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Molecular Dynamics (MD) was used to simulate cylindrical Pd and Ir domains with ideal
dislocations parallel to the axis. Results show significant discrepancies with respect to
predictions of traditional continuum mechanics. When MD atomistic models are used to
generate powder diffraction patterns, strong deviations are observed from the usual para-
digm of a small crystal perturbed by the strain field of lattice defects.The Krivoglaz–Wilkens
model for dislocation effects of diffraction line profiles seems correct for the screw disloca-
tion case if most parameters are known or strongly constrained. Nevertheless the practical
implementation of the model, i.e., a free refinement of all microstructural parameters, leads
to instability. Possible effects of the experimental practice based on Line Profile Analysis
are discussed.
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INTRODUCTION
Line broadening has been used since the dawn of X-ray diffraction
(XRD) to study the microstructure of crystalline phases. Besides
the most basic information on the size and shape of crystalline
domains, which in the simplest form is provided by the well-
known Scherrer formula (Scherrer, 1918; Klug and Leroy, 1974),
lattice defects have also been extensively studied [e.g., see (Warren,
1990; Krivoglaz, 1996; Snyder et al., 1999; Mittemeijer and Scardi,
2004)].

Analytical techniques to extract information from diffraction
line profiles range from simple integral-breadth methods [see
Scardi et al. (2004) for a recent review], including accurate studies
of isolated peak tails (Wilson, 1955; Groma, 1998; Groma and
Székely, 2000) to more complex Fourier analysis (Warren and
Averbach, 1950; Warren, 1990), underlying the most recent Whole
Powder Pattern Modeling (WPPM) approach (Scardi and Leoni,
2002; Scardi, 2008). All methods for studying dislocations rely
on the early studies by Wilson, Krivoglaz, and Wilkens (Wilson,
1955; Wilkens, 1970a,b; Krivoglaz et al., 1983). The last author, in
particular, provided an analytical expression for the Fourier Trans-
form (FT) of the diffraction line profile of crystalline domains
containing dislocations (Wilkens, 1970a,b)

AD
{hkl} (L) = exp

[
−2π2s2L2 < ε2

{hkl} (L) >
]

= exp

[
−

πb2

2
ρChkls

2L2f ∗
(

L

Re

)]
(1)

where L is the Fourier length (distance between scattering cen-
ters) and s the scattering vector (s= 2 sin(θ)/λ). Main parameters
are the average dislocation density (ρ) Burgers vector modulus
(b) and effective outer cut-off radius (Re), which is related to the
extension of the effects of the dislocation strain field and, more
generally, to dislocation interaction. The f * is a smooth function

of L/Re obtained by Wilkens in a heuristic way, to grant inte-
grability of Eq. 1 (Wilkens, 1970b). The anisotropy of the elastic
medium and of the dislocation strain field, which depends on the
specific dislocation type (e.g., edge or screw) and slip system, is
accounted for by the anisotropy or contrast factor Chkl. For pow-
der diffraction, an average is used for all equivalent components
of a diffraction line profile, which depends on crystal symmetry,
and more specifically on the Laue group; given the elastic tensor
components, C ij and Sij, the average contrast factor, Chkl, can be
calculated for any desired crystalline phase and slip system 〈uvz〉
{hkl} [e.g., see Martinez-Garcia et al. (2009).

The Krivoglaz–Wilkens approach, using Eq. 1 or similar
approximations, is useful and easily implemented in the exper-
imental data analysis; it has been extensively used in materials
science (e.g., see work by Klimanek and Kuzel (1988), Kuzel
and Klimanek (1988), Kuzel and Klimanek (1989), Ungar et al.
(1998), Ungar (2008), Scardi and Leoni (2002), Scardi et al.
(2007)] even if, as a matter of fact, it has never been fully vali-
dated. A few studies (Kamminga and Delhez, 2000; Kaganer and
Sabelfeld, 2011;Kaganer and Sabelfeld, 2014) have tested Eq. 1
against numerical simulations, but the latter were based on the
same continuum mechanics expressions for the dislocation strain
field underlying Eq. 1, and in any case referred to rather idealized
microstructures. An experimental validation, e.g., by Transmission
Electron Microscopy (TEM) is not straightforward: quantitative
TEM evidence is hard to obtain when the dislocation density is
in the range of interest to powder diffraction (typically, above
1014 m−2), especially after extensive plastic deformation and in
small domains.

A useful and quite different point of view can be provided
by Molecular Dynamics (MD). MD simulations can realistically
describe nanocrystalline domains and clusters with the detail of
atomistic models, which can be used to generate powder dif-
fraction patterns from known, designed microstructures (Bulatov
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et al., 1998; Jacobsen and Schiotz, 2002; Yamakov et al., 2002;
Yamakov et al., 2004; Li et al., 2010). The present work is a first
step toward this direction, to shed some light on the validity of
Eq. 1 and analytical methods relying on it, and the more general
meaning of diffraction from defected polycrystalline materials.

In the present paper, the strain field in cylindrical nanocrystals
containing screw or edge dislocations is first discussed, moving
from the traditional continuous mechanics (stress–strain) descrip-
tion to atomistic simulations; strain effects on XRD patterns from
simulated single-crystals and powders are then discussed in terms
of broadening of the line profiles. In the last section, a state-of-the-
art powder diffraction analysis is employed to investigate the simu-
lated patterns, to assess validity of the Krivoglaz–Wilkens approach
also considering the additional effects of surface relaxation.

MATERIALS AND METHODS
Pd and Ir nanocrystals containing line defects were simulated
by MD using the LAMMPS code [Large-scale Atomic/Molecular
Massively Parallel Simulator – (Plimpton, 1995)], implementing
geometrical conditions similar to those underlying the derivation
of Eq. 1, i.e., straight dislocation lines in cylindrical regions. First
step was the generation of isolated edge or screw dislocations
in bulk microstructures, followed by a stabilization of defect-
containing microstructures by the Embedded Atom Method (Daw
and Baskes, 1984; Foiles et al., 1986; Sheng et al., 2011). Figure 1
illustrates geometrical details of the generation process. The start-
ing model of microstructure with screw dislocation was obtained
by shifting the atomic coordinates of a perfect single crystal by
uz =

bθ
2π

along the [hh0] cylinder axis; to generate edge dislo-
cations, instead, two (110) half-planes were removed along the
cylinder axis. Periodic Boundary Conditions (PBCs) for the screw
dislocation line were applied along the [hh0] axis (Figure 1C),

whereas they were applied both along the
[

hh2h
]

dislocation axis

and along
[

hh0
]

for the edge dislocation (Figure 1A). The ini-

tial microstructures were equilibrated for 1ns using the Langevin
thermostat at 300 K combined with a constant Number of atom,
Volume, and Energy (constant NVE) integration with 1fs time
step. Next to the equilibration, a time trajectory was generated
recording sequences of 100 microstructures at 1ps time intervals.

A time-average of the arrangement in space of the atomic posi-
tions was computed along the time trajectory, so to cancel the
thermal effects out (Leonardi et al., 2011); this Time Averaged
Microstructure (TAM) was then used to calculate powder dif-
fraction patterns by the Debye scattering equation (DSE) (Debye,
1915; Gelisio et al., 2010), using the atomic coordinates in the
cylindrical regions shown in Figure 1 (black line wireframe). As in
the Krivoglaz–Wilkens approach, dislocations were always straight
lines running parallel to the cylinder axis. Effects related to the
position of the dislocation line were also considered, randomly
displacing the cylinder region of interest and then considering cor-
responding powder patterns and averages. For comparison, sim-
ilar procedures were carried out for the same cylindrical regions
without any line defect. To assess the role of domain size and sur-
face, few other regions were also considered for different domain
shapes (cube and sphere) and for smaller systems. In particu-
lar a D= 20 nm, H= 28.7 nm cylindrical domain was generated,

FIGURE 1 | Schematic description of cylindrical nanocrystals with edge
(A) and screw (C) dislocations embedded in corresponding
parallelepiped volumes treated by Molecular Dynamics [30×30×
46 nm for (A) and 40×40×28.7 nm for (B)]. Surfaces in color are left free
during MD equilibration, whereas PBCs are applied to the other surfaces:
along

[
hh2h

]
and

[
hh0

]
in (A), and along [hh0] in (C). Corresponding

reciprocal space cross-sections of diffracted intensity are shown below:
(B) for cylinder in (A), and (D) for cylinder in (C).

both as a smaller version of that shown in Figure 1C (D= 40 nm,
H = 28.7 nm), and carved out from it.

RESULTS
Figure 2 shows the isotropic (volumetric) and deviatoric strain
fields for Pd bulk nanocrystals containing edge or screw dis-
locations. As expected, the edge case gives compressive/tensile
(Figure 2A) and deviatoric (Figure 2B) strains, whereas the screw
dislocation gives a predominantly deviatoric strain (Figure 2D).
In both cases, the dislocation line splits in partials, according to the
known reaction: 1

2 〈110〉 → 1
6 〈211〉 + 1

6

〈
121

〉
, a feature especially

visible for the edge dislocation. The separation distance between
edge partials (about 4 nm) is sensibly larger than predicted by sim-
ple considerations on surface energy of the faulted region between
partials (~1 nm) (Hull and Bacon, 1965), but is well in agreement
with other, more recent literature values (Hunter et al., 2011). Also
the screw dislocation is not exactly as an ideal straight line, even
though splitting and other deviations are less pronounced than in
the edge case.

Extended dislocations have a complex effect on diffraction,
well beyond a simple broadening of the diffraction line profiles.
Figure 3 shows the XRD intensity distribution on three orthog-
onal cross-sections of the reciprocal space (RS) for cylindrical
nanocrystals containing edge (Figure 3, De, Ee, and Fe) or screw
(Figure 3, Ds, Es, and Fs) dislocations. It is also shown the intensity
scattered by the corresponding perfect nanocrystal, i.e., the same
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Leonardi and Scardi Atomistic model of metal nanocrystals

FIGURE 2 | Isotropic (A,C) and deviatoric (B,D) strain fields in the
systems of Figure 1. Cross-sections refer to Pd nanocrystals with edge
(left column) and screw (right column) dislocation lines, respectively.

cylinder with no line defect and atoms in perfect, ideal positions
(Figure 3, Ae, Be, Ce and As, Bs, Cs for edge and screw, respec-
tively). As expected, the strain field gives a growing effect with
the distance from the RS origin. Depending on the Miller indices
the intensity distribution around points is differently affected, and
in some cases splits in two distinct regions. This feature is clearly

observed in the edge case, along the
[

hh0
]

direction, as an effect of

the compressive and tensile strains, respectively above and below
the dislocation slip plane (cf. Figures 1 and 2). Strain and faulted
region in between the two partials affect in a rather complex way
the distribution of intensity around all points in RS. Although
mediated by the average over different orientations of the cylin-
drical domains, this complexity is expected to appear also in the
corresponding powder patterns, as shown further below.

Another view-point on the atomic displacement effect of
extended dislocations is provided by the Pair Distribution Func-
tion, shown in Figure 4. The same plot for perfect cylinders (i.e.,
domains with no line defects) gives an array of δ functions at all
atom pair distances. These infinitely narrow bars, marked at the
bottom of the plot of Figure 4, are broadened by the strain field
of the dislocation lines, thus producing a sequence of distribu-
tions. Distribution widths for edge and screw cases are comparable,
although the former gives additional peaks caused by the faulted
region between the dislocation partials (Figures 1 and 2), which
is responsible for a fraction of non-cubic sequence of atomic
layer stacking. Effects on the diffraction pattern from a powder
of dislocated cylindrical nanocrystals are therefore expected to
be quite strong and different for the edge and screw dislocation
cases.

Figure 5 shows the powder patterns simulated by the DSE
from the TAM of cylindrical Pd nanocrystals (D=H = 16 nm)
with edge or screw dislocations, and corresponding ideally perfect
(“crystallographic”) nanocrystals. Despite the different orienta-
tion of the cylindrical nanocrystals (cf. Figure 1), the nanocrystal
shape with equal height and diameter make the crystallographic
powder patterns quite similar. Visible differences are caused by the
dislocations. The screw case gives a predominant effect of broaden-
ing, whereas, the edge case gives broadening and shape effects, the
latter caused by the non-cubic atomic layer stacking in the faulted
region between edge partials. Such effects are stronger for Pd than
Ir (Figure 6), as the separation between the partials, and there-
fore the extension of the stacking fault ribbon in the cylindrical
microstructure, is larger for Pd than for Ir.

Figure 7 shows the effect of position of the dislocation line.
To be compatible with assumptions underlying Eq. 1, all disloca-
tions were straight lines parallel to the cylinder axis. The position
of the dislocation line has negligible effects in the case of screw
dislocations, as a consequence of the mainly deviatoric strain
field introduced in the TAM. Differences are quite strong for the
edge dislocation case. Features originating from the more complex
strain field of the edge type, and the stacking fault region associ-
ated to the two partials are always visible. It can only be noted that
a pattern obtained by averaging those for different random posi-
tions of the edge line is quite similar to the pattern with the edge
dislocation along the cylinder axis. However, even such average
pattern is clearly affected by strong deviations from the pattern
expected for an fcc metal phase.

Molecular Dynamics simulations can easily be extended to dif-
ferent nanocrystal sizes and shapes. Figure 8 shows the effect
of changing the shape of the nanocrystal, following the same
procedure described above for cylinders. Powder patterns from
nanocrystals containing edge dislocations always show more com-
plex details than the simple broadening provided by Eq. 1. The
screw case seems qualitatively closer to the expected effects of Eq.
1, although some peaks present visible splitting [like the (642) line
(Wilson, 1955) just above Q= 12 in Figure 8]. For the screw case in
Figure 9, we also show the effect of changing the size of the cylin-
drical nanocrystal: largest effects are caused by changing the diam-
eter, as can be easily explained considering that changing diameter
acts on two dimensions, i.e., on the extension of the cylinder base.

DISCUSSION
The DSE powder patterns described so far can be considered as
“experimental” diffraction data and analyzed by a state-of-the-
art method, like WPPM (Scardi and Leoni, 2002; Scardi, 2008).
Besides using Eq. 1 for refining the dislocation parameters (like ρ,
Re, and Chkl),WPPM can model nanocrystalline domains of virtu-
ally any size and shape (Leonardi et al., 2012), also considering the
presence of stacking faults (Scardi and Leoni, 2002; Scardi, 2008)
and other microstructural features responsible for line broadening
effects (Scardi, 2008). For example, the complex effect of relax-
ation of the nanocrystal surface can be described by an additional
“strain” profile component, with a corresponding FT given by

ASR
{hkl} (L) = exp

[
−2π2s2L2 < ε2

{hkl} (L) >
]

= exp
[
−2π2s2L2Γhkl

(
aL + bL2)] (2)
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Leonardi and Scardi Atomistic model of metal nanocrystals

FIGURE 3 | X-ray diffraction intensity distribution in reciprocal space.
Three different cross-sections are shown for cylindrical Pd nanocrystals
(D=H =16 nm) with edge dislocation (De, Ee, and Fe) and screw dislocation

(Ds, Es, and Fs). XRD intensity from corresponding cylinders without line
defects are shown in (Ae, Be, and Ce) and (As, Bs, and Cs). Refer to Figure 1
for details on the cylindrical domains.

where Γhkl = 1 + c
(
h2k2
+ k2l2

+ l2h2
)
/
(
h2
+ k2
+ l2

)2
=

1 + c · H 2 accounts for strain anisotropy, referred to the Miller
indices of the diffraction peak. Parameters a, b, c can be adjusted
to model the strain field and anisotropy.

The FT of the overall diffraction line profile, A(L), can then be
written as a product of all required FTs (Scardi, 2008):

A (L) = AD
{hkl} (L) · AS

{hkl} (L) · ASR
{hkl} (L) . . . (3)

where AS
{hkl} (L) is the FT of the domain size effect, known in closed

analytical form for a cylindrical shape (Langford and Louer, 1982).
Therefore, in this specific case, besides refinable parameters of Eqs.
1 and 3 includes height (H ) and base diameter (D) of the cylindri-
cal domain, and adjustable parameters a, b, c of Eq. 2. If necessary,
the effect of stacking faults in reasonably low concentration can be
described by a AF

hkl (L) component given by Warren’s theory for
faulted fcc metal structures (Warren, 1990; Scardi, 2008).

Results of Figures 5–8 and relevant discussion point out the
difficulty in modeling the pattern of a powder of cylindrical
domains with edge dislocations. The traditional approach, under-
lying also Eq. 3, considers a perfect cylindrical fcc domain with
defects; such a perturbation approach seems little convincing
here, as it cannot account in any simple and accurate way for
the faulted region between the two partials, with the correspond-
ing hexagonal sequences, and the complex strain field, strongly
dependent on split of the dislocation line in partials and their
position inside the domain (cf. Figure 7). The screw dislocation
case seems more “well-behaving,” i.e., closer to the assumptions
of Krivoglaz–Wilkens theory, mostly involving a line broaden-
ing effect. Therefore, in the following we focus on the screw case
only, analyzing the corresponding powder patterns by the WPPM
approach as described by Eq. 3.

Figure 10 shows the modeling results for two different pow-
ders of cylindrical domains, respectively D= 40/H = 28.7 nm
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Leonardi and Scardi Atomistic model of metal nanocrystals

FIGURE 4 | A selected range of the distribution function of atom pair
distances in theTime Averaged Microstructure of cylindrical Pd
nanocrystals (D =H =16 nm) with edge (red circular dot) and screw
(blue square dot) dislocation lines. The inset shows the trend across the
whole range of distances.

FIGURE 5 | X-ray powder diffraction pattern simulated by DSE from the
time averaged microstructure of cylindrical Pd nanocrystals
(D =H =16 nm) with edge (red circular dot), screw (blue square dot)
dislocations, and from the corresponding ideally perfect
(“crystallographic”) nanocrystals (black).

(Figures 10A–C) and D= 20/H = 28.7 nm (Figures 10D–F). The
result for ideal cylindrical domains (Figures 10A,D), i.e., with Pd
atoms positioned according to ideal fcc structure, no dislocations,
and no surface relaxation, is very good, as expected in case of
domain size broadening effects only (Leonardi et al., 2012). Small
deviations between DSE pattern and WPPM are expected,owing to
the different hypotheses underlying DSE and WPMM, as the for-
mer is based on an intrinsically discrete, atomistic model, whereas,
the last considers crystalline domains as ideal solid models, i.e.,

FIGURE 6 | X-ray powder diffraction pattern simulated by DSE from the
(“equilibrated”)TAM of cylindrical nanocrystals (D =H =16 nm) with
edge dislocations (line), and corresponding ideally perfect
(“crystallographic”) nanocrystals (dash). Results are shown for Pd (red
circular dot) and Ir (blue square dot), having respectively larger and smaller
separation distance between partial dislocations.

FIGURE 7 | X-ray powder diffraction pattern simulated by DSE from the
(“equilibrated”)TAM of cylindrical Pd nanocrystals (D =H =16 nm)
with edge (upper plot) and screw (lower plot) dislocation lines parallel
to the cylinder axis, crossing the circular basis in different positions
(center, random, and average).

cylinders with a smooth surface [details can be found in Beyerlein
et al. (2011)].

The modeling is still reasonably good when the atomistic model
of the same cylindrical domain is equilibrated before, generating
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Leonardi and Scardi Atomistic model of metal nanocrystals

FIGURE 8 | X-ray powder diffraction patterns simulated by DSE from
theTAM of Pd nanocrystals containing edge (upper plot) and screw
(lower plot) dislocation lines, with different shapes: cylinder (black),
cube (blue square dot), and sphere (red circular dot).

the pattern by the DSE (Figures 10B,E). Energy minimization
leads to a strain broadening effect caused by the relaxation of
the free surface, which adds to the size broadening effect from
the finite cylindrical domain. The effect is well represented by
the model of Eq. 2. The WPPM result, instead, is much less
satisfactory for the cylindrical domain containing a screw dislo-
cation along the axis, showing marked and systematic deviations
from the DSE pattern (Figures 10C,F): peak width is reasonably
matched but details of the peak profile shape are definitely not
reproduced. More in particular, the model of Eq. 1 is unstable:
even if the contrast factor is fixed to the expected value for a
screw dislocation (for the primary slip system of Pd, {111}〈110〉,
Chkl = A + B · H 2

= 0.280476 − 0.64335 · H 2) when ρ and
Re are both allowed to vary, the last diverges (>1012 nm). In the
case of the smaller cylinder (D= 20/H = 28.7 nm), even the cylin-
der height, when freely refined, tends to wrong (smaller) values.
Such instability and drift of the refinement toward wrong values is
partly due to the intrinsic correlation between parameters – quite
clearly, between ρ and Re – but is also a result of the complexity of
the strain field, which is not fully captured by the model of Eq. 1.

The modeling improves if more parameters are fixed. Indeed,
besides the contrast factor we can fix D and H to the model values
(for the specific cylinder considered), and also set the dislocation
density to the expected value, given by the ratio between dislo-
cation length and cylinder volume: ρt = H/

[
H · π(D/2 )2

]
=[

π(D/2 )2
]−1

m−2. This gives values of 0.796× 10−15 m−2 and
3.183× 10−15 m−2, respectively for D= 40/H = 28.7 nm and
D= 20/H = 28.7 nm cylinders.

Then the only microstructural parameter to be refined, besides
unit cell parameters, is the effective outer cut-off radius. This is

FIGURE 9 | X-ray powder diffraction patterns simulated by DSE from
theTAM of cylindrical Pd nanocrystals with screw dislocation lines,
and different height H (upper plot) or diameter D (lower plot).

how the refinements for the larger cylinder in Figures 10C,F were
obtained. For a more robust convergence we refined together the
patterns of both cylinders, without and with screw dislocation
(Figures 10B,C, respectively), thus refining the same values of a, b,
and c in Eq. 3, together with Re for the cylinder with screw dislo-
cation. The same procedure was repeated for the smaller cylinder
(Figures 10E,F).

Best value of Re for the D= 40/H = 28.7 nm cylinder is 41.3(1)
nm, quite close to twice the cylinder radius. This value is in close
agreement with Wilkens model of Eq. 1, where line defects are
assumed to be inside the so-called “restrictedly random disloca-
tions regions,” whose radius (Rp) is related to our definition of Re

as Re≈ 2Rp=D [see Wilkens (1970b) for definitions, and Arm-
strong et al. (2006) for a more recent review on the validity of
Eq. 1 and relation between Re and physical lengths of crystalline
domains containing dislocations].

For the smaller cylinder, D= 20/H = 28.7 nm, Re is propor-
tionally larger, 26.0(1) nm, but still not far from the expected
value of 2Rp. It is therefore verified the correctness of the hypothe-
ses underlying the Krivoglaz–Wilkens model, although Eq. 1 can
be unstable when trying to refine all parameters, especially those
which correlate more strongly. The agreement with the model
hypotheses increases with the domain size, and we can expect the
model to be exact in the limit of very large diameters. Deviations
in smaller domains are partly related to the non-ideality of dislo-
cations, but also reflect the effect of the dislocation core region,
which in the Krivoglaz–Wilkens model is excluded by an inner
cut-off radius (Wilkens, 1970a,b).

Strain effects on the diffraction line profile analysis can
be described by an r.m.s. strain (or microstrain) plot, origi-
nally proposed by Warren and Averbach (1950), Warren (1990).
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Leonardi and Scardi Atomistic model of metal nanocrystals

FIGURE 10 | Debye scattering equation powder patterns (dot),WPPM
result (line) and difference between the two (line, below) for Pd ideal
cylindrical domains, D = 40 nm/H = 28.7 nm (Left) and D =20 nm/

H =28.7 nm (Right): ideal cylindrical domain (A,D), same domain after
equilibration (energy minimization) (B,E), and with screw dislocation
along the axis after equilibration (C,F). Details are shown in the insets.

This plot, shown in Figure 11 for both models of cylindrical
domains containing a screw dislocation, provides the r.m.s. strain

(〈ε2
{hkl} (L)〉

1/2
, the width of the strain distribution) over differ-

ent distances L inside the crystalline domain, taken along the
scattering vector direction; as a consequence, the microstrain
depends on the 〈hkl〉 crystallographic direction. Figure 11 shows
trends along 〈111〉 , 〈200〉, and 〈220〉 for both strain compo-
nents, respectively due to the dislocation (line) and to the grain
boundary relaxation (dash). Strain values increase for smaller
domain sizes, following the corresponding increase in disloca-

tion density [from Eq. 1, 〈ε2
{hkl} (L)〉

1/2
∝
√

ρ], whereas the

effect of the grain boundary strain decreases with increasing
diameter.

To better assess the effect of the cylindrical grain boundary, we
carved a D= 20 nm/H = 28.7 nm cylinder from the larger one
containing a screw dislocation along its axis, and then gener-
ated the powder pattern by the DSE. The WPPM analysis was
made considering only the strain effect from the dislocation, with
same contrast factor, fixed domain size and dislocation density
(3.183× 10−15 m−2). The result gave Re= 26.4(1) nm, nearly the
same value refined for the same cylinder with surface relaxation
effect (Figures 10E,F), thus confirming that Re approaches the
expected 2Rp value if all conditions of the Wilkens model are
verified. Also in this case, however, the instability of Eq. (1) is
confirmed, as a free refinement of all parameters gives diverging
values of Re, a dislocation density much smaller than expected,
and a wrong height of the cylindrical domain.
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FIGURE 11 | Plot of the r.m.s. strain as a function of the Fourier
length, L, taken along the scattering vector direction inside the
cylindrical domains: D =20 nm/H =28.7 nm (A) and

D =40 nm/H =28.7 nm (B). Trends refer to the dislocation strain (screw,
line) and surface relaxation strain (surface, dash) along different
crystallographic directions.

FIGURE 12 | Deviatoric strain components as a function of the distance
from the dislocation axis (cylinder axis), for an ideal screw dislocation
(black line). It is also shown the trend obtained by MD for the
D=20 nm/H =28.7 nm (blue circle) and D=40 nm/H =28.7 nm (red
square) cylinders with dislocation and without dislocation, thus showing the
effect of surface relaxation (dash lines). The inset shows the volumetric
strain component.

It is interesting to consider the results shown so far in terms
of the main strain component in the studied systems. Figure 12
shows the deviatoric strain as a function of the radial distance from
the cylinder axis, which is also the position of the screw dislocation
line (cf. Figure 1C).

The strain for an ideal dislocation (Hull and Bacon,
1965) is shown together with the values obtained from MD,
for both cylindrical domains (D= 20 nm/H = 28.7 nm and
D= 40 nm/H = 28.7 nm) with and without screw dislocation.

Apart from the dislocation core region, where the continuum
mechanics expression diverges while the MD values stay finite,
it is quite evident that the MD trends for domains with screw
dislocations result from a combination of the strain from the dislo-
cation with that from the surface relaxation effect. The last steeply
decays from the surface toward the inside the domain, and tends
to decrease for increasing diameter of the cylindrical domain.

CONCLUSION
Differences between real dislocations and the idealized mod-
els of continuum mechanics, become significant when dislo-
cations are confined in nanocrystalline domains. MD simula-
tions show that the traditional continuum mechanics expres-
sions for the strain field only approximately agree with the
actual strain field. This was demonstrated for the simple case
of straight dislocations in cylindrical Pd nanocrystal, a condi-
tion closely matching the hypotheses underlying the Krivoglaz–
Wilkens theory on dislocation effects in diffraction. Discrep-
ancies between theory and MD simulations are especially evi-
dent for edge dislocations, as an effect of the split into par-
tials and the corresponding stacking faults in between, respon-
sible for a region of non-hexagonal layer stacking. Under these
conditions, the traditional perturbation approach, based on a
cubic (fcc) Pd phase with deformation caused by lattice defects,
seems not appropriate to model XRD patterns obtained from
MD simulations. Further discrepancy is observed if the edge
dislocation line does not lay along the axis of the cylindrical
domain.

The screw case seems more similar and compatible with the
Krivoglaz–Wilkens theory. Diffraction patterns generated by MD
seem little affected by the position of the dislocation line in the
cylindrical domain, and the main effect is a broadening of the dif-
fraction lines, as predicted by the theory. If all parameters of the
system – cylindrical domain height and diameter, contrast factor of
the screw dislocation in the primary slip system of Pd, dislocation
density as given by line defect length divided by the cylinder vol-
ume – are fixed, then the dislocation outer cut-off radius is found
in good agreement with the Wilkens model for restrictedly random
dislocations: Re is about 10–20% larger than the diameter (2Rp)
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of the restrictedly random regions, the discrepancy decreasing for
increasing cylinder diameter.

Despite this positive result, if the powder diffraction pattern
generated from the MD simulation is modeled according to the
Wilkens theory, the non-ideality of the dislocations and the intrin-
sic correlations between parameters lead to a strong instability. If
all microstructural parameters are allowed to vary without con-
straints, the outer cut-off radius tends to diverge, leading all other
parameters to wrong values. It is therefore likely that significant
errors may occur in the experimental practice, when Wilkens
model is applied to real materials, e.g., plastically deformed met-
als; applying restrictions to some parameters, possibly exploiting
evidence from other techniques, might significantly help to obtain
reliable results from the analysis of the diffraction patterns. Effects
are expected to be increasingly significant for smaller domain sizes.
Further studies will be required to shed light on this important
issue, in the effort to provide a realistic modeling of polycrystalline
materials with lattice defects.
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