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Replacement of the silicon dioxide thin films in metal-oxide-semiconductor structures for
microelectronics with high-permittivity dielectrics (high-k ) is a crucial step in the further
down-scaling of microelectronic devices. Technological development of the fabrication
processes and better theoretical understanding of the physical phenomena in the con-
sidered structures are demanded simultaneously. Important issues concerning high-k
are discussed in this paper and directions for further development are indicated. Fur-
ther progress also requires better understanding of the physical phenomena appearing
in stacked high-k /interfacial layer dielectrics.
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SILICON DIOXIDE THIN FILMS
Interfaces in electron devices are part of their basic structure. Func-
tioning of such devices is inseparably connected to the presence
of different interfaces. Of particular importance are metal-oxide-
semiconductor (MOS) structures, where two conductive materials
(metal and semiconductor) are separated by a thin dielectric layer.

Over decades, silicon dioxide has been used as a unique solution
for insulating material of MOS structures due to its outstanding
properties, such as exceptionally low-defect density and high band
offsets both for electrons and holes.

A particular advantage of this material is the possibility to grow
silicon dioxide films by oxidation of the silicon substrate itself,
thus, avoiding complicated deposition processes. Simultaneously,
this fabrication method ensures excellent match of the dielectric
layer with the substrate, ensuring low density of defects at the
insulator/semiconductor contact.

Nevertheless, there is a thin region near the semiconductor
substrate containing several types of imperfections. Densities of
these defects are substantially lower then in structures contain-
ing other dielectric materials. The region close to the substrate
possessing different properties different from those of the bulk
is referred to as interfacial layer. The notion of the interfacial
layer has undergone substantial alteration since its initial intro-
duction. In the early stage, the interfacial layer was considered a
region in the oxide about 10 nm thick, in which mechanical strains
(interface constraints) between the two materials are present (Jac-
codine and Schlegel, 1966; Boyd and Wilson, 1987). Substantial
deviations from the SiO2 stoichiometry are present in a region
about 1 nm thick (Nakazawa et al., 1989). Using scanning tunnel-
ing microscopy and spectroscopy, an interfacial transitional region
about 0.9 nm thick has been found, in which the silicon oxide sur-
face band gap increases gradually with thickness (Xue et al., 2007).

Variations of the bandgap in the substrate are limited to about
0.3 nm. Ab initio studies show that both the optical and the static
dielectric constants change abruptly in the vicinity of the SiO2/Si
interface, while the energy gap changes gradually on the SiO2 side
(Wakui et al., 2007). Therefore, the presence of a layer about 1 nm
thick (about three monoatomic layers), having properties different
that the bulk SiO2 is to be taken into consideration when studying
MOS structures. Such a thin layer also plays a crucial role in the
modification of the properties of SiO2/Si interface with nitrida-
tion (Mi et al., 1993; Novkovski, 1999), which is found to be an
important method for improvement of electrical and reliability
properties of metal/SiO2/Si structures (Dutoit et al., 1994).

HIGH-k DIELECTRICS
Progressive down-scaling of the microelectronic devices leads to
ultimate decrease of the thickness of the dielectric in MOS struc-
tures. Even if introducing the improvements with various tech-
nological procedures such as the nitridation, the use of silicon
dioxide as dielectric is limited (Novkovski and Atanassova, 2006).
Dielectrics with high-relative permittivity (high-k) (Al2O3, Ta2O5,
SrTiO3, TiO2, ZrO2, HfO2, La2O3, Lu2O3, Sc2O3, Dy2O3, Y2O3,
etc.) and their pseudobinary alloys are studied as a replacement of
the silicon dioxide for various microelectronics applications (Wilk
et al., 2001; Houssa et al., 2006; Wong and Iwai, 2006; Kittl et al.,
2009). The main advantage of high-k dielectrics compared to sil-
icon dioxide is the possibility to obtain the same capacitance with
a larger physical thickness (d) of the dielectric layer and thus to
reduce the leakage due to direct tunneling occurring in ultrathin
SiO2 (thinner than 2 nm). Nevertheless, high-k dielectrics have
lower heights of tunneling barriers (band offsets, Φ), which leads
to a somewhat lower benefit from the replacement of the SiO2

with high-k. A real measure of the gain in reducing leakage due to
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direct tunneling is roughly given by the ratio of product Φ·d for
the considered materials. For example, band offset for electrons
at the W/SiO2 interface is Φe= 3.45 eV, while at the W/Ta2O5

interface it is Φe= 0.55 eV (Novkovski, 2006). Relative permittiv-
ity for SiO2 is 3.9 while for Ta2O5 it is about 40 (Kittl et al., 2009),
and hence the same capacitance with Ta2O5 as dielectric will be
obtained with 10 times bigger physical thickness of the high-k
dielectric than with SiO2. Although the benefit is diminished with
the decrease of band offset (by a factor of six), it is still rather
important; the capacitance can be doubled at the same level of
leakage current.

The above approach is straightforwardly applicable in the case
of metal-insulator-metal (MIM) structures. In the case of high-k
deposited on semiconductor, during the formation of the high-k
layer, however, an interfacial SiO2-containing layer is inevitably
formed at the Si substrate (Alers et al., 1998). This interfacial layer
substantially modifies properties of MOS structures and hence it
deserves particular attention.

ROLE OF THE INTERFACIAL LAYER
Several authors consider the interfacial layer as unwanted, and
they propose different solutions for its reduction or elimination
(Engstrom et al., 2012). Indeed, due to the lower permittivity of
the interfacial layer than that of the bulk high-k, the capacitance
of the stack high-k/interfacial layer is lower than that of a high-k
single layer with the same total physical thickness.

Many factors determine the interfacial layer thickness. For
example, interfacial layer thickness is found to be dependent on
the gate material (Novkovski, 2006; Park et al., 2014). Detailed
list of the factors determining the interfacial layer thickness and
composition has to be a part of the future investigations. Several
processes are proposed for thickness control. Interfacial thickness
can be reduced to some tenths of a nanometer or even eliminated
by certain technological processes; however, excessive application
of these processes leads to a formation of silicides (Xiuyan et al.,
2014). A kind of natural thickness saturation is perceptible in some
cases. For example, in the case of Ta2O5 on Si, after oxygen anneals
values of about 3 nm are obtained (Lau, 2012). These values are
close to the values for the case of Ta2O5 films grown by thermal
oxidation of Ta (Karmakov et al., 2012).

Although the interfacial layer degrades significantly the MOS
structure capacitance, it has rather important beneficial effects.
The presence of such an ultrathin layer substantially modifies the
band offsets. It has been shown that in metal-Ta2O5/SiO2-Si struc-
tures leakage current is limited by injection of electrons from the
substrate at positive gate (band offset 3.15 eV) and with the injec-
tion of the holes from the substrate at negative gate polarity (band
offset 4.7 eV) (Novkovski and Atanassova, 2004). Thus, the band
offsets of the stacked layer attain significantly higher values than
these for high-k itself, leading to substantial reduction of the leak-
age current. As a result, combining interfacial layer and high-k
dielectric, low leakage simultaneously with high capacitance can
be obtained, leading to rather low-equivalent oxide thickness at
acceptable level of leakage current for further generations of inte-
grated circuits. Besides, the presence of an interfacial SiO2 layer
allows maintaining the density of interface states at acceptably low
level (Yang et al., 2012; Litta et al., 2014).

Possibilities of decrease of the equivalent oxide thickness
by reducing the interfacial layer are limited, since subsequent
processes at higher temperature cause additional growth of the
layer. Better solution for decreasing the equivalent oxide thick-
ness is the nitridation of the interfacial layer; nitridation increases
the dielectric premittivity of this layer and hence decreases the
equivalent oxide thickness of the entire stack. Various nitrida-
tion processes are introduced to improve the stacked dielectric
layer properties (Houng et al., 2001). The main advantage of these
processes is the increase of the interfacial layer permittivity (oxyni-
tride) leading to decreased equivalent oxide thickness (Novkovski
and Atanassova, 2005). However, a decrease of band offsets dimin-
ishes the positive effect of the nitridation. Therefore, optimum
conditions for fabrication of dielectric stacks are to be identi-
fied in order to benefit at maximum from the nitridation process
(Novkovski, 2009). Additionally, nitridation improves the dielec-
tric integrity of the stack and hence the reliability of the devices
based on it. There are many technological parameters to play with
in the search for optimum conditions for a particular process.
Further improvements with choosing the right combination of
properties of the parts of the stack are to be expected.

Another important issue concerns the choice of the gate metal.
Even if the metal gate is not in direct contact with the interfa-
cial layer, in the case of nanosized films, it influences strongly its
thickness and properties (Novkovski and Atanassova, 2015).

OPEN ISSUES
Many concepts used in description of silicon dioxide are nowadays
used without serious reconsideration for description of high-k
dielectrics. In some cases, such an approach is justified. How-
ever, in certain cases straightforward application of such concepts,
measurement methods, and analysis is shown to be misleading,
as is the case with the determination of conduction mechanisms
(Novkovski, 2007). Therefore, in the future, much more atten-
tion is to be paid to the reconsideration of the applicability of the
concepts and methods used in the description and prediction of
the properties of the MOS structures containing high-permittivity
dielectric layer.

Among the methods to be discussed is the determination of the
density of the charges in the dielectric. In the considered struc-
tures, there are two dielectric materials and three interfaces that can
contribute to charge trapping: high-k bulk layer, interfacial layer
(silicon dioxide, oxynitride, or silicate), metal/high-k interface,
high-k/interfacial layer interface, and the interfacial layer/substrate
interface. Various processes of charging and discharging these
traps can occur. Standard methods of determination of oxide and
interface charges are probably incorrect in many cases; various
methods give different results (Miyata, 2012). Very high values of
the interface state densities (of the order of 1013 eV−1cm−2) at
midgap were determined in some cases (Miyata et al., 2014).

In addition, for film thicknesses of the order of 1 nm, some vari-
ations in the nature of the conduction mechanism can occur; in
tunneling (Fowler–Nordheim, direct and trap assisted) and hop-
ping, as well as in Poole–Frenkel field enhanced emission. Ballistic
transport will be important in majority of the cases, since distance
to be traveled by electrons emitted from the traps or injected from
an electrode is of the order of few atomic radii. Some substantially
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new integral quantum mechanical solution for the dielectric stack
or the MOS structure is expected to appear. Such a model will not
only give further better insight into physical phenomena in high-k
based MOS structures but is also likely to provide solution with-
out using several suppositions and compromises used in currently
accepted methods of description of properties of MOS structures.

Based on above indicated progress lines, new technological
solutions have to be developed to provide combinations of high-k
with appropriate interfacial layers having optimal properties for
MOS based microelectronic devices.
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