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A model of a shear band as a zero-thickness non-linear interface is proposed and tested
using finite element simulations. An imperfection approach is used in this model where a
shear band that is assumed to lie in a ductile matrix material (obeying von Mises plasticity
with linear hardening), is present from the beginning of loading and is considered to be
a zone in which yielding occurs before the rest of the matrix. This approach is contrasted
with a perturbative approach, developed for a J2-deformation theory material, in which
the shear band is modeled to emerge at a certain stage of a uniform deformation. Both
approaches concur in showing that the shear bands (differently from cracks) propagate rec-
tilinearly under shear loading and that a strong stress concentration should be expected
to be present at the tip of the shear band, two key features in the understanding of failure
mechanisms of ductile materials.
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1. INTRODUCTION
When a ductile material is brought to an extreme strain state
through a uniform loading process, the deformation may start
to localize into thin and planar bands, often arranged in regular
lattice patterns. This phenomenon is quite common and occurs
in many materials over a broad range of scales: from the kilomet-
ric scale in the earth crust (Kirby, 1985), down to the nanoscale
in metallic glass (Yang et al., 2005), see the examples, reported in
Figure 1.

After localization, unloading typically1 occurs in the mater-
ial outside the bands, while strain quickly evolves inside, pos-
sibly leading to final fracture (as in the examples shown in
Figure 2, where the crack lattice is the signature of the ini-
tial shear band network2) or to a progressive accumulation of
deformation bands (as, for instance, in the case of the drink-
ing straws, or of the iron meteorite, or of the uPVC sample
shown in Figure 1, or in the well-known case of granular mate-
rials, where fracture is usually absent and localization bands are
made up of material at a different relative density, Gajo et al.,
2004).

It follows from the above discussion that as strain localization
represents a prelude to failure of ductile materials, its mechanical
understanding paves the way to the innovative use of materials in
extreme mechanical conditions. For this reason, shear bands have
been the focus of a thorough research effort. In particular, research

1For granular materials, there are cases in which unloading occurs inside the shear
band, as shown by Gajo et al. (2004).
2The proposed explanation for the crack patterns shown in Figure 2 relies on the
fact that the fracture network has formed during the plastic evolution of a ductile
homogeneously deformed material. Other explanations may be related to bonding
of an external layer to a rigid substrate (Peron et al., 2013), or to surface instability
(Destrade and Merodio, 2011; Boulogne et al., 2015), or to instabilities occurring
during shear (Destrade et al., 2008; Ciarletta et al., 2013).

initiated with pioneering works by Hill (1962), Nadai (1950),
Mandel (1962), Prager (1954), Rice (1977), Thomas (1961), and
developed – from theoretical point of view – into two princi-
pal directions, namely, the dissection of the specific constitutive
features responsible for strain localization in different materials
(for instance, as related to the microstructure, Danas and Ponte
Castaneda, 2012; Bacigalupo and Gambarotta, 2013; Tvergaard,
2014) and the struggle for the overcoming of difficulties connected
with numerical approaches [reviews have been given by Needle-
man and Tvergaard (1983) and Petryk (1997)]. Although these
problems are still not exhausted, surprisingly, the most important
questions have only marginally been approached and are there-
fore still awaiting explanation. These are as follows: (i) Why are
shear bands a preferred mode of failure for ductile materials? (ii)
Why do shear bands propagate rectilinearly under mode II, while
cracks do not? (iii) How does a shear band interact with a crack or
with a rigid inclusion? (iv) Does a stress concentration exist at a
shear band tip? (v) How does a shear band behave under dynamic
conditions?

The only systematic3 attempt to solve these problems seems to
have been a series of works by Bigoni and co-workers, based on
the perturbative approach to shear bands (Bigoni and Capuani,
2002, 2005; Piccolroaz et al., 2006; Argani et al., 2013, 2014).
In fact, problems (i), (ii), and (iv) were addressed in Bigoni
and Dal Corso (2008) and Dal Corso and Bigoni (2010), prob-
lem (iii) in Bigoni et al. (2008), Dal Corso et al. (2008), and
Dal Corso and Bigoni (2009), and (v) in Bigoni and Capuani
(2005).

The purpose of the present article is to present a model of a
shear band as a zero-thickness interface and to rigorously motivate

3Special problems of shear band propagation in geological materials have been
addressed by Puzrin and Germanovich (2005) and Rice (1973).
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FIGURE 1 | Examples of strain localization.
(Continued)
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FIGURE 1 | Continued
From left to right, starting from the upper part: A merlon in the Finale Emilia
castle failed (during the Emilia earthquake on May 20, 2012) in compression
with a typical “X-shaped” deformation band pattern (bricks are to be
understood here as the microstructure of a composite material). A
sedimentary rock with the signature of an “X-shaped” localization band
(infiltrated with a different mineral after formation). A stone axe from a British
Island (Museum of Edinburgh) evidencing two parallel localization bands and
another at a different orientation. A runestone (Museum of Edinburgh) with
several localized deformation bands, forming angles of approximately 45°

between each other. A polished and etched section of an iron meteorite
showing several alternate bands of kamacite and taenite. Deformation bands
in a strip of unplasticized poly(vinyl chloride) (uPVC) pulled in tension and
eventually evolving into a necking. An initially regular hexagonal disposition of
drinking straws subject to uniform uniaxial strain has evolved into an
“X-shaped” localization pattern. A fracture prevails on a regularly distributed
network of cracks in a vault of the Amiens dome. “X-shaped” localization
bands in a kaolin sample subject to vertical compression and lateral confining
pressure. A thin, isolated localization band in a sedimentary layered rock
(Silurian formation near Aberystwyth).

FIGURE 2 | Regular patterns of localized cracks as the signature of strain localization lattices. From left to right: Dried mud; Lava cracked during
solidification (near Amboy crater); Bark of a maritime pine (Pinus pinaster ); Cracks in a detail of a painting by J. Provost (“Saint Jean-Baptiste,” Valenciennes,
Musée des Beaux Arts).

this as the asymptotic behavior of a thin layer of material, which
is extremely compliant in shear (Section 2). Once the shear band
model has been developed, it is used (in Section 3) to demon-
strate two of the above-listed open problems, namely (ii) that
a shear band grows rectilinearly under mode II remote loading
in a material deformed near to failure and (iv) to estimate the
stress concentration at the shear band tip. In particular, a pre-
existing shear band is considered to lie in a matrix as a thin
zone of material with properties identical to the matrix, but
lower yield stress. This is an imperfection, which remains neu-
tral until the yield is reached in the shear band4. The present
model is based on an imperfection approach and shares simi-
larities to that pursued by Abeyaratne and Triantafyllidis (1981)
and Hutchinson and Tvergaard (1981), so that it is essentially
different from a perturbative approach, in which the perturba-
tion is imposed at a certain stage of a uniform deformation
process5.

4A different approach to investigate shear band evolution is based on the exploita-
tion of phase-field models (Zheng and Li, 2009), which has been often used for
brittle fracture propagation (Miehe et al., 2010).
5To highlight the differences and the analogies between the two approaches, the
incremental strain field induced by the emergence of a shear band of finite length
(modeled as a sliding surface) is determined for a J2-deformation theory material
and compared with finite element simulations in which the shear band is modeled
as a zero-thickness layer of compliant material.

2. ASYMPTOTIC MODEL FOR A THIN LAYER OF HIGHLY
COMPLIANT MATERIAL EMBEDDED IN A SOLID

A shear band, inside a solid block of dimension H, is modeled
as a thin layer of material (of semi-thickness h, with h/H� 1)

yielding at a uniaxial stress σ (s)Y , which is lower than that of the

surrounding matrix σ (m)Y , Figure 3. Except for the yield stress,
the material inside and outside the layer is described by the same
elastoplastic model, namely, a von Mises plasticity with associated
flow rule and linear hardening, defined through the elastic con-
stants, denoted by the Young modulus E and Poisson’s ratio v, and
the plastic modulus Ep, see Figure 3B.

At the initial yielding, the material inside the layer [character-
ized by a low hardening modulus Eep= EEp/(E + Ep)] is much
more compliant than the material outside (characterized by an
elastic isotropic response E).

For h/H� 1, the transmission conditions across the layer
imply the continuity of the tractions, t = [t 21, t 22]T, which can
be expressed in the asymptotic form

[[t21]] = O(h), [[t22]] = O(h), (1)

where [[·]] denotes the jump operator.
The jump in displacements, [[u]]= [[[u1]], [[u2]]]T, across the

layer is related to the tractions at its boundaries through the
asymptotic relations (Mishuris et al., 2013; Sonato et al., 2015)
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A B

FIGURE 3 | (A) A shear band inside a ductile material modeled as a thin layer
of highly compliant material (Eep/E�1) embedded in a material block
characterized by a dimension H, such that h/H�1; both materials obey the

same von Mises plasticity model represented by the uniaxial stress behavior
reported in (B), but having a different yield stress (lower inside than outside
the shear band).

t21([[u1]], [[u2]]) =
Ep

√
3[[u1]]

2
+ 4[[u2]]

2
+ 6hσ (s)Y

(3E + 2(1+ ν)Ep)
√

3[[u1]]
2
+ 4[[u2]]

2

E[[u1]]

2h
+ O(h), (2)

t22([[u1]], [[u2]]) =
(E + 2(1− ν)Ep)

√
3[[u1]]

2
+ 4[[u2]]

2
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√

3[[u1]]
2
+ 4[[u2]]

2

E[[u2]]

2h
+ O(h), (3)

involving the semi-thickness h of the shear band, which enters
the formulation as a constitutive parameter for the zero-thickness
interface model and introduces a length scale. Note that, by neglect-
ing the remainder O(h), equations (2) and (3) define non-linear
relationships between tractions and jump in displacements.

The time derivative of equations (2) and (3) yields the following
asymptotic relation between incremental quantities

ṫ ∼

[
1

h
K−1 + K 0([[u1]], [[u2]])

]
[[u̇]], (4)

where the two stiffness matrices K−1 and K 0 are given by

K−1 =
E

2(3E + 2(1+ ν)Ep)

Ep 0

0
E + 2(1− ν)Ep

1− 2ν

 , (5)

K 0 =
12Eσ (s)Y

(3E + 2(1+ ν)Ep)(3[[u1]]
2
+ 4[[u2]]

2)
3/2

×

[
[[u2]]

2
−[[u1]][[u2]]

−[[u1]][[u2]] [[u1]]
2

]
, (6)

Assuming now a perfectly plastic behavior, Ep= 0, in the limit
h/H→ 0 the condition

[[u2]] = 0 (7)

is obtained, so that the incremental transmission conditions
equation (4) can be approximated to the leading order as

ṫ ∼
1

h
K−1[[u̇]]. (8)

Therefore, when the material inside the layer is close to the per-
fect plasticity condition, the incremental conditions assume the
limit value

ṫ21 = 0, [[u̇2]] = 0, (9)

which, together with the incremental version of equation (1)2,
namely,

[[ṫ22]] = 0, (10)

correspond to the incremental boundary conditions proposed in
Bigoni and Dal Corso (2008) to define a pre-existing shear band
of null thickness.

The limit relations, equations (9) and (10), motivate the use of
the imperfect interface approach (Bigoni et al., 1998; Antipov et al.,
2001; Mishuris, 2001, 2004; Mishuris and Kuhn, 2001; Mishuris
and Ochsner, 2005, 2007) for the modeling of shear band growth
in a ductile material. A computational model, in which the shear
bands are modeled as interfaces, is presented in the next section.
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3. NUMERICAL SIMULATIONS
Two-dimensional plane-strain finite element simulations are pre-
sented to show the effectiveness of the above-described asymptotic
model for a thin and highly compliant layer in modeling a shear
band embedded in a ductile material. Specifically, we will show that
the model predicts rectilinear propagation of a shear band under
simple shear boundary conditions and it allows the investigation
of the stress concentration at the shear band tip.

The geometry and material properties of the model are shown
in Figure 4, where a rectangular block of edges H and L≥H is
subject to boundary conditions consistent with a simple shear
deformation, so that the lower edge of the square domain is
clamped, the vertical displacements are constrained along the
vertical edges and along the upper edge, where a constant hori-
zontal displacement u1 is prescribed. The domain is made of a
ductile material and contains a thin (h/H� 1) and highly compli-
ant (Eep/E� 1) layer of length H /2 and thickness 2h= 0.01 mm,
which models a shear band. The material constitutive behavior
is described by an elastoplastic model based on linear isotropic
elasticity (E = 200000 MPa, v = 0.3) and von Mises plasticity with
linear hardening (the plastic modulus is denoted by Ep). The uni-

axial yield stress σ (m)Y for the matrix material is equal to 500 MPa,
whereas the layer is characterized by a lower yield stress, namely,

σ
(s)
Y = 400 MPa.

The layer remains neutral until yielding, but, starting from
that stress level, it becomes a material inhomogeneity, being
more compliant (because its response is characterized by Eep)
than the matrix (still in the elastic regime and thus char-
acterized by E). The layer can be representative of a pre-
existing shear band and can be treated with the zero-thickness
interface model, equations (2) and (3). This zero-thickness
interface was implemented in the ABAQUS finite element

FIGURE 4 | Geometry of the model, material properties, and boundary
conditions (which would correspond to a simple shear deformation in
the absence of the shear band). The horizontal displacement u1 is
prescribed at the upper edge of the domain.

software6 through cohesive elements, equipped with the traction-
separation laws, equations (2) and (3), by means of the user
subroutine UMAT. An interface, embedded into the cohesive ele-
ments, is characterized by two dimensions: a geometrical and a
constitutive thickness. The latter, 2h, exactly corresponds to the
constitutive thickness involved in the model for the interface equa-
tions (2) and (3), while the former, denoted by 2hg, is related to the
mesh dimension in a way that the results become independent of
this parameter, in the sense that a mesh refinement yields results
converging to a well-defined solution.

We consider two situations. In the first, we assume that the
plastic modulus is Ep= 150000 MPa (both inside and outside the
shear band), so that the material is in a state far from a shear band
instability (represented by loss of ellipticity of the tangent consti-
tutive operator, occurring at Ep= 0) when at yield. In the second,
we assume that the material is prone to a shear band instability,
though still in the elliptic regime, so that Ep (both inside and out-
side the shear band) is selected to be “sufficiently small”, namely,
Ep= 300 MPa. The pre-existing shear band is therefore employed
as an imperfection triggering shear strain localization when the
material is still inside the region, but close to the boundary, of
ellipticity.

3.1. DESCRIPTION OF THE NUMERICAL MODEL
With reference to a square block (L=H = 10 mm) containing a
pre-existing shear band with constitutive thickness h= 0.005 mm,
three different meshes were used, differing in the geometrical
thickness of the interface representing the pre-existing shear band
(see Figure 5 where the shear band is highlighted with a black line),
namely, hg= {0.05; 0.005; 0.0005} mm corresponding to coarse,
fine, and ultra-fine meshes.

The three meshes were generated automatically using the mesh
generator available in ABAQUS. In order to have increasing mesh
refinement from the exterior (upper and lower parts) to the inte-
rior (central part) of the domain, where the shear band is located,
and to ensure the appropriate element shape and size according
to the geometrical thickness 2hg, the domain was partitioned into
rectangular subdomains with increasing mesh seeding from the
exterior to the interior. Afterwards, the meshes were generated by
employing a free meshing technique with quadrilateral elements
and the advancing front algorithm.

The interface that models the shear band is discretized using
4-node two-dimensional cohesive elements (COH2D4), while
the matrix material is modeled using 4-node bilinear, reduced
integration with hourglass control (CPE4R).

It is important to note that the constitutive thickness used
for traction-separation response is always equal to the actual size
of the shear band h= 0.005 mm, whereas the geometric thick-
ness hg, defining the height of the cohesive elements, is differ-
ent for the three different meshes. Consequently, all the three
meshes used in the simulations correspond to the same problem
in terms of both material properties and geometrical dimensions
(although the geometric size of the interface is different), so that

6ABAQUS Standard Ver. 6.13 has been used, available on the AMD Opteron cluster
Stimulus at UniTN.
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FIGURE 5 |The three meshes used in the analysis to simulate a
shear band (highlighted in black) in a square solid block
(L = H = 10 mm). The shear band is represented in the three cases as an
interface with the same constitutive thickness h=0.005 mm, but with

decreasing geometric thickness hg; (A) coarse mesh (1918 nodes, 1874
elements, hg = 0.05 mm); (B) fine mesh (32,079 nodes, 31,973
elements, hg = 0.005 mm); (C) ultra-fine mesh (1,488,156 nodes,
1,487,866 elements, hg =0.0005 mm).

A B C

FIGURE 6 | Contour plots of the shear stress σ 12 for the case of material
far from shear band instability (Ep = 150000 MPa). The gray region
corresponds to the material at yielding σ12 ≥ 500/

√
3 = 288.68 MPa. Three

different stages of deformation are shown, corresponding to a prescribed

displacement at the upper edge of the square domain u1 =0.037418 mm
(A), u1 =0.037518 mm (B), u1 =0.037522 mm (C). The displacements in the
figures are amplified by a deformation scale factor of 25 and the percentages
refer to the final displacement.

the results have to be, and indeed will be shown to be, mesh
independent7.

3.2. NUMERICAL RESULTS
Results (obtained using the fine mesh, Figure 5B) in terms of the
shear stress component σ 12 at different stages of a deformation
process for the boundary value problem sketched in Figure 4 are
reported in Figures 6 and 7.

In particular, Figure 6 refers to a matrix with high plastic mod-
ulus, Ep= 150000 MPa, so that the material is far from the shear
band formation threshold. The upper limit of the contour levels
was set to the value σ12 = 500/

√
3 ' 288.68 MPa, corresponding

to the yielding stress of the matrix material. As a result, the gray
zone in the figure represents the material at yielding, whereas the
material outside the gray zone is still in the elastic regime. Three
stages of deformation are shown, corresponding to: the initial
yielding of the matrix material (left), the yielding zone occupying

7Note that, in the case of null hardening, mesh dependency may occur in the sim-
ulation of shear banding nucleation and propagation (Needleman, 1988; Loret and
Prevost, 1991, 1993). This numerical issue can be avoided by improving classical
inelastic models through the introduction of characteristic length-scales (Lapovok
et al., 2009; Dal Corso and Willis, 2011).

approximately one-half of the space between the shear band tip
and the right edge of the domain (center), and the yielding com-
pletely linking the tip of the shear band to the boundary (right).
Note that the shear band, playing the role of a material imper-
fection, produces a stress concentration at its tip. However, the
region of high stress level rapidly grows and diffuses in the whole
domain. At the final stage, shown in Figure 6C, almost all the
matrix material is close to yielding.

Figure 7 refers to a matrix with low plastic modulus,
Ep= 300 MPa, so that the material is close (but still in the ellip-
tic regime) to the shear band formation threshold (Ep= 0). Three
stages of deformation are shown, from the condition of initial
yielding of the matrix material near the shear band tip (left),
to an intermediate condition (center), and finally to the com-
plete yielding of a narrow zone connecting the shear band tip
to the right boundary (right). In this case, where the mater-
ial is prone to shear band localization, the zone of high stress
level departs from the shear band tip and propagates toward
the right. This propagation occurs in a highly concentrated
narrow layer, rectilinear, and parallel to the pre-existing shear
band. At the final stage of deformation, shown in Figure 7C,
the layer of localized shear has reached the boundary of the
block.
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A B C

FIGURE 7 | Contour plots of the shear stress σ 12 for the case of
material close to shear band instability (Ep = 300 MPa). The gray
region corresponds to the material at yielding σ12 ≥ 500/

√
3. Three

different stages of deformation are shown, corresponding to a

prescribed displacement at the upper edge of the square domain
u1 =0.0340 mm (A), u1 =0.0351 mm (B), u1 =0.03623 mm (C). The
displacements in the figures are amplified by a deformation scale factor
of 27.

A B C

FIGURE 8 | Contour plots of the shear deformation γ 12 for the case of
material far from shear band instability (Ep = 150000 MPa). Three different
stages of deformation are shown, corresponding to a prescribed

displacement at the upper edge of the square domain u1 =0.037418 mm
(A), u1 =0.037518 mm (B), u1 =0.037522 mm (C). The displacements in the
figures are amplified by a deformation scale factor of 25.

A B C

FIGURE 9 | Contour plots of the shear deformation γ 12 for the case of
material close to shear band instability (Ep = 300 MPa). Three different
stages of deformation are shown, corresponding to a prescribed

displacement at the upper edge of the square domain u1 =0.0340 mm
(A), u1 =0.0351 mm (B), u1 =0.03623 mm (C). The displacements in the
figures are amplified by a deformation scale factor of 27.

Results in terms of the shear strain component γ 12, for both
cases of material far from, and close to shear band instabil-
ity are reported in Figures 8 and 9, respectively. In particular,
Figure 8 shows contour plots of the shear deformation γ 12

for the case of a material far from the shear band instability

(Ep= 150000 MPa) at the same three stages of deformation as
those reported in Figure 6. Although the tip of the shear band
acts as a strain raiser, the contour plots show that the level of
shear deformation is high and remains diffused in the whole
domain.
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FIGURE 10 | Shear deformation γ 12 (A–C) and shear stress σ 12 (D–F) along
the x -axis containing the pre-existing shear band for the case of a
material close to a shear band instability Ep = 300 MPa. The black dotted
line, in the bottom part of the figure, indicates the yield stress level, lower

inside the pre-existing shear band than that in the outer domain. Three
different stages of deformation are shown, corresponding to a prescribed
displacement at the upper edge of the square domain u1 = 0.0340 mm (left),
u1 = 0.0351 mm (center), u1 = 0.03623 mm (right).

Figure 9 shows contour plots of the shear deformation γ 12

for the case of a material close to the shear band instability
(Ep= 300 MPa), at the same three stages of deformation as those
reported in Figure 7. It is noted that the shear deformation is
localized along a rectilinear path ahead of the shear band tip, con-
firming results that will be reported later with the perturbation
approach (Section 4).

The shear deformation γ 12 and the shear stress σ 12 along the
x-axis containing the pre-existing shear band for the case of a
material close to strain localization, Ep= 300 MPa, are shown in
Figure 10, upper and lower parts, respectively. Results are reported
for the three meshes, coarse, fine and ultra-fine (Figure 5) and at
the same three stages of deformation as those shown in Figures 7
and 9. The results appear to be mesh independent, meaning that
the solution converges as the mesh is more and more refined.

The deformation process reported in Figures 7, 9, and 10 can
be described as follows. After an initial homogeneous elastic defor-
mation (not shown in the figure), in which the shear band remains
neutral (since it shares the same elastic properties with the matrix
material), the stress level reaches σ12 = 400/

√
3 ' 230.9 MPa,

corresponding to the yielding of the material inside the shear band.
Starting from this point, the pre-existing shear band is activated,
which is confirmed by a high shear deformation γ 12 and a stress
level above the yield stress inside the layer, −5 mm< x< 0 (left
part of Figure 10). The activated shear band induces a strain local-
ization and a stress concentration at its tip, thus generating a zone
of material at yield, which propagates to the right (central part of
Figure 10) until collapse (right part of Figure 10).

In order to appreciate the strain and stress concentration at the
shear band tip, a magnification of the results shown in Figure 10 in
the region−0.2 mm< x< 0.2 mm is presented in Figure 11. Due

to the strong localization produced by the shear band, only the
ultra-fine mesh is able to capture accurately the strain and stress
raising (blue solid curve), whereas the coarse and fine meshes
smooth over the strain and stress levels (red dotted and green
dashed curves, respectively). The necessity of an ultra-fine mesh to
capture details of the stress/strain fields is well-known in compu-
tational fracture mechanics, where special elements (quarter-point
or extended elements) have been introduced to avoid the use of
these ultra-fine meshes at corner points.

For the purpose of a comparison with an independent and fully
numerical representation of the shear band, a finite element sim-
ulation was also performed, using standard continuum elements
(CPE4R) instead of cohesive elements (COH2D4) inside the layer.
This simulation is important to assess the validity of the asymp-
totic model of the layer presented in Section 2. In this simulation,
reported in Figure 12, the layer representing the shear band is a
“true” layer of a given and finite thickness, thus influencing the
results (while these are independent of the geometrical thickness
2hg of the cohesive elements, when the constitutive thickness 2h
is the same). Therefore, only the fine mesh, shown in Figure 5B,
was used, as it corresponds to the correct size of the shear band.
The coarse mesh (Figure 5A) and the ultra-fine mesh (Figure 5C)
would obviously produce different results, corresponding, respec-
tively, to a thicker or thinner layer. Results pertaining to the
asymptotic model, implemented into the traction-separation law
for the cohesive elements COH2D4, are also reported in the figure
(red solid curve) and are spot-on with the results obtained with a
fully numerical solution employing standard continuum elements
CPE4R (blue dashed curve).

A mesh of the same size as that previously called “fine” was
used to perform a simulation of a rectangular block (H = 10 mm,
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FIGURE 11 | Shear and stress concentration at the shear band
tip. Shear deformation γ 12 (A–C) and shear stress σ 12 (D–F) along the
x -axis containing the pre-existing shear band for the case of a
material close to a shear band instability Ep = 300 MPa.Three different

stages of deformation are shown, corresponding to a prescribed
displacement at the upper edge of the square domain
u1 =0.0340 mm (left), u1 =0.0351 mm (center), u1 =0.03623 mm
(right).

FIGURE 12 | Results of simulations performed with different
idealizations for the shear band: zero-thickness model (discretized
with cohesive elements, COH2D4) versus a true layer description
(discretized with CPE4R elements). Shear deformation γ 12 (A–C) and
shear stress σ 12 (D–F) along the horizontal line y =0 containing the

pre-existing shear band for the case of a material close to a shear band
instability Ep =300 MPa. Three different stages of deformation are shown,
corresponding to a prescribed displacement at the upper edge of the
square domain u1 =0.0340 mm (left), u1 =0.0351 mm (center),
u1 =0.03623 mm (right).

L= 4 H = 40 mm) made up of a material close to shear band
instability (Ep= 300 MPa) and containing a shear band (of length
H /2= 5 mm and constitutive thickness 2h= 0.01 mm). Results
are presented in Figure 13. In parts (Figures 13A,B) (the latter is a
detail of part Figure 13A) of this figure the overall response curve

is shown of the block in terms of average shear stress σ̄12 = T/L
(T denotes the total shear reaction force at the upper edge of the
block) and average shear strain γ̄12 = u1/H . In part (Figure 13C)
of the figure contour plots of the shear deformation γ 12 are
reported at different stages of deformation. It is clear that the
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FIGURE 13 | Results for a rectangular domain (L = 40 mm, H = 10 mm) of
material close to shear band instability (Ep = 300 MPa) and containing a
pre-existing shear band (of length H/2 = 5 mm and constitutive thickness
2h = 0.01 mm). (A) Overall response curve of the block in terms of average
shear stress σ̄12 = T /L, where T is the total shear reaction force at the upper
edge of the block, and average shear strain γ̄12 = u1/H . (B) Magnification of

the overall response curve σ̄12 − γ̄12 around the stress level corresponding to
the yielding of the shear band. (C) Contour plots of the shear deformation γ 12

at different stages of deformation, corresponding to the points along the
overall response curve shown in (B) of the figure. The deformation is highly
focused along a rectilinear path emanating from the shear band tip. The
displacements in the figures are amplified by a deformation scale factor of 50.

FIGURE 14 | The incremental shear strain γ̇12 (divided by
the mean incremental shear strain ˙̄γ 12) along the x -axis at
the two stages of deformation, (A) u1 = 0.0340 mm and
(B) u1 = 0.03623 mm, reported in Figure 10 and labeled there as

(Figures 10A,C). It is clear that a strong strain concentration develops
at the tip of the shear band, which becomes similar to the square-root
singularity that is found with the perturbative approach (Section 4 and
Figure 16).

deformation is highly focused along a rectilinear path emanating
from the shear band tip, thus demonstrating the tendency of the
shear band toward rectilinear propagation under shear loading.

Finally, the incremental shear strain (divided by the mean
incremental shear strain) has been reported along the x-axis in
Figure 14, at the two stages of deformation considered in Figure 10
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and referred there as (Figures 10A,C). These results, which have
been obtained with the fine mesh, show that a strong incremental
strain concentration develops at the shear band tip and becomes
qualitatively similar to the square-root singularity found in the
perturbative approach.

4. THE PERTURBATIVE VERSUS THE IMPERFECTION
APPROACH

With the perturbative approach, a perturbing agent acts at a cer-
tain stage of uniform strain of an infinite body, while the material
is subject to a uniform prestress. Here, the perturbing agent is a
pre-existing shear band, modeled as a planar slip surface, emerging
at a certain stage of a deformation path (Bigoni and Dal Corso,
2008), in contrast with the imperfection approach in which the
imperfection is present from the beginning of the loading.

With reference to a x1− x2 coordinate system (inclined at 45°
with respect to the principal prestress axes xI – xII), where the
incremental stress ṫij and incremental strain ε̇ij are defined (i, j = 1,
2), the incremental orthotropic response under plane-strain con-
ditions (ε̇i3 = 0) for incompressible materials (ε̇11 + ε̇22 = 0) can
be expressed through the following constitutive equations (Bigoni,
2012)8.

ṫ11 = 2µε̇11 + ṗ, ṫ22 = −2µε̇11 + ṗ, ṫ12 = µ∗γ̇12, (11)

where ṗ is the incremental in-plane mean stress, while µ and µ∗
describe the incremental shear stiffness, respectively, parallel and
inclined at 45° with respect to prestress axes.

The assumption of a specific constitutive model leads to the
definition of the incremental stiffness moduli µ and µ*. With ref-
erence to the J2-deformation theory of plasticity (Bigoni and Dal
Corso, 2008), particularly suited to model the plastic branch of
the constitutive response of ductile metals, the in-plane deviatoric
stress can be written as

tI − tII = kεI |εI |
(N−1). (12)

In equation (12), k represents a stiffness coefficient and N ∈ (0,
1] is the strain hardening exponent, describing perfect plasticity
(null hardening) in the limit N→ 0 and linear elasticity in the
limit N→ 1. For the J2-deformation theory, the relation between
the two incremental shear stiffness moduli can be obtained as

µ∗ = Nµ, (13)

so that a very compliant response under shear (µ∗�µ) is
described in the limit of perfect plasticity N→ 0.

The perturbative approach (Bigoni and Dal Corso, 2008) can
now be exploited to investigate the growth of a shear band within
a solid. To this purpose, an incremental boundary value prob-
lem is formulated for an infinite solid, containing a zero-thickness
pre-existing shear band of finite length 2l parallel to the x1 axis

8Note that the notation used here differs from that adopted in Bigoni and Dal Corso
(2008), where the principal axes are denoted by x1 and x2 and the system inclined
at 45° is denoted by x̂1 and x̂2.

x
1

x
II

ll

x
2

x
I

FIGURE 15 | A perturbative approach to shear band growth: a
pre-existing shear band, modeled as a planar slip surface, acts at a
certain stage of uniform deformation of an infinite body obeying the
J2-deformation theory of plasticity.

(see Figure 15) and loaded at infinity through a uniform shear
deformation γ̇∞12 .

The incremental boundary conditions introduced by the pres-
ence of a pre-existing shear band can be described by the following
equations:

ṫ21(x1, 0±) = 0, [[ṫ22(x1, 0)]] = 0, [[u̇2(x1, 0)]] = 0, ∀|x1| < l .
(14)

A stream function ψ(x1, x2) is now introduced, automati-
cally satisfying the incompressibility condition and defining the
incremental displacements u̇j as u̇1 = ψ,2, and u̇2 = −ψ,1. The
incremental boundary value problem is therefore solved as the sum
of ψ°(x1, x2), solution of the incremental homogeneous problem,
and ψp(x1, x2), solution of the incremental perturbed problem.

The incremental solution is reported in Figure 16 for a low
hardening exponent, N = 0.01, as a contour plot (left) and as a
graph (along the x1-axis, right) of the incremental shear defor-
mation γ̇12 (divided by the applied remote shear γ̇∞12 ). Note
that, similarly to the crack tip fields in fracture mechanics, the
incremental stress and deformation display square-root singu-
larities at the tips of the pre-existing shear band. Evaluation of
the solution obtained from the perturbative approach analytically
confirms the conclusions drawn from the imperfection approach
(see the numerical simulations reported in Figures 9 and 13), in
particular:

• It can be noted from Figure 16 (left) that the incremental defor-
mation is highly focused along the x1 direction, confirming that
the shear band grows rectilinearly;

• The blow-up of the incremental deformation observed in the
numerical simulations near the shear band tip (Figure 14) is
substantiated by the theoretical square-root singularity found in
the incremental solution (Figure 16, right).

We finally remark that, although the tendency toward rectilin-
ear propagation of a shear band has been substantiated through
the use of a von Mises plastic material, substantial changes
are not expected when a different yield criterion (for instance,
pressure-sensitive as Drucker–Prager) is employed.
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FIGURE 16 | Incremental shear strain near a shear band obtained through the perturbative approach: level sets (left) and behavior along the x 1-axis
(right).

5. CONCLUSION
Two models of shear band have been described, one in which the
shear band is an imperfection embedded in a material and another
in which the shear band is a perturbation, which emerges during
a homogeneous deformation of an infinite material. These two
models explain how shear bands tend toward a rectilinear propa-
gation under continuous shear loading, a feature not observed for
fracture trajectories in brittle materials. This result can be stated in
different words pointing out that, while crack propagation occurs
following a maximum tensile stress criterion, a shear band grows
according to a maximum Mises stress, a behavior representing a
basic micromechanism of failure for ductile materials. The devel-
oped models show also a strong stress concentration at the shear
band tip, which strongly concur to shear band growth.
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