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Epitaxial tin ferrite (SnFe2O4) thin films were grown using KrF excimer (248 nm) pulsed
laser deposition technique under different growth conditions. Highly epitaxial thin films
were obtained at growth temperature of 650°C. The quality and epitaxial nature of the
films were examined by X-ray diffraction technique. Furthermore, the phi-scans of the film
and substrate exhibit fourfold symmetry, which indicates a cube-on-cube epitaxial growth
of the film on MgAl2O4 substrate. Moreover, the magnetic force microscopy measure-
ment shows domains with cluster-like structure, which is associated with ferromagnetic
phase at room temperature. The coercive field and remnant magnetization of the films
decrease with increase in temperature. These high quality ingenious magnetic films could
be potentially used in data storage devices.
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INTRODUCTION
Recently, spinel ferrites with the general formula MFe2O4 (where
M=Co, Mn, Mg, Sn, etc.) attract considerable research inter-
est because of their wide applications in heterogeneous cata-
lyst, sensors, transformers, magnetic recording, biomedical, etc.
(Abdeen, 1998; Sedlár et al., 2000; Bao et al., 2007; Barcena
et al., 2008; Xiang et al., 2010). The ferrites can be classified
into different categories depending upon their cation distribu-
tions. Based on the cations distribution among the tetrahedral
and octahedral sites of the coordinated oxygen, they can be either
normal spinel M2+

Tetrahedral[Fe3+Fe3+
]OctaheralO4, or inverse spinel

Fe3+
Tetrahedral[M

2+Fe3+
]OctaheralO4 (Anantharaman et al., 1998).

Till date, most of the works on spinels have been reported on
bulk in order to understand their magnetic behavior and correlate
magnetic properties to their structural properties to improve their
applications (Lüders et al., 2005). Epitaxial thin films of spinels
have not drawn such a wide research attention despite of the fact
that epitaxial films could modify the physical properties compared
to the bulk material (Lüders et al., 2005). Epitaxial thin films of var-
ious ferrites have been grown using different techniques (Zimnol
et al., 1997; Reisinger et al., 2003; Huang et al., 2007; Leung et al.,
2008; Su et al., 2010). Among these techniques, pulsed laser depo-
sition (PLD) is a very versatile and cost effective method which
allows the stoichiometry transfer of multi-component materials
from target to substrate (Green et al., 1995).

Pulsed laser deposition technique has been used for deposi-
tion of epitaxial thin films of magnesium ferrite on strontium
titanate (Kim et al., 2010). The effect of post-annealing on the
magnetic properties of epitaxial thin films of cobalt ferrite was
studied (Axelsson et al., 2009). Nanostructured tin ferrites have
been synthesized using different techniques (Liu et al., 2004; Liu
and Li, 2005). It was also observed that the coercivity of the tin fer-
rite particles decreases with increase in the particle size (Liu et al.,

2004). Superparamagnetic behavior was observed for nanostruc-
tured tin ferrite (Liu and Li, 2005). PLD has been used to deposit
(111) oriented epitaxial tin ferrite films on (0001) sapphire sub-
strate (Gupta et al., 2011). In this communication, we report the
epitaxial growth of tin ferrite films on (001) MgAl2O4 substrate
using PLD technique. The quality and epitaxial nature of the films
were evaluated by X-ray diffraction (XRD) diffraction technique.
Magnetic domains with cluster-like structure were observed in the
magnetic force microscopy (MFM) image of the film.

EXPERIMENTS
SnFe2O4 target for PLD was made using solid state reaction
method. SnO2 (99.9%, Alfa Aesar, USA) and Fe2O3 (99.5%, Alfa
Aesar, USA) were used as received. The well-ground mixture was
heated at 1200°C for 10 h. The powder mixture was cold pressed
at 6× 106 N/m2 load and sintered at 1400°C for 10 h. The films
were deposited using KrF excimer PLD technique (Lambda Physik
COMPex, λ= 248 nm and pulsed duration of 20 ns) at different
substrate temperatures (550, 600, 650, and 690°C) under oxygen
pressure of 0.1 mbar. The laser was operated at a pulse rate of
10 Hz, with energy of 300 mJ/pulse. The laser beam was focused
onto a rotating target at a 45° angle of incidence. The target to sub-
strate distance was 5 cm. Single crystal of (001) oriented MgAl2O4

was used as substrate. The substrate was ultrasonically cleaned in
acetone and isopropanol for 10 min in each solvent.

The structural characterizations were performed using XRD.
The XRD pattern of the films were recorded with Bruker AXS
X-ray diffractometer using the 2θ– θ scan, rocking curve, and
phi-scan with CuKα1(λ = 1.5406 Å) radiation which operated at
40 kV and 40 mA. The XRD measurements were performed using
0.1 mm aperture of the slits. The instrument broadening was cor-
rected using LaB6 as an instrumental broadening standard. MFM
imaging was performed under ambient conditions using a Digital
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Instruments (Veeco) Dimension-3100 unit with Nanoscope®
III controller, operated in tapping mode. Magnetic measure-
ments were performed on Quantum Design vibrating sample
magnetometer (VSM). The optical transmittance measurements
were made using UV–visible spectrophotometer (Ocean Optics
HR4000).

RESULTS AND DISCUSSION
The epitaxial nature of the films was investigated by XRD tech-
nique. The different scans such as θ–2θ, rocking (ω) curve, and phi
(φ)-scans were used to study the quality and epitaxy of the films
on (001) oriented MgAl2O4 substrate. Gupta and Yakuphanoglu
(2011) and Gupta et al. (2011) have used sapphire and SrTiO3

as substrate for epitaxial growth of SnFe2O4. In the present
study, MgAl2O4 was chosen as substrate since both film and sub-
strate have cubic crystal structure with small lattice mismatch
(~3.8%). All the films grown at different temperatures showed
preferred orientation along (002) direction. Figure 1 shows the
θ–2θ and rocking curve for (002) peak for the film grown at
650°C. It is seen in the XRD pattern that only one peak ori-
ented along (002) direction is observed, indicating the epitaxial
nature of the film along (002) direction. The epitaxial nature of
the film is due to the close lattice parameters of film and sub-
strate as both SnFe2O4 (face-centered cubic, a= 0.842 nm) and
MgAl2O4 (cubic, a= 0.808 nm) exhibit cubic symmetry (space-
group Fd3m). The full width at half maximum (FWHM) of (002)
peak was estimated using the rocking curve. The FWHM was cal-
culated to be 0.42°, 0.42°, 0.39°, and 0.44° for the films grown
at 550, 600, 650, and 690°C, respectively. The lowest FWHM was
observed for film grown at 650°C, indicating highly quality of the
film. The FWHM was for SnFe2O4 film grown on SrTiO3 sub-
strate was reported to be 0.96°, 0.94°, 0.56°, and 0.96° for the
films grown at 550, 600, 650, and 690°C, respectively (Gupta and
Yakuphanoglu, 2011). As observed, the FWHM for the SnFe2O4

films grown on MgAl2O4 are better than that on SrTiO3, which is
due to the close lattice match of SnFe2O4 and MgAl2O4. Although
the lattice mismatch between the substrate and films is about 3.8%,
the film shows strain of about 1.4%. We consider this high quality
film for further characterizations. The phi (φ)-scan of the film and
substrate was recorded using (311) reflection plane (2θ= 34.28
and ψ= 25.24) and is shown in Figure 2. The phi-scan of the film
and substrate revealed fourfold symmetry for both. The phi-scan
shows a cube-on-cube epitaxial growth of SnFe2O4 on MgAl2O4

substrate.
Figure 3 shows the MFM image of the film recorded in the

demagnetized state. The presence of magnetic domain due to
grains of SnFe2O4 is quite evident in the MFM image. The grain
size of the SnFe2O4 films was estimated to be 22 nm using (002)
peak of XRD pattern (Gupta et al., 2011). The size of the mag-
netic domain was observed to be about 200 nm, indicating that
about 10 grains make a domain. As seen in Figure 3, the magnetic
image consists of domains with cluster-like structure where the
magnetization is confined up and down with light and dark color,
respectively.

The optical properties such as transparency and optical
bandgap of the epitaxially grown tin ferrite were studied. Figure 4
shows the optical transmittance spectra of the film. The optical

FIGURE 1 | X-ray diffraction patterns of SnFe2O4 film grown at 650°C
(inset figure shows the rocking curve of the film).

FIGURE 2 | Phi-scans of (002) oriented film grown at 650°C and the
MgAl2O4 substrate.

bandgap of the film was calculated from absorption coefficient
and photon energy. The absorption coefficient (α) of the film was
calculated using the following expression (Gupta et al., 2009)

α = ln

(
1

T

)
/d (1)

where T is transmittance and d is film thickness. The optical
bandgap of the films was calculated using the following equation
(Dolia et al., 2006)

(α h ν)2
= A(hν− Eg) (2)
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FIGURE 3 | MFM image of the SnFe2O4 film.

FIGURE 4 | UV–visible spectra of SnFe2O4 film (inset of the figure
shows (αhν)2 vs. hν plot).

where A and Eg are constant and optical bandgap, respectively.
The Eg can be determined by extrapolations of the linear regions
of the plots to zero absorption. Inset of Figure 3 shows (αhν)2 vs.
hν plot for the film. The bandgap of the film was calculated to be
2.8 eV. A bandgap of 2.7 eV is observed for tin ferrite film grown
on sapphire substrate (Gupta et al., 2011). Dolia et al. (2006) have
observed a bandgap of 2.5 eV for nickel ferrite film, whereas the
bandgap of 2.7 eV was reported for zinc ferrite film (Wu et al.,
2001).

The magnetic properties of the film were studied under differ-
ent conditions. Figure 5 shows the variation of magnetization with
temperature (M vs. T ). As seen in Figure 5, the effect of temper-
ature on magnetization was studied in zero-field-cooled (ZFC)

and field-cooled (FC) process under different applied magnetic
fields. For the ZFC measurements, the film was cooled from high
temperature to 10 K without applying any external magnetic field.
After cooling to 10 K, an external magnetic field was applied and
the magnetization of the film was recorded during the heating.
For FC measurements, the magnetization is recorded while cool-
ing the sample under an applied external magnetic field. As seen
in Figure 5, during ZFC measurements the magnetization of the
film increases with temperature up to ~275 K and then decreases
with further increase in temperature. The nature of ZFC and FC
curves is very similar but the magnitude of magnetization for FC
curves is high. Similar results were observed for M vs. T process
under high magnetic field. Furthermore, it should be noted that
there is a distinct irreversibility between the ZFC and FC magneti-
zation curves. This irreversibility persists up to high temperature
of 375 K. Similar nature in M vs. T has been observed for the
SnFe2O4 films grown on SrTiO3 and sapphire substrate (Gupta
and Yakuphanoglu, 2011; Gupta et al., 2011). The magnetization
at 10 K in FC measurement was observed to be 12.9, 14.2 and
67.6 emu/cm3 for the SnFe2O4 film grown on MgAl2O4, SrTiO3,
and sapphire substrate, respectively. Although the maximum mag-
netization was observed on sapphire substrate, the difference in
the values of magnetization measured during ZFC and FC at 10 K
was almost constant (~10 emu/cm3) for the SnFe2O4 films on
MgAl2O4, SrTiO3, and sapphire substrate. The different values of
magnetization for SnFe2O4 films on different substrates could be
due to strain introduced by lattice mismatch of film and MgAl2O4,
SrTiO3, and sapphire substrates (Belenky et al., 2005). The lattice
mismatch between SnFe2O4 and MgAl2O4, SrTiO3, and sapphire
was estimated to be 3.8, 7.3, and 8.4%, respectively. The strain
introduced by lattice mismatch is an important parameter con-
tributing to magnetic properties such as Curie temperature, coer-
civity, saturation magnetization, and anisotropy (Rao et al., 1998).

Figure 6 shows the variation of magnetization with applied
magnetic field (M vs. H ) at different temperatures. The M vs. H
plots were measured at 10 and 300 K. The open hysteresis loop near
origin at room temperature confirms the ferromagnetic nature of
the film. It is observed that the coercive field and remnant mag-
netization of the film decrease with increase in the temperature.
The coercive field of 4575 and 431 Oe is observed at 10 and 300 K,
respectively. On the other hand, the value of remnant magneti-
zation of 25.2 emu/cm3 and 8.3 emu/cm3 is observed at 10 and
300 K, respectively. The coercive field of 4861 and 1323 Oe was
reported for SnFe2O4 film on sapphire substrate at 10 and 300 K,
respectively(Gupta et al., 2011). On the other hand, the coercive
field of 1853 and 801 Oe was observed for SnFe2O4 film on SrTiO3

substrate at 10 and 300 K, respectively (Gupta and Yakuphanoglu,
2011). Again the difference in the remnant magnetization and
coercive field for SnFe2O4 films on MgAl2O4, SrTiO3, and sap-
phire substrates could be due to lattice mismatch between the film
and substrates. The structural and magnetic characterizations of
SnFe2O4 film on different substrates indicate that the properties
of the film can be modified by using different substrates.

CONCLUSION
We have successfully demonstrated the deposition of epitaxial tin
ferrite thin films on MgAl2O4 substrate using PLD technique. XRD
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FIGURE 5 | M vs.T plots for SnFe2O4 film at different magnetic fields under FC and ZFC conditions.

FIGURE 6 | M vs. H plot for SnFe2O4 film at different temperatures.

measurements confirm the epitaxial nature of the tin ferrite film.
The phi-scan of the film and substrate shows fourfold symmetry,
which evidenced the cube-on-cube epitaxial growth of tin fer-
rite on MgAl2O4 substrate. The optical bandgap of the film was
observed to be 2.8 eV. Furthermore, the magnetic measurements
exhibit the ferromagnetic nature of the film at room tempera-
ture. These epitaxial, transparent, and ferromagnetic films could
be potentially used in the next generation data storage devices.
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