as follows:
Fg = </ (ug +ug +ur)(Sy + S + ST)dA>

= </ (uOSO + uESE + uTST)dA> (5)

=FR+FE+FT

As this study focused on the salt flux per unit width of the cross-
section, the cross-sectional width was set to a unit width. Thus, the
Equation 5 can be rewritten as follows (Equations 6-10):

Fg = </usdh> (6)
1
@y = h_0</ ‘Pdh> (7)

h+
P = <TTI (P> ) (8)
Pr=0—@— Qg )

FS = </ (uO +ug + uT)(SO + SE + ST)dh>

= </ (uSy + ugSg + uTST)dh>

=Fr +Fg +Fr

(10)

where (-) denotes the tidal period average, h, is the tidally
averaged water depth, / is the depth below the mean sea level, and n
represents the water-level fluctuation.

Based on the discretization of cross-sectional data (as described
in the literature), the formula can be further rewritten as follows
(Equations 11-17):

Fs = (XL uiShi) (11)
Q= (Shuhy) (12)
1
Sy = h—o@;;lsihi) (13)
h,‘ +1n 1
ug, = < I ui> —h—OQf (14)
Sp, = <hh+ "sl> S, (15)
1
Ur, = u; — ug —h—Qf (16)
0
St, =8, =S8 — S 17)

where i represents the index of each layer in the unit-width
cross-section; u;, S;, and h; denote the instantaneous velocity,
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salinity, and water depth at the grid point corresponding to each
layer, respectively; and Qy is the tidally averaged river discharge.

The advection transport was driven by river discharge, resulting
in the transport of salt from the estuary to the sea, denoting that the
direction of salt transport was outward from the estuary to the sea.
In contrast, the direction of shear dispersion and tidal oscillatory
salt flux was from the open sea into the estuary. The shear
dispersion caused by estuarine circulation was primarily related to
the vertical gradients of salinity and velocity. The more pronounced
the salinity stratification and the stronger the vertical circulation,
the greater the shear dispersion salt flux. Note that salinity
stratification itself was influenced by the tidal strength; when the
tidal amplitude increased, the water mixing process was more
uniform, resulting in a decrease in the shear dispersion salt flux.
The tidal oscillatory salt flux, caused by the asymmetry between the
flood and ebb tidal amplitudes, was mainly associated with the tidal
amplitude. The larger the tidal amplitude, the greater the tidal
oscillatory salt flux.

4 Results

4.1 Changes in the extent (length) of saline
water intrusion

The mean salinity values along the longitudinal profile during
the spring and neap tides in different conditions are shown in
Figure 4. The saline-water intrusion length was longer during the
neap tide than during the spring tide in both the single and double
channels, depicting agreement with the results of previous studies
(Gong et al., 2022b). However, the lengths of saline water intrusion
in single and double channels showed different patterns. During
spring tide, the intrusion length of one isohaline in the bottom
water layer reached 8.6km in the single channel 16km in the double
channel; other isohalines also showed similar patterns. During the
neap tide, the intrusion length of one isohaline in the bottom water
layer was 26km in the single channel and 24.3km in the double
channel, denoting changing tendency similar to those noted for
other isohalines. Therefore, we could conclude that during the neap
tide, the saline water intrusion in the double channel was more
extensive than that in the single channel; the opposite phenomenon
was observed during the spring tide.

4.2 Changes in salt flux

We calculated the salt flux per width unit along the longitudinal
profile during the spring and neap tides. As shown in Figure 5, the
salt flux generally depicted an increasing tendency from upstream
to the outlets (along the longitudinal profile). Negative salt flux
occurred closer to the upstream areas during neap tide than during
spring tide. In addition, during the spring tide, the value of salt flux
switched to negative at a distance of 128 and 132km from the
upstream area in the single and double channels, respectively.
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Furthermore, the salt flux toward land in the single channel was
higher than that in the double channel (at the same site); for
example, at a distance of 149km from the upstream area (i.e. at
the outlet), the salt flux was 49.63 psu-m?s™ in the single channel
and 34.19 psu-m®s™ in the double channel. Compared with the salt
flux in the single channel during the neap tide, the negative value of
salt flux occurred closer to the upstream area in the double channel,
and the salt flux towards land was higher in the double channel at
the same sites.

4.3 Changes in salt transport flux
components

In this study, salt flux was mainly decomposed into three
components: advective, steady shear, and tidal oscillatory, to reveal
the mechanism of saline water intrusion. As shown in Figure 6, the
advective component of salt flux showed positive values inside the
outlets, indicating that the salt flux was towards the sea; outside the
outlets, the component values were negative, indicating that the salt
flux was towards the land. The steady shear dispersion and of tidal
oscillatory components generally showed negative values, indicating
that the salt flux was towards the land; compared with the landward
salt flux, the values of these components during neap tide were larger
than those noted during spring tide, which was the main cause for the
longer intrusion distance of saline water during the neap tide. In
addition, the salt flux caused by steady shear dispersion was generally
higher than that caused by tidal oscillation in all conditions, with the
only exception noted in the double channel during the spring tide.
For example, in the single-channel estuary, during the spring tide, the
salt flux caused by steady shear dispersion was higher only from
Station 17 to Station 29; during neap tide, the values in the region
from the estuary entrance (upstream) to Station 8 were high under
both the conditions. Furthermore, the salt flux caused by steady shear
dispersion along the longitudinal river profile depicted an increasing
tendency from the upstream area to the outlet (with higher values
observed at the outlets) but a decreasing tendency from the outlet to
the sea. In the double-channel estuary, the decay rate of salt flux was
relatively slow. During the spring tide, the steady shear flux gradually
decayed after passing Station 32, decreasing to nearly 0 psum™s™ at
Station 37. During the neap tide, after reaching a peak value of
approximately 65 psum?®s” at Station 32, the steady shear flux
depicted a steady decline, decreasing to 0 psu-m’s™ at Station 40.
In the single-channel estuary, the steady shear flux exhibited an
exponential decay pattern after passing the estuary mouth. During
spring tide, the steady shear flux value at Station 32 was about 21
psu-m?s™ but decayed to almost 0 psu-m*s™ at Station 33; the value
remained 0 psu-m?s™ thereafter. During the neap tide, the value at
Station 32 (close to 42 psu-m*s™) was higher than that observed
during the spring tide; similar to the observations during the spring
tide, the value during the neap tide decreased to nearly 0 psu-m*s™ at
Station 33. However, during the neap tide, after Station 33, the flux
increased to around 3-5 psu-mz-s’1 between Stations 35 and 38, with
the value finally decreasing to 0 psu-m*s™ at Station 39.
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The longitudinal distribution of salinity along the cross-section of the mouth bar under different simulated conditions. Ideal periods of spring and
neap tides at double-channel estuaries (a, b) and ideal periods of spring and neap tides at single-channel estuaries (c, d). The red contour lines
represent salinity. The black arrow indicates ocean currents, and the one to the right indicates the direction from the river channel to the open sea.

5 Discussion

5.1 Impact of channel branching

The results indicated that the extent of saline water intrusion
was greatly influenced by the morphological structure of the

Frontiers in Marine Science

Modaomen Estuary. In particular, the salt transport processes in
the region were mainly determined by the estuarine dynamic
structure (e.g. estuarine circulation and tidal asymmetry), as
indicated by the decomposition of the salt flux component.
Several previous studies reported the effects of morphological
evolution on the estuarine dynamic structure; for example,
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Zhang et al. (2023) reported that the substantial loss in the
intertidal areas with changing geometry (from a highly-curved
bank to a highly constrained channel) weakened the flood tidal
asymmetry of the north branch in the Yangtze Estuary. Therefore,
we examined the changes in the dynamic structure in the
Modaomen Estuary under different simulated conditions to
reveal the influencing mechanism of channel branching.

5.1.1 Blocking water effects

Mouth bars generally develop in estuaries; therefore, their
morphology is complicated. In particular, they serve as a sill that
affects the exchange flow between the estuary and ocean (Gong
et al., 2022b). According to Gong et al. (2022b), mouth bars can
weaken saltwater intrusion in estuaries by 15-23%. Saline water,
accompanied by flood currents, can intrude the inner estuary
region. In this study, the intruded saline waters were retained
during the neap tide, in response to the blocking effects of the
mouth bar. The mouth bar exerted a substantial effect on blocking
the intruded saline waters and increasing the retention time of the
intruded water. Figure 7 shows the salinity distribution along the
longitudinal profile at the ebb slack during the spring and neap
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tides. The saline waters were retained over longer distances across
the estuary during the neap tide, compared to the retention extent
of the saline water intrusion observed during the spring tide. In the
simulation, the mouth bar formed in the single-channel simulation
was steeper than that formed in the double-channel simulation.
During the spring tide, the saline waters were retained over longer
distances across the estuary, with a single channel compared with a
double channel; the opposite pattern was observed during the neap
tide. Furthermore, high salinity was limited to the bottom water
layers in the single channel while depicting higher salinity
stratification compared with that noted in the double channel.

5.1.2 Impact of estuarine circulation

The simulation conducted in this study revealed that estuarine
circulation played an important role in the extent of saline water
intrusion; for example, the intensification of estuarine circulation
markedly amplified both the strength and spatial asymmetry of
saltwater intrusion. Zhu et al. (2003) conducted idealized numerical
experiments of an estuary and revealed that the baroclinic gradient
generated by the salinity front caused a landward density current in
the bottom layer; then, for ensuring mass conservation, a
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values indicate the salt flux was transported landward.

synchronous increase occurred in the seaward surface current,
resulting in a longitudinal residual circulation pattern. When the
baroclinic effect strengthened—for example, as the intensity of
saltwater intrusion increased—the bottom density current
accelerated, leading to a pronounced landward extension of the
saline waters, with the penetration in the bottom water layer being
roughly 3% greater than that in the surface layer.

We calculated the residual currents in different simulated
conditions to determine the dynamic structure of estuarine
circulation in the study region (Figure 8). During the spring tide,
double estuarine circulation was detected in both the single and
double channels; however, we noted significant differences in the
spatial distribution of estuarine circulation between the single and
double channels. For the double channels, the residual current
flowed towards the sea, through the water column at Station 22, and
towards the sea in the surface water layers but towards land in the
bottom water layers at Station 22 with single channel. This indicated
that the location of estuarine circulation was closer to the upstream
area in the single channel, compared to that observed in the double
channel, indicating higher intensity estuarine circulation in the
single channel, which contributed to the greater extent of saline

Frontiers in Marine Science

water intrusion in the region. During the neap tide, we observed
notable differences in the distribution of estuarine circulation
between the single and double channels. Compared with the
velocity of the residual current towards the land at Stations 22
and 30, the velocity in the bottom water layers was more
pronounced in the double channel than in the single channel.

5.1.3 Impact of tidal asymmetry

Previous studies analyzed the impacts of tidal asymmetry on
riverine material transport, for example, Pham Van Bang et al.
(2023) revealed that tidal asymmetry significantly influenced
riverine material transport through turbulence modulation and
phase-difference correction. In this study, we calculated the ratio
of the flood and ebb currents during the spring and neap tides (Li
etal,, 2025), shown in Figure 9. The ratio in the surface water layer
was less than 1, indicating ebb-dominance in the surface layer.
However, the ratio in the bottom layer was greater than 1, indicating
flood-dominance in the bottom layer. During the spring tide, the
ratio was approximately 1 throughout the water column; during the
neap tide, at a few stations (Stations 10, 22, 34, and 38), the ratio was
higher than 1. This phenomenon indicated that the tidal asymmetry
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FIGURE 7
Distribution of current, salinity along the longitudinal section in the modeling scenarios (a, ) with double-channel and (b, d) with single-channel
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was pronounced during the neap tide, thereby increasing the § 2 Study implications for estuarine
intensity of the saline water intrusion in the region. Furthermore, mg nagement

the flood dominance occurred in regions that were located away

from the estuary in double channel condition than single channel The formation and evolution of mouth bar in the estuaries was
condition, contributing to the intensity of saline water intrusion in  affected by many factors, such as river discharge, tide, wave and
the region. sediment load (Edmonds and Slingerland, 2007; Leonardi et al.,
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2013; He et al.,, 2018; Tan et al.,, 2019). And it can influence the
estuarine dynamic, for example, Xie et al. (2017) indicated that the
inside bar formation in the Qiantang Estuary caused the
deformation of tidal wave and resulted in tidal asymmetry using
an idealized numerical model. As results, morphological evolution
influenced salinity intrusion processes in the estuaries and river
deltas, such as the Yangtze River Estuary (Wu et al., 2016b), the
lower Hudson River Estuary (Ralston and Geyer, 2019), Vietnamese

10.3389/fmars.2025.1696630

Mekong Delta (Binh et al.,2021). As indicated in this study, the
morphological evolution of mouth bars resulted from channel
branching exhibit various impacts on saline water intrusion,
mainly by affecting the estuarine dynamics. Therefore, the effects
of the morphological evolution of mouth bars on the water
resources in estuaries must be investigated. In context of global
changes, human activities exerted great effects on morphological
evolution in the estuaries and river deltas, such as Qiantang Estuary
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single-channel in spring tide, (M—R) with double-channel in neap tide, (S—X) with single-channel in neap tide.
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Ratios of averaged current velocity of the two simulated working conditions. Figure (a—f) shows the tidal asymmetry at the single-channel estuary,
Figure (g—1) shows the tidal asymmetry at the double-channel estuary. The dotted line represents spring tide. The solid lines represent neap tides.
The ratio greater than 1 indicates a flood tide advantage, while the ratio less than 1 indicates an ebb tide advantage.

(Xie et al, 2021), Yangtze River Estuary (Luan et al, 2016), and
Lingdingyang Bay of the Pear]l River delta (Yang et al, 2019).
Therefore, special attentions must be paid to sustainable
management of river estuaries and deltas to ensure the freshwater
resource safety.

6 Conclusions

In this study, we explored the impacts of morphological changes
in the mouth bar structure (caused by channel branching) on the
saline water intrusion in the Modaomen Estuary by developing an
idealized model of the region. The intensity of saline water intrusion
was higher during the neap tide than during the spring tide in both
the single- and double-channel simulations. Channel branching
affected the saline water intrusion during both the spring and neap
tides mainly by affecting the estuarine dynamics (e.g. estuarine
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circulation and tidal asymmetry). During the neap tide, the extent of
saline water intrusion in the double-channel simulation was more
significant than that observed in the single-channel simulation;
however, the opposite pattern was observed during the spring tide.
This phenomenon was mainly caused by the changes in the salt
transport mechanism, indicated by the decomposition of the salt
flux component. In general, channel branching altered the
circulation structure in the estuary, depicting enhanced estuarine
circulation in the single- and double-channel simulations during
the spring and neap tides, respectively. The mouth bar depicted a
‘blocking effect’ on the saline water intrusion and recession in the
region; the retention of saline water in the single- and double-
channel simulations was pronounced during the spring and neap
tides, respectively, thereby promoting estuarine circulation.
Therefore, to ensure water security in estuaries, the morphological
effects of estuarine regulation projects must be considered for
effective estuarine management.
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