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Quantum Monte Carlo (QMC) is one
of the most accurate electronic structure
methods for ab initio many-body calcula-
tions in a broad range of electronic systems.
Thanks to fast evolving massively paral-
lel computers, much larger simulations of
realistic systems become affordable. We
have developed an ab initio simulation
scheme at finite temperature based on mol-
ecular dynamics (MD) and QMC during
the past few years. In this approach, a
second order Langevin MD is employed
by using a statistical evaluation of the
forces acting on each atom by means of
QMC. Moreover, the corresponding statis-
tical noise is also used to drive and accel-
erate the dynamics of ions. The accuracy
and the reliability of our ab initio MD
have been studied systematically and it has
been already successfully applied to study
the molecular and atomic phases of lig-
uid hydrogen under pressure and liquid
water at ambient conditions. Since this
ab initio method provides a better resolu-
tion of the thermodynamic properties of
materials, we believe that it represents a
very promising tool for the most challeng-
ing applications in physics, chemistry, and
biology.

Since the Car-Parrinello molecular
dynamics (Car and Parrinello, 1985) was
proposed three decades ago, ab initio mole-
cular dynamics (MD) based on the density
functional theory (DFT) has been widely
accepted as an accurate and powerful tool
to study the thermodynamic properties of
systems at ambient and extreme condi-
tions in the fields of physics, chemistry, and
biology. Even though DFT is in principle
exact, its accuracy, in practice, is affected
by the quality of the approximation used
in the exchange correlation functional term
whose universal exact expression is not

accessible, as the simplest approximate
functionals, such as LDA, PBE, BLYP, and
several other ones, so far cannot be sys-
tematically improved in a computation-
ally efficient way. Quantum Monte Carlo
(QMC) is the most promising successor
of DFT in ab initio molecular dynam-
ics. Indeed, the scaling behavior of QMC
with the number of electrons is very good,
from the second power (Ceperley et al.,
1977) for thermodynamic properties —e.g.,
energy per electron, because in this case
the number of samples to obtain a fixed
accuracy in this quantity can be decreased
when increasing the number N. of elec-
trons, implying N2 /N, = NZ scaling with
the standard algorithm — to the fourth
power of the number of electrons when
chemical accuracy in the total energy is
required — in this case, instead the number
of samples required for fixed accuracy has
to increase with N, yielding N2 x N =
N2 scaling. For this reason (a cost similar
to DFT, albeit with a considerably larger
pre-factor), QMC is also by far more effi-
cient compared with other quantum chem-
istry methods based on multi-determinant
expansions or many-body perturbation
theory around the Hartree—Fock, such as,
for instance, configuration interaction and
coupled cluster theory, respectively. These
methods provide a similar or even better
accuracy than QMC for systems consisting
of a few atoms, but they become com-
putationally prohibitive when the system
sizes increase. Another very important rea-
son favoring the QMC algorithm is its well
established efficient parallelization in cur-
rent and upcoming supercomputers. QMC
codes can be easily adapted to millions
of CPU cores while DFT codes are still
struggling with its parallel performance
over several thousand cores. For the above

reasons, it is probably not too far from real-
ity to claim that QMC represents the rising
star in the ab initio MD simulations.

This opinion paper focuses on the con-
struction of the QMC-based MD by show-
ing the key ingredients and the main recent
developments of the building blocks nec-
essary for the efficient implementation of
this method. There are four main compo-
nents: the basics of QMC, the wavefunc-
tion optimization, the evaluation of forces,
and the molecular dynamics scheme. The
last three ingredients were efficiently devel-
oped within only 10 years, with substan-
tial contribution given also by us (Casula
et al., 2004; Sorella et al., 2007; Umrigar
et al., 2007; Attaccalite and Sorella, 2008;
Sorella and Capriotti, 2010; Luo et al., 2014;
Mazzola et al., 2014; Zen et al., 2014).
Thus, the QMC-based MD is no longer a
dream.

BASICS OF QMC

In QMC, the wavefunction ansatz is of
fundamental importance for the efficiency,
reliability, and accuracy of both varia-
tional and diffusion Monte Carlo cal-
culations (VMC/DMC), namely the two
most popular methods in QMC, the
latter being more accurate and based
on an approximate evaluation of the
ground state properties with the restric-
tion of having the same phases of the
best reference VMC wavefunction — i.e.,
the so-called fixed-node approximation
(Anderson, 1976; Ceperley and Alder,
1984; Umrigar et al., 1993), which is
unavoidable for fermionic systems. The
repeated evaluation of the wavefunction
with also its gradients and Laplacian is
one of the most consuming parts of the
computation; the optimal wavefunction
ansatz for MD should be also compact.
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The most popular choice is the Jastrow
factor (Jastrow, 1955) correlated Slater
determinant, which is simple and gener-
ally accurate. Pseudopotentials (Trail and
Needs, 2005; Burkatzki et al., 2007) are
often employed like in DFT to replace
chemically in-active core electrons and
keep only the valence electrons in QMC
calculations.

WAVEFUNCTION OPTIMIZATION

In the MD simulation, after each ionic
move, the parameters in the VMC wave-
function need to be optimized in order
to satisfy the Born—Oppenheimer approx-
imation. Efficient optimization methods
ensure that the energy converges to the
right minimum within a sufficient accuracy
in just a few steps. At present, the vari-
ance minimization method (Umrigar et al.,
1988) has been recently abandoned because
sometimes it failed to yield the best pos-
sible wavefunction (Snajdr and Rothstein,
2000; Bressanini et al., 2002). This method
has been replaced by much more efficient
and robust energy minimization meth-
ods. In our previous works, we introduced
an energy minimization method, called
stochastic reconfiguration (SR), which is
based only on energy first derivatives, and
allows a much more efficient optimiza-
tion compared with other more conven-
tional methods of this type, such as the
steepest decent. In addition, the trial step
length can be automatically determined by
the SR with the Hessian accelerator (SRH)
(Sorella, 2005) method, which makes use
of the second derivatives of the energy.
This method can be further improved by
the recently introduced “linear method”
(Umrigar and Filippi, 2005; Umrigar et al.,
2007), which provides a better sampling
of the Hessian matrix and represents at
present the state of the art for the QMC
optimization of wavefunction in realistic
systems. For the application of the above
techniques, to large systems, it is impor-
tant to perform in a very efficient way
the expensive inversion operation of a big
matrix with its leading dimension (10* is
possible on current supercomputers) equal
to the number of variational parameters
(Sorella et al., 2007; Neuscamman et al.,
2012).

EVALUATION OF FORCES
In order to study thermodynamic
properties, classical Monte Carlo and
molecular dynamics are both widely used
simulation methods. The former has a
significant advantage that it does not nec-
essarily require the computation of forces.
Unfortunately, it is not straightforward
to combine classical Monte Carlo and
quantum Monte Carlo because all the
quantities evaluated by QMC, including
the energy, carry statistical errors that
are very expensive to eliminate.! In order
to move the ions according to the QMC
energy and sample the canonical ensemble
correctly, the penalty method (Ceper-
ley and Dewing, 1999) was introduced
to remove the bias due to the statistical
uncertainty in the knowledge of the energy
by rejecting the proposed moves more
frequently than the standard Metropolis
algorithm. For this reason, this method
is very expensive, particularly in the low
temperature regime, because of too many
rejected moves, and so far applications
have been limited to hydrogen with up to
54 protons in this regime (Pierleoni and
Ceperley, 2006; Morales et al., 2010a,b).
Generally speaking, it is clear that, when
the computational cost for the calcula-
tion of the nuclear forces is comparable
to that of the energy, MD should be more
efficient, because with the same cost all
the atoms are moved without any rejec-
tion. For instance, in DFT, where the forces
are obtained almost for free by applying
the Hellmann—-Feynman theorem, MD is a
common practice to sample the canonical
distribution, and, to our knowledge, only
hybrid methods based on Monte Carlo and
molecular dynamics (Rossky et al., 1978;
Duane et al., 1987) can be competitive.
Unfortunately, computing forces with
QMC is substantially more demanding
than DFT. To obtain the forces in an
accurate and efficient way within the
VMC framework, several very important
improvements have been done, concern-
ing both theories and algorithms. The
correlated sampling (Filippi and Umri-
gar, 2000) method allows the computa-
tion of the energy derivatives with errors
much smaller than those obtained with a
straightforward finite difference method.

!The statistical error decays as 1/+/N, where N is the number of uncorrelated samples.

Together with the space warp coordinate
transformation (Umrigar, 1989), forces
computed by QMC were used for structural
optimization (Casula et al., 2004). Another
recent and important development in
QMC was the solutions (Assaraf and Caf-
farel, 2000, 2003; Attaccalite and Sorella,
2008; Sorella and Capriotti, 2010; Zen
et al., 2013) of the intrinsic infinite vari-
ance problem occurring in the calculation
of nuclear forces in the simplest VMC
scheme. Moreover, thanks to the algorith-
mic differentiation algorithm (Sorella and
Capriotti, 2010), the cost of computing
all the force components in a system can
be afforded with a computational time at
most a factor four larger than the one cor-
responding to the energy. This progress
has led to several works, where structural
optimization and highly accurate evalu-
ations of the equilibrium configurations
as well as related properties were possible
even for quite large systems (Barborini and
Guidoni, 2012; Coccia et al., 2013, 2014;
Guareschi and Filippi, 2013; Zen et al,,
2013).

MOLECULAR DYNAMICS WITH aMC
Even though the efficient wavefunction
optimization and fast evaluation of forces
are achieved, the application of QMC for
MD simulation of materials remains chal-
lenging due to the theoretical difficulties in
applying the Newton’s equations of motion
when the forces are given with a statisti-
cal uncertainty. For instance, the basic law
of energy conservation cannot be met at
all, when the forces are not exactly given at
each step. Since it is prohibitive to eliminate
the statistical error (for the same reason,
see footnote 1), MD methods that allow
the presence of random noise in the force
components are certainly more suitable for
QMC.

In our works, we have adopted a
second order Langevin dynamics (SLD)
for the sampling of the ionic configu-
rations within the ground state Born—
Oppenheimer approach. In this scheme,
the statistical noise corresponding to the
forces, is used to drive the dynamics at finite
temperature by means of an appropri-
ate generalized Langevin dynamics (Attac-
calite and Sorella, 2008), while, during the
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FIGURE 1 | The eigenvectors of the covariance matrix obtained with the noisy force components
evaluated by VMC. These eigenvectors correspond to the three vibrational modes of the water
monomer: bending (red), symmetrical (green), and asymmetrical (blue) stretching. The smallest
eigenvalue corresponds to the lowest frequency vibrational mode (red).

dynamics, a noise correction is added to
compensate the extra energy pumped into
the system by the noise of the QMC forces.
Later works also introduced two integra-
tion methods (Luo et al., 2014; Mazzola
et al.,, 2014), which allowed us to work
with noisy forces and large time steps, thus
reducing the computational cost by a sub-
stantial fraction. The price to pay is the
limitation of this approach to the evalua-
tion of static quantities at finite tempera-
ture, because dynamical quantities, such as
the diffusion constant, cannot be evaluated
with the above stochastic implementation
of SLD. Similar approaches (Krajewski and
Parrinello, 2006; Kiihne et al., 2007) have
been proposed where an SLD algorithm has
been devised also at the DFT level.

Last but not least, our proposed MD
scheme with QMC also includes an auto-
matic optimal tuning for the damping of
the slow and the fast modes, which greatly
improves the efficiency of the sampling.
In the SLD equations, the damping coef-
ficients matrix can be arbitrarily chosen
to speed up the sampling, provided the
fluctuation—dissipation theorem is satis-
fied by adding appropriate correlated noise
to the force components. In our scheme,
we have defined this correlation matrix
in terms of the one corresponding to the
noisy forces obtained with QMC. This is
because we have empirically verified that
the latter matrix is almost proportional
to the dynamical matrix (see Figure 1).

Therefore, the energy modes with higher
frequency vibrations can be systematically
damped much more than the slow modes,
and this clearly allows a faster propagation
with larger time steps.

The VMC-based MD has been success-
fully applied to various systems from small
molecules (Luo et al., 2014) to liquids, for
instance, the liquid hydrogen at high pres-
sure (Attaccalite and Sorella, 2008; Mazzola
et al., 2014) and the liquid water at ambi-
ent conditions (Zen et al., 2014) for the
properties of vibrational frequencies (Luo
et al., 2014), atomic structures (Zen et al.,
2014), and phase diagrams (Mazzola et al.,
2014).Itisimplemented in the TurboRVB
QMC package (Sorella, 2015) with a hybrid
MPI and OpenMP paradigm and its per-
formance in the production run reaches
peta-scale, as it has been successfully tested
up to 33K cores on BG/Q and 264K cores
on the K-computer.

CONCLUSION AND OUTLOOKS

From the high performance computing
perspective, the four main components
that we have briefly reviewed in this work
show different features in computational
intensity and communications. The sta-
tistical calculation for the energy and its
derivatives required by the optimization
and forces puts very heavy loads on the
CPU but only needs very little communica-
tion at the end of a big piece of work, which
is an ideal pattern for the parallelization. In

addition, each optimization step involves
inversion operations of big matrices. It can
be a potential bottleneck if it is solved in
parallel on a network with high latency. The
computational and communication cost of
updating ion positions is negligible com-
pared to the other three parts for tens and
hundreds of atoms.

In conclusion, we have briefly described
the main computational achievements that
have allowed recently the first ab initio sim-
ulations of realistic materials with an effi-
cient molecular dynamics based on accu-
rate QMC forces. We believe that our work
represents a first step toward an efficient
tool for ab initio simulations of material
properties much more reliable than DFT.
Indeed, our evaluation of forces is lim-
ited to the VMC approach, and we expect
some progress can be done by adopting
the more reliable DMC method. Simi-
larly, it should be possible to extend the
method to more accurate wavefunctions,
containing, for instance, many-body and
backflow correlations, as well as implicit
multi-determinant wavefunctions, such as
the antisymmetrized geminal power (AGP)
and the Pfaffian wavefunction. For all the
above reasons, we remark once again our
belief that QMC should be considered as
the raising star for ab initio simulations of
materials.
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