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This manuscript makes a reflection about SU-8-based microprobes for neural activity 
recording and drug delivery. By taking advantage of improvements in microfabrication 
technologies and using polymer SU-8 as the only structural material, we developed several 
microprobe prototypes aimed to (a) minimize injury in neural tissue, (b) obtain high-quality 
electrical signals, and (c) deliver drugs at a micrometer precision scale. Dedicated pack-
aging tools have been developed in parallel to fulfill requirements concerning electric and 
fluidic connections, size and handling. After these advances have been experimentally 
proven in brain using in vivo preparation, the technological concepts developed during 
consecutive prototypes are discussed in-depth now.
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Introduction

Microprobe development for neuronal applications has been refined to reach minimal  invasiveness, 
high reproducibility, and monolithic integration with microelectronics. Reducing the invasive nature 
of neural probes is a major step while aiming to interfere with neural activity patterns at the cellular 
level. To this purpose, advances in microfabrication technology have been exploited to integrate 
high-density sensing sites into a single miniaturized probe for simultaneous discrimination of 
large neuronal ensembles. Hence, sophisticated fabrication methods have been developed in the 
microelectronics industry for over half a century. As a result, high reliability and high-volume 
production levels have been achieved. Furthermore, improvements in communication between 
microtechnologists and the neuroscientific community were updated in relation with the growth 
of connection sites, reduction of external signal influence, and autonomy of the device.

In addition to improvements of electronics for neural applications, microfluidic integration 
gained interest over the last years. In fact, precise and spatiotemporal controlled delivery by 
microprobes is considered to be one of the most promising directions for delivering pharmaco-
logical compounds directly into specific brain regions. From its beginning, silicon technology 
pioneered the integration of fluidic microchannels into a probe (Chen et al., 1997). Anisotropic 
silicon etching, boron etch stop, and thermal oxidation/low-pressure chemical vapor deposition 
sealing were key steps in putting together microelectrodes and fluidic channels for a first time. 
Changes in the response properties of isolated neurons during drug delivery confirmed the 
validity of this approach. Since then, efforts have been devised toward precisely control and 
monitor fluid movements (Lin and Pisano, 1999; McAllister et al., 2000; Rathnasingham et al., 
2004; Neeves et  al., 2006; Papageorgiou et  al., 2006; Foley et  al., 2009; Rohatgi et  al., 2009; 
Pongrácz et al., 2013; Lee et al., 2015). Recently, multi-shank fluidic silicon probes have been 
developed for neuroscientific applications (Seidl et al., 2010; Frey et al., 2011; John et al., 2011; 
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Spieth et  al., 2011). Fluidic channels have been successfully 
integrated into the silicon 3D configuration via isotropic etch-
ing and parylene resealing process.

In parallel, polymer-based microfabrication technology 
has been developed to deal with invasiveness and brittleness 
associated with silicon (Subbaroyan et  al., 2005; Cheung 
and Renaud, 2006; Mercanzini et  al., 2007, 2008). Parylene 
technology has already been reported as an option for fluidic 
applications (Takeuchi et  al., 2005). A sacrificial photoresist 
was defined at specific thickness between two parylene layers 
and later dissolved to create the cavity. As an alternative to 
this method, thermal bonding was used (Ziegler et al., 2006). 
Its main advantages were simplicity, fast production, and the 
possibility to increase adhesion between the structural lay-
ers. Microprobes based on polyimide technology were also 
developed (Metz et  al., 2004). Sputtering and dry etching 
technique were used to integrate electrodes on the polymer, and 
lamination technique was implemented to create the channel. 
It was concluded that this technology offers versatibility for the 
design of electrodes and channels in terms of size, number, and 
position. Also, benzocyclobutene (BCB) has been combined 
with silicon technology to include both, electrodes and fluidics 
(Lee et al., 2004).

Our group has already exploited polymer SU-8 microfab-
rication technology in order to integrate multiple electrodes 
and fluidic channels into a single probe. Over the last years, it 
has been demonstrated that SU-8 polymer provides optimal 
properties for neural applications (Lu et al., 2006; Cho et al., 
2008; Fernández et al., 2009; Altuna et al., 2010, 2012, 2013). 
Its high-aspect ratio capability has enabled good dimensional 
control, and therefore, probes with vertical sidewalls provided a 
clean insertion into the soft tissue. In addition, high uniformity 
and adhesion properties ensured the positioning of the metallic 
tracks on top of the polymer. Recently, planar electrodes were 
integrated at probe surface and signal recording improved sig-
nificantly (Altuna et al., 2012). Bonding at low temperature and 
pressure was first suggested as an optimal technique to create 
embedded microchannels (Blanco et al., 2004; Agirregabiria 
et al., 2005; Arroyo et al., 2007; Fernández et al., 2009). Now, 
even lower temperature combined with higher pressure has 
been used to avoid internal forces and to guarantee probe 
planarity. In all cases, the mechanical suitability of SU-8-based 
probes were experimentally tested for neural application (Lu 
et al., 2006; Cho et al., 2008; Fernández et al., 2009; Altuna et al., 
2010, 2012, 2013). In addition, new achievements regarding 
probe packaging are addressed in this document. Packaging is 
known to be a major cost factor in the field of medical microde-
vices. Therefore, simple, robust, and re-usable housing becomes 
highly desirable, especially when life-limiting components are 
used. When electric and fluidic functions are integrated into a 
single microdevice, all connections have to fit into tight space 
restriction. Accordingly, our microfluidic SU-8 probes have 
been displayed every time by a dedicated packaging based on 
high-resolution 3D printing techniques (Fernández et al., 2009; 
Altuna et al., 2010, 2012, 2013).

Viability Study of SU-8 Microprobes for 
Neural Applications

Our first SU-8 prototype included novel design and material 
concepts to allow a flexible microprobe fabrication for a wide range 
of neural applications (Figure 1A). Polymer SU-8 was chosen as 
an exclusive structural material aimed to integrate miniaturized 
electrodes and fluidic microchannels. Insertion area was chosen 
to be considerably larger than typical silicon-based probes dur-
ing the first stage of development (400 μm × 220 μm) to ensure 
mechanical stiffness of the SU-8 shank. Six electrodes with a size of 
50 μm × 50 μm were placed close to the tip to facilitate recording 
of neuronal signals close to the delivery radius. Photolithography 
technique was used to define the pattern of the probe, and metallic 
layers were coated on top of a thick undeveloped SU-8 layer for 
the first time by a controlled sputtering process. In addition, SU-8 
made microchannels were processed on top by thermocompres-
sion based on a recipe developed by Ikerlan/IK4 (Blanco et al., 
2004; Agirregabiria et al., 2005; Arroyo et al., 2007). Preliminary 
electrical characterization verified the sensing capability of the 
probe and biological tests confirmed clean delivery into the brain 
(Fernández et al., 2009).

Microprobe Development: Minimal Tissue 
Damage and Improved Electrical Recording

Once functional viability of the first prototype was verified, 
the dimensions of the insertion area were reduced in an order 
of magnitude to limit injury of the neural tissue. Probe lengths 
and designs were adapted for in vitro experiments and a tetrode 
configuration was implemented at the tip in order to record activ-
ity from small neuronal groups and to discriminate independent 
neurons (Figure 1B). The electrode diameter was set at 20 μm, 
quite comparable to neuron size. In relation with the fabrication 
procedure, baking conditions and photolithography exposure 
dose were optimized to gain resolution of such reduced patterns. 
This design enabled the recording of extracellular action potentials 
with peak-to-peak amplitudes comparable to conventional tetrode 
(Altuna et al., 2010). Then, in an effort to improve the recording 
capability of the tetrode, a revolutionary fabrication sequence 
was developed (Altuna et al., 2012). The typical gap between the 
sensing site and tissue was fully eliminated and planar electrodes 
were located at the probe surface level (Figure 1C). In addition, 
the thickness of the nearest SU-8 layer was reduced to minimize 
injury at depth brain in vivo recordings. This advances positively 
impacted on recording capability, as tested experimentally in 
the rat hippocampus in vivo. Action potentials emerging from 
individual neurons with high peak-to-peak amplitudes were 
measured using SU-8 probes.

At this stage, a novel fabrication procedure was developed to 
better integrate planar electrodes and well-defined microchan-
nels in reduced probe sizes. Once the technological scope was 
demonstrated (Figure 1D), we moved forward in order to increase 
specificity in the application field. The position of the outlets was 

FIGURE 1 | Evolution of the SU-8 microprobe shown by scanning 
electron microscopy (SEM) figures: (A) initial electrode configuration  
and a fluidic channel with multiple lateral outlets, (B) first tetrode version for 
in vitro applications, (C) the tetrode at the probe surface level, (D) fluidic 

implementation to the tetrode version, (E) the tetrode with three fluidic 
outlets in the same face of the probe, (F) eight electrodes in a row and two 
fluidic outlets in the same face of the probe. The outlets are indicated with 
arrows.
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changed from the lateral side of the probe to the top side in order 
to place the outlets in the same level as the electrodes (Figure 1E). 
Additionally, a linear electrode configuration was developed to 
facilitate recording from several brain layers simultaneously. In 
relation to fluidics, two channels with internal dimensions of 
40 μm × 20 μm were added. Both channels had independent inlet 
and outlet ports in order to control drug delivery individually 
(Figure 1F).

Development of Packaging Tools

In parallel to the progress of probe design and microfabrica-
tion, packaging was adjusted to each probe prototype. The first 
packaging was aimed to integrate multiple sensing sites and a 
single fluidic connection (Fernández et  al., 2009). A proper 
fixation of the probe into the capsule and an improved sealing 
ensured pressure application up to 4 bar (Figure 2A). Next probe 
design required exclusively electric connection and to facilitate 
handling in typical experimental setups available at neuroscience 
research laboratories, therefore, a printed circuit board (PCB) 
with 16 electric contacts was developed (Altuna et al., 2010). A 
conductive adhesive between the microelectrode and electric pad 

of the PCB enabled a robust connection for electric data transfer 
(Figure 2B). The third design added complexity due to its eight 
electric and fluidic ports in such a reduced device (Figure 2C). 
With this prototype we recorded for the first time neural ensemble 
activity in response to local drug delivery at a microscale resolu-
tion (Altuna et al., 2013).

Specific details of early SU-8 microprobe prototypes 
(Figures 1A–D) and their corresponding packaging (Figures 2A–C) 
have been already published. Since the last probe and packaging 
prototype provided us reliable experimental results, both probe and 
packaging designs are now under a commercialization program by 
microLIQUID (www.microliquid.com).

Discussion and Future

This manuscript summarizes the evolution of our SU-8 micro-
probe’s design and packaging since its beginning up to the 
present. The first probe prototype was the master key, since it was 
demonstrated the viability of polymer SU-8 as structural material 
for neural applications at fine scale. In each consecutive prototype, 
electrode design was improved for better signal-to-noise ratio 
and the fluidic configuration evolved to multiple independent 
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microchannels facing the same side of the electrode. Accordingly, 
our three packaging designs not only conceived to ensure reliable 
connections but also easy manipulation. Just as technological 
aspects of the probe and packaging were improved over time, the 
complexity of the experiments also increased until simultaneous 
functionality for depth electrical recording and drug delivery in 
the brain at a scale of few hundreds of micrometers was demon-
strated. Future steps will be focused on chronic neural applications 
aimed to gain better spatiotemporal control of drug delivery and 

recording during long-term experiments. In this direction, specific 
packaging tools will be manufactured with the aim to get a compact 
probe-packaging ensemble.

Acknowledgments

The authors would like to thank the Biomedical Application Group 
at CNM, Barcelona and the work team of Liset Menendez de la 
Prida at Instituto Cajal, Madrid.

References
Agirregabiria, M., Blanco, F. J., Berganzo, J., Arroyo, M. T., Fullaondo, A., Mayora, K., 

et al.  (2005). Fabrication of SU-8 multilayer microstructures based on successive 
CMOS compatible adhesive bonding and releasing steps. Lab. Chip 5, 545–552. 
doi:10.1039/b500519a 

Altuna, A., Bellistri, E., Cid, E., Aivar, P., Gal, B., Berganzo, J., et al.  (2013). SU-8 based 
microprobes for simultaneous neural depth recording and drug delivery in the 
brain. Lab. Chip 13, 1422–1430. doi:10.1039/c3lc41364k 

Altuna, A., Gabriel, G., De La Prida, L. M., Tijero, M., Guimerá, A., Berganzo, J., et al.  
(2010). SU-8-based microneedles for in vitro neural applications. J. Micromech. 
Microeng. 20. doi:10.1088/0960-1317/20/6/064014 

Altuna, A., Menendez de la Prida, L., Bellistri, E., Gabriel, G., Guimerá, A., Berganzo, 
J., et al.  (2012). SU-8 based microprobes with integrated planar electrodes for 
enhanced neural depth recording. Biosens. Bioelectron. 37, 1–5. doi:10.1016/j.
bios.2012.03.039 

Arroyo, M. T., Fernández, L. J., Agirregabiria, M., Ibãez, N., Aurrekoetxea, J., and 
Blanco, F. J. (2007). Novel all-polymer microfluidic devices monolithically integrated 
within metallic electrodes for SDS-CGE of proteins. J. Micromech. Microeng. 17, 
1289–1298. doi:10.1088/0960-1317/17/7/011 

Blanco, F. J., Agirregabiria, M., Garcia, J., Berganzo, J., Tijero, M., Arroyo, M. T., 
et al.  (2004). Novel three-dimensional embedded SU-8 microchannels fabricated 
using a low temperature full wafer adhesive bonding. J. Micromech. Microeng. 14, 
1047–1056. doi:10.1088/0960-1317/14/7/027 

http://www.frontiersin.org/Materials/archive
http://www.frontiersin.org/Materials/
http://dx.doi.org/10.1039/b500519a
http://dx.doi.org/10.1039/c3lc41364k
http://dx.doi.org/10.1088/0960-1317/20/6/064014
http://dx.doi.org/10.1016/j.bios.2012.03.039
http://dx.doi.org/10.1016/j.bios.2012.03.039
http://dx.doi.org/10.1088/0960-1317/17/7/011
http://dx.doi.org/10.1088/0960-1317/14/7/027
www.frontiersin.org


June 2015 | Volume 2 | Article 475

Altuna et al. SU-8 microprobes for neural applications

Frontiers in Materials | www.frontiersin.org

Chen, J., Wise, K. D., Hetke, J. F., and Bledsoe,  S. C. Jr. (1997). A multichannel neural 
probe for selective chemical delivery at the cellular level. IEEE Trans. Biomed. Eng. 
44, 760–769. doi:10.1109/10.605435 

Cheung, K. C., and Renaud, P. (2006). BioMEMS for medicine: on-chip cell char-
acterization and implantable microelectrodes. Solid State Electron. 50, 551–557. 
doi:10.1016/j.sse.2006.03.023 

Cho, S. H., Lu, H. M., Cauller, L., Romero-Ortega, M. I., Lee, J. B., and Hughes, G. A. 
(2008). Biocompatible SU-8-based microprobes for recording neural spike signals 
from regenerated peripheral nerve fibers. IEEE Sens. J. 8, 1830–1836. doi:10.1109/
JSEN.2008.2006261 

Fernández, L. J., Altuna, A., Tijero, M., Gabriel, G., Villa, R., Rodríguez, M. J., et al.  
(2009). Study of functional viability of SU-8-based microneedles for neural 
applications. J. Micromech. Microeng. 19. doi:10.1088/0960-1317/19/2/025007 

Foley, C. P., Nishimura, N., Neeves, K. B., Schaffer, C. B., and Olbricht, W. L. (2009). 
Flexible microfluidic devices supported by biodegradable insertion scaffolds for 
convection-enhanced neural drug delivery. Biomed. Microdevices 11, 915–924. 
doi:10.1007/s10544-009-9308-6 

Frey, O., Holtzman, T., McNamara, R. M., Theobald, D. E. H., Van Der Wal, P. D., De 
Rooij, N. F., et al.  (2011). Simultaneous neurochemical stimulation and recording 
using an assembly of biosensor silicon microprobes and SU-8 microinjectors. Sens. 
Actuators B Chem. 154, 96–105. doi:10.1016/j.snb.2010.01.034 

John, J., Li, Y., Zhang, J., Loeb, J. A., and Xu, Y. (2011). Microfabrication of 3D neural 
probes with combined electrical and chemical interfaces. J. Micromech. Microeng. 
21. doi:10.1088/0960-1317/21/10/105011 

Lee, H. J., Son, Y., Kim, J., Lee, C. J., Yoon, E. S., and Cho, I. J. (2015). A multichannel 
neural probe with embedded microfluidic channels for simultaneous in vivo neural 
recording and drug delivery. Lab. Chip 15, 1590–1597. doi:10.1039/c4lc01321b 

Lee, K., He, J., Clement, R., Massia, S., and Kim, B. (2004). Biocompatible benzo-
cyclobutene (BCB)-based neural implants with micro-fluidic channel. Biosens. 
Bioelectron. 20, 404–407. doi:10.1016/j.bios.2004.02.005 

Lin, L., and Pisano, A. P. (1999). Silicon-processed microneedles. J. Microelectromech. 
Syst. 8, 78–84. doi:10.1109/84.749406 

Lu, H., Cho, S.-H., Lee, J.-B., Romero-Ortega, M., Cauller, L., and Hughes, G. (2006). 
“SU8-based micro neural probe for enhanced chronic in-vivo recording of spike 
signals from regenerated axons,” in Proceedings of IEEE Sensors, Art. No. 4178557, 
66–69.

McAllister, D. V., Allen, M. G., and Prausnitz, M. R. (2000). Microfabricated micronee-
dles for gene and drug delivery. Annu Rev Biomed Eng 2, 289–313.

Mercanzini, A., Cheung, K., Buhl, D. L., Boers, M., Maillard, A., Colin, P., et al.  (2008). 
Demonstration of cortical recording using novel flexible polymer neural probes. 
Sens. Actuators A Phys. 143, 90–96. doi:10.1016/j.sna.2007.07.027 

Metz, S., Bertsch, A., Bertrand, D., and Renaud, P. (2004). Flexible polyimide probes 
with microelectrodes and embedded microfluidic channels for simultaneous drug 

delivery and multi-channel monitoring of bioelectric activity. Biosens. Bioelectron. 
19, 1309–1318. doi:10.1016/j.bios.2003.11.021 

Neeves, K. B., Lo, C. T., Foley, C. P., Saltzman, W. M., and Olbricht, W. L. (2006). 
Fabrication and characterization of microfluidic probes for convection enhanced 
drug delivery. J. Control. Release 111, 252–262. doi:10.1016/j.jconrel.2005.11.018 

Papageorgiou, D. P., Shore, S. E., Bledsoe,  S. C. Jr., and Wise, K. D. (2006). A shut-
tered neural probe with on-chip flowmeters for chronic in vivo drug delivery. J. 
Microelectromech. Syst. 15, 1025–1033. doi:10.1109/JMEMS.2005.863733 

Pongrácz, A., Fekete, Z., Márton, G., Bérces, Z., Ulbert, I., and Fürjes, P. (2013). Deep-
brain silicon multielectrodes for simultaneous in vivo neural recording and drug 
delivery. Sens. Actuators B Chem. 189, 97–105. doi:10.1039/c4lc01321b 

Rathnasingham, R., Kipke, D. R., Bledsoe,  S. C. Jr., and McLaren, J. D. (2004). 
Characterization of implantable microfabricated fluid delivery devices. IEEE Trans. 
Biomed. Eng. 51, 138–145. doi:10.1109/TBME.2003.820311 

Rohatgi, P., Langhals, N. B., Kipke, D. R., and Patil, P. G. (2009). In vivo performance of a 
microelectrode neural probe with integrated drug delivery laboratory investigation. 
Neurosurg. Focus 27. doi:10.3171/2009.4.FOCUS0983 

Seidl, K., Spieth, S., Herwik, S., Steigert, J., Zengerle, R., Paul, O., et al.  (2010). In-plane 
silicon probes for simultaneous neural recording and drug delivery. J. Micromech. 
Microeng. 20. doi:10.1088/0960-1317/20/10/105006 

Spieth, S., Brett, O., Seidl, K., Aarts, A. A. A., Erismis, M. A., Herwik, S., et al.  (2011). A 
floating 3D silicon microprobe array for neural drug delivery compatible with elec-
trical recording. J. Micromech. Microeng. 21. doi:10.1088/0960-1317/21/12/125001 

Subbaroyan, J., Martin, D. C., and Kipke, D. R. (2005). A finite-element model of the 
mechanical effects of implantable microelectrodes in the cerebral cortex. J. Neural 
Eng. 2, 103–113. doi:10.1088/1741-2560/2/4/006 

Takeuchi, S., Ziegler, D., Yoshida, Y., Mabuchi, K., and Suzuki, T. (2005). Parylene 
flexible neural probes integrated with microfluidic channels. Lab. Chip 5, 519–523. 
doi:10.1039/b417497f 

Ziegler, D., Suzuki, T., and Takeuchi, S. (2006). Fabrication of flexible neural probes with 
built-in microfluidic channels by thermal bonding of Parylene. J. Microelectromech. 
Syst. 15, 1477–1482. doi:10.1109/JMEMS.2006.879681 

Conflict of Interest Statement: The authors declare that the research was conducted 
in the absence of any commercial or financial relationships that could be construed 
as a potential conflict of interest.

Copyright © 2015 Altuna, Berganzo and Fernández. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other forums is permitted, provided the original 
author(s) or licensor are credited and that the original publication in this journal is cited, 
in accordance with accepted academic practice. No use, distribution or reproduction is 
permitted which does not comply with these terms.

http://www.frontiersin.org/Materials/archive
http://www.frontiersin.org/Materials/
http://dx.doi.org/10.1109/10.605435
http://dx.doi.org/10.1016/j.sse.2006.03.023
http://dx.doi.org/10.1109/JSEN.2008.2006261
http://dx.doi.org/10.1109/JSEN.2008.2006261
http://dx.doi.org/10.1088/0960-1317/19/2/025007
http://dx.doi.org/10.1007/s10544-009-9308-6
http://dx.doi.org/10.1016/j.snb.2010.01.034
http://dx.doi.org/10.1088/0960-1317/21/10/105011
http://dx.doi.org/10.1039/c4lc01321b
http://dx.doi.org/10.1016/j.bios.2004.02.005
http://dx.doi.org/10.1109/84.749406
http://dx.doi.org/10.1016/j.sna.2007.07.027
http://dx.doi.org/10.1016/j.bios.2003.11.021
http://dx.doi.org/10.1016/j.jconrel.2005.11.018
http://dx.doi.org/10.1109/JMEMS.2005.863733
http://dx.doi.org/10.1039/c4lc01321b
http://dx.doi.org/10.1109/TBME.2003.820311
http://dx.doi.org/10.3171/2009.4.FOCUS0983
http://dx.doi.org/10.1088/0960-1317/20/10/105006
http://dx.doi.org/10.1088/0960-1317/21/12/125001
http://dx.doi.org/10.1088/1741-2560/2/4/006
http://dx.doi.org/10.1039/b417497f
http://dx.doi.org/10.1109/JMEMS.2006.879681
http://creativecommons.org/licenses/by/4.0/
www.frontiersin.org

	Polymer SU-8-based microprobes for neural recording and drug delivery
	Introduction
	Viability Study of SU-8 Microprobes for Neural Applications
	Microprobe Development: Minimal Tissue Damage and Improved Electrical Recording
	Development of Packaging Tools
	Discussion and Future
	Acknowledgments
	References


