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The purpose of this work is to present recent advances in modeling and design of
piezoelectric energy harvesters, in the framework of micro-electro-mechanical systems
(MEMS). More specifically, the case of inertial energy harvesting is considered, in the
sense that the kinetic energy due to environmental vibration is transformed into electrical
energy by means of piezoelectric transduction. The execution of numerical analyses
is greatly important in order to predict the actual behavior of MEMS devices and to
carry out the optimization process. In the common practice, the results are obtained by
means of burdensome 3D finite element analyses (FEA). The case of beams could be
treated by applying 1D models, which can enormously reduce the computational burden
with obvious benefits in the case of repeated analyses. Unfortunately, the presence of
piezoelectric coupling may entail some serious issues in view of its intrinsically three-
dimensional behavior. In this paper, a refined, yet simple, model is proposed with
the objective of retaining the Euler–Bernoulli beam model, with the inclusion of effects
connected to the actual three-dimensional shape of the device. The proposed model is
adopted to evaluate the performances of realistic harvesters, both in the case of harmonic
excitation and for impulsive loads.

Keywords: piezoelectric materials, energy harvesting, MEMS, lamination theory, frequency-up conversion

1. INTRODUCTION

The application of piezoelectric materials is continuously increasing, with different possible uses
of both direct (conversion of mechanical into electric energy) and inverse effects. The latter is
applied in actuators, e.g., in the case of micropumps (Ardito et al., 2013) or ultrasound transducers,
PMUT (Muralt and Baborowsky, 2004); on the other hand, one of the most promising application
of direct effect is energy harvesting (Roundy and Wright, 2004). In recent times, the concept of
energy harvesting has been applied to micro-electro-mechanical systems (MEMS), with similar
functioning principles (Jeon et al., 2005; Kim et al., 2012): an additional broadening of applications
can be forecast in the next future, with the immediate corollary of a fundamental need for improved
computational tools. A micro energy harvester (or scavenger) is a device which transforms available
energy, present in the environment (solar power, thermal energy, wind energy, or kinetic energy),
into electric energy and uses it to power small devices such as wearable electronics or wireless
sensor networks. The development of ultra-low-power electronic devices is a substantial spur for
the development ofMEMS energy harvesters, with the aimof achieving energy-autonomous sensors.
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In the design of a MEMS energy harvester, the big issue is that
the energy generated by the harvester decreases rapidly when the
size of the device reduces; hence, a trade-off between size and
energy scavengedmust be found. In this perspective, piezoelectric
materials are advantageous because they have high energy density,
and they are not too much affected by the size scaling. Piezoelec-
tric energy harvesters (PEHs) consist of a vibrating spring-mass
system coupled with a piezoelectric element, which is designed to
convert elastic energy into electric energy. The common approach
with MEMS PEHs consists of a piezolaminated cantilever with
a large tip mass at the free edge (Roundy and Wright, 2004).
The conversion of energy is achieved exploiting the so-called 31-
mode of the piezoelectric thin film: the planar deformation of
the piezoelectric material produces an electric field in the vertical
direction. Such an electric field induces a current flow when
the layer is sandwiched between electrodes and connected to an
appropriate external circuit.

In a previous paper (Gafforelli et al., 2015), we developed a
simple 1D model in order to simulate piezoelectric thin beams.
Starting from the fully coupled 3D constitutive equations of piezo-
electricity, appropriate hypotheses should be introduced to model
strains and stresses so that the 1D model takes into account the
3D effects (Maurini et al., 2004, 2006). It is worth noting that such
effects are really negligible if one considers the structural behavior
of a beam in the absence of piezoelectric coupling. Conversely,
in the case of multi-physics simulation of harvesters, the effects
connected to the actual shape of the beam involve a significant
variation of the results in terms of electrical quantities.

The theoretical model is founded on an enrichment of the
Euler–Bernoulli kinematic field, with additional strain contribu-
tions which aims at introducing some three-dimensional effects:
the obtainedmodel is denoted asmodified transverse deformation
(MTD). The modification is based on the width-to-length ratio
and is driven by some considerations on the 3D behavior of
piezoelectric films. Such an enriched model is unprecedented,
to the author’s knowledge, and allows the user to obtain reliable
results in a negligible time.

In this paper, the model is applied to some specific examples
referred to inertial energy harvesters, which are usually repre-
sented by cantilever beams (see Figure 1). A simple resistance R
is considered in the electrical circuit attached to the piezoelectric
element. The numerical solution is obtained making use of the
Rayleigh–Ritz technique, with specific discretization of both the
displacement and the voltage fields. The validation is obtained by
the critical comparison with the results of full 3D computations.
Once validated, themodel of the cantilever beam can be employed
for the optimal design of realistic cantilever harvesters. Two cases

of realistic devices are considered: (i) energy harvester which
is subject to a harmonic excitation, in resonance with the first
eigenfrequency of the cantilever and (ii) PEHs in the presence of
impulsive loads. Both cases are of practical interest: the former is
inspired by inertial harvesting from rotating machinery; the latter
can be applied in the presence of impact-induced vibration or
for some specific cases of frequency-up conversion (FupC, better
described in what follows).

The paper is organized in this way: the proposed model is
thoroughly described in Section 2; the governing equations are
summarized in Section 3, which also describes the application
of the Rayleigh–Ritz technique; the validation of the model is
briefly revised in Section 4; and the results for the realistic devices
is contained in Section 5. Finally, some conclusions and future
prospects are drawn in Section 6.

2. DESCRIPTION OF THE PROPOSED
MODEL

2.1. Constitutive Model for Piezoelectric
Materials
Linear piezoelectric constitutive equations are a combination of
classical Hooke’s law, employed in continuum mechanics, and
standard linear constitutive relation between electric and strain
fields. The herein adopted notation is customary in the theory of
piezoelectricity (IEEE Standard on Piezoelectricity, 1987).

The peculiarity of piezoelectricity is the third order coupling
tensor emij that couplesmechanical and electrical quantities. These
coefficients refer to three main coupling mechanisms, which are
depicted in Figure 2, using the standard assumption that direction
3 is always the polarization direction:

(a) 33-mode: when applying an electric field along the polar-
ization axis, the piezoelectric element stretches in this same
direction (and vice versa);

(b) 31-mode: when applying an electric field along the polariza-
tion axis, the piezoelectric element shrinks in the orthogonal
plane (and vice versa);

(c) Shear mode: when applying an electric field orthogonal to the
polarization axis, a shear occurs in the element plane (and
vice versa).

According to the physics of piezoelectric coupling, only few
coupling constants are non-zero. Indeed, e333 is related to mode
(a), e311 and e322 are related to mode (b), while e113 and e223
are related to mode (c). Voigt’s notation is usually employed to
represent the constitutive equations. It is, therefore, possible to

FIGURE 1 | Schematic view of the cantilever harvester and stratification of the piezolaminated beam.
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A B C

FIGURE 2 | Piezoelectric modes using the standard assumption that direction 3 is the polarization direction: (A) 33-mode, (B) 31-mode, and
(C) shear-mode.

use vectors for representing second-order symmetric tensors and
matrices for representing third and fourth order tensors. In this
way, the piezoelectric coupling matrix e reduces to the following:

e =

 0 0 0 e15 0 0
0 0 0 0 e24 0
e31 e32 e33 0 0 0

 (1)

In the isotropic case, the complete expression of piezoelectric
constitutive law reads

T11 =
E

(1+ν)(1−2ν) [(1− ν)S11 + νS22 + νS33]− e31E3
T22 =

E
(1+ν)(1−2ν) [νS11 + (1− ν)S22 + νS33]− e32E3

T33 =
E

(1+ν)(1−2ν) [νS11 + νS22 + (1− ν)S33]− e33E3
T13 =

E
2(1+ν)S13 − e15E1

T23 =
E

2(1+ν)S23 − e24E2
T12 =

E
2(1+ν)S12

(2)
D1 = e15S13 + εS11E1
D2 = e24S23 + εS22E2
D3 = e31S11 + e32S22 + e33S33 + εS33E3

(3)

In the previous equations, the following symbols are used: Tij
and Sij are the second order, symmetric, stress and strain tensors,
respectively; Ej is the electric field; Dj is the electric displacement
field; E is the Young’s modulus; ν is the Poisson’s ratio; ehk are the
components of the piezoelectric coupling matrix e, see equation
(1); and εSii (no sum) represent the dielectric permittivities of the
piezoelectric material.

It is worth noting that the MEMS energy harvesters are based
on piezoelectric thin film, which can be realized over a silicon
substrate bymeans of different techniques, e.g., bymeans of pulsed
laser deposition (Horwitz et al., 1991) or by exploiting the sol–gel
procedure (Jacobsen et al., 2010). It is common practice (Trolier-
McKinstry and Muralt, 2004) to derive the effective properties for
piezoelectric thin films, on the basis of the bulk parameters, by
imposing the suitable conditions on stress and strain components,
dictated by the thin film geometry. In this work, such an operation
will be carried outwith reference to an improved kinematicmodel,
as described in the next section.

2.2. Kinematic Model
The cantilever harvester is a piezolaminated beam clamped at one
end section and free to oscillate on the other side. The dynamic

response of the laminated beam can be easily modeled by employ-
ing standard beam theories for laminated composites. Herein,
classical lamination theory (CLT) (Ballhause et al., 2005; Carrera
and Ciuffreda, 2005) is employed, and the kinematics of the
beam section is described through Euler–Bernoulli hypothesis
(i.e., plane sections orthogonal to the neutral axis remain plane
and orthogonal to the same after deformation). Generally speak-
ing, Euler–Bernoulli hypothesis usually fails in modeling lami-
nated beams because the shear deformation plays a fundamental,
and usually non-negligible, role in describing the deformation of
laminated beams. Nevertheless, if the beam is particularly thin
with a limited number of layers with similar elastic properties
(i.e., same order of magnitude of Young’s modulus and Poisson’s
coefficient in different layers), this hypothesis can be considered
valid. The reference system is centered on the neutral axis of
the beam and on the clamped-in end section. The x1 axis lies
along the beam’s length, so that it ranges between 0 and L; the
x2 axis is along the beam’s width and ranges between −b/2 and
b/2; and finally, the x3 axis is across the beam’s thickness h. The
Euler–Bernoulli kinematic model, in its original form, depends
on the transverse displacement w(x1) only. In this paper, we
consider a suitable modification to obtain themodified transverse
deformation (MTD) model. The final model, in terms of the
displacement components sj, reads

s1 = −x3 dw
dx1

s2 = ŝ2(x,Λ)
s3 = w+ ŝ3(x,Λ)

(4)

The additional functions ŝ2 and ŝ3 depend on a geometric
parameter Λ, which represents the transverse slenderness of the
beam, i.e., the ratio of the beam’s length and the beam’s width:

Λ = L/b (5)

The chosen model should fulfill the standard requirements for
a beam theory: the in-the-thickness stress must be null, T33 = 0
and the in-plane stress must be T22 = 0 at x2 =±b/2. The MTD
model aims at obtaining a variable response for different trans-
verse slendernesses: whenΛ→ 0, the beam is extremely wide and
the strain condition S22 = 0must be verified (limit situation of null
transverse deformation, NTD); on the other hand, when Λ→∞,
the beam is extremely narrow and T22 = 0 has to be guaranteed
(limit situation of null transverse stress, NTS). These features can
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be obtained if the strain component S22 is modified through the
introduction of a “transversal shape function” fΛ:

fΛ = [1− A(Λ)]
∣∣∣∣2x2b

∣∣∣∣B(Λ)

+ A(Λ) (6)

where A(Λ) contains two fitting parameters, aΛ and bΛ:

A(Λ) = ΛaΛ

ΛaΛ + bΛ
; B(Λ) = 1+ 1

Λ
(7)

The modified transverse strain is obtained starting from the
expression of S22 in the NTS case; such an expression is then mul-
tiplied by the function fΛ. In that way, ifΛ→∞, then fΛ → 1 and
the NTS situation is recovered; ifΛ→ 0, then fΛ → 0 and S22 → 0,
that correspond to the NTD case. The modified transverse strain,
for isotropic piezoelectric material, reads

S22 =
{
−νS11 +

1+ ν

E [(1− ν)e32 − νe33] E3
}
fΛ (8)

After some algebraic manipulations (see Gafforelli et al. (2015)
for details), one finds that the piezoelectric constitutive law can be
written in the following form:

T11 =
E
(
1− ν2fΛ

)
1− ν2

S11 −
[
e31 − νe32fΛ −

ν(1− νfΛ)
1− ν

e33
]
E3

(9)

T22 =
(
1− fΛ

) [ Eν
1− ν2

S11 −
(
e32 −

ν

1− ν
e33

)
E3
]

(10)

D3 =

[
e31 − νfΛe32 −

ν(1− νfΛ)
1− ν

]
S11

+

[
1− ν2

E

(
e32 −

ν

1− ν
e33

)2
fΛ

+
(1+ ν)(1− 2ν)

E(1− ν)
e233 + εS33

]
E3 (11)

Strains and displacements are linked via compatibility equa-
tions, and the kinematics of the beam as proposed in equation (4)
should be compatible with the strain fields. Since the interest in
building a structural theory is given to strain–stress fields rather
than to the displacement field, it is preferable to build structural
hypotheses upon the strain field and then integrate it to obtain
the displacement field. In this way, one can obtain the expressions
of ŝ2(x,Λ) and ŝ3(x,Λ). One interesting point is the computation
of shear strain components on the basis of the modified displace-
ment fields. After some algebraic manipulations, here omitted for
the sake of conciseness, one finds that S13 is rigorously null on
the whole beam; S23 is proportional to the thickness-to-length
ratio, which is very small, so its value can be neglected; S12 is not
equal to zero, but it has null mean on the cross-section since the
“transversal shape function” fΛ is an even function with respect
to x2. It is possible to conclude that the proposed model involves
no shear contributions in the stiffness matrix, which governs the
beam’s deformation.

3. GOVERNING EQUATIONS

The governing equations for the piezoelectric problem can
be obtained by using the dissipative form of Euler–Lagrange
equations:

d
dt

(
∂L
∂q̇i

)
− ∂L
∂qi

+
∂D
∂q̇i

= 0 (12)

where D is the dissipation function and L is the Lagrangian
function, which is given by suitably combining the kinetic energy
K, the internal energy E , and the external workW :

L = K − (E −W) (13)

The Lagrangian coordinates qi govern the problem in its dis-
cretized form and will be introduced at the end of this section.
All the functionals in equations (12) and (13) are obtained by
integration over the volume of the beam: it is thus necessary to
take into account the layered nature of the piezoelectric beam,
so a suitable modification of the CLT should be introduced (the
relevant details have been explained in Gafforelli et al. (2015)).
For the computation of the internal energy, it is necessary to take
into account the constitutive law described in Section 2.1. After
the integration, one finds the generalized version of the governing
parameters: inertia, damping and stiffness for the mechanical
terms, intrinsic capacitance for the electrical terms, and the cou-
pling parameter, which summarizes the piezoelectric effects. All
these parameters, whose complete expression can be found in
(Gafforelli et al., 2015), account for the layered nature of the beam
(along the thickness) and for the effect of fΛ (which depends on
x2, along the width).

An approximate solution is sought in the framework of the
Rayleigh–Ritz procedure. First, the displacement field is expressed
on the basis of a single time-variant parameterW, given a suitable
shape function ψw:

w(x1) = ψw(x1)W(t) ψw =
3
2

(x1
L

)2
− 1

2

(x1
L

)3
(14)

Second, the electric potential is assumed to be linear across the
thickness tp of the piezoelectric layer and constant along the beam
length, so that the electric field is uniform:

E3 =
V(t)
tp

(15)

The Lagrangian coordinates to be used in equation (12) are
represented by W and V. It is worth noting the simplicity of
such an approximation, which is equivalent to the application of
the finite element method with a single element on the whole
beam. Nonetheless, the numerical comparisons reported in the
next section confirm the validity of the proposed approach.

The governing equations are finally obtained{
mẄ+ cMẆ+ kW−ΘV = Fext
CEV+ΘW = q

(16)

The coefficients are obtained by means of integration through
the beam’s volume: m is the total inertial term; cM is the linear
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mechanical damping coefficient; k is the linear elastic stiffness;
CE is the internal capacitance of the piezoelectric layer; and Θ
is the coupling constant. The electric charge q, collected by the
electrodes, is managed by an external circuit, which provides the
power supply for the self-powered electronic device. Different
schemes of circuitries are investigated in Guyomar et al. (2005).
The harvester provides AC voltage, and the simplest solution is
the coupling with an external load resistance:

q̇ = −R−1V (17)

The final system of equations reads{
mẄ+ cMẆ+ kW−ΘV = Fext
CEV̇+ΘẆ+ R−1V = 0

(18)

The external force Fext can be given by different sources. For
instance, one can consider the inertial forces connected to an
external acceleration imposed to the whole system (ÿ in Figure 1);
in that case, Fext includes the inertial effect of both the tip mass
and the beam itself. A second possibility, which is investigated
in Section 5.2, is represented by an impulsive force exerted at the
beam’s tip.

4. VALIDATION OF THE PROPOSED
METHOD

The numerical validation of the proposed model has been
obtained bymeans of critical comparisonswith a 3D finite element
(FE) model, which has been developed with the commercial code
ABAQUS. In a preliminary stage, some simple static analyses
have been used for the calibration of the parameters aΛ and
bΛ; afterward, the validity of MTD hypotheses has been checked
with reference to quasi-static and dynamic analyses. A simple
cantilever has been adopted, with 2 layers only (2-µm PZT on
6-µm polysilicon substrate), and no tip mass is introduced. The
beam’s length is L= 1000µm; the width is parametric and varies
from b= 50 to 5000µm. The lower surface of the PZT layer is
grounded, from the electric point of view, while the potential on
the upper surface is constrained to be uniform in order to repro-
duce the presence of electrodes. After the convergence analysis, it
has been possible to select the optimal FE mesh for the 3Dmodel,
which has been discretized by using brick elements with quadratic
displacement fields: 40 quadratic elements along the beam axis,
10 elements in the width, and one element for each layer in the
thickness.

The complete validation campaign is described in Gafforelli
et al. (2015). One of the analyses which have been considered
for carrying out the comparison is related to free vibration: the
beam’s tip is quasi-statically moved until a certain position, and
it is suddenly released. The oscillations are governed by the first
natural frequency of the beam ωr and by the mechanical qual-
ity factor QM, which is inversely proportional to the damping
coefficient cM. It is worth noting that the MTD model is by far
less expensive, from the computational standpoint, with respect
to 3D analyses: a single dynamic analysis through the solution
of equation (18) lasts for 3 s, whereas the ABAQUS FE model

requires more than 5 h. Nonetheless, satisfactory agreement is
obtained on the oscillation frequency and amplitude. Clearly, the
single-d.o.f model considered herein is able to capture only the
first vibrationmode, but this is, in general, sufficient for evaluating
the performances of vibrating harvesters.

The analyses have been repeated by changing the resistance
R and the quality factor QM, for a cantilever with fixed width
equal to 200µm. The results of parametric analyses at varying R
are depicted in Figure 3A. As expected, the MTD model better
reproduces numerical results than null transverse stress and defor-
mation models. The peak power generation is underestimated at
low resistances where the influence of highermodes on the voltage
is higher. The effect of the mechanical quality factor on the peak
power generation is reported in Figure 3B. Except for exception-
ally low values of QM, the peak power generation remains more
or less constant. In spite of this, the mechanical damping has a
strong influence on the performances of the harvester in terms
of overall harvested energy. In fact, Figure 4B shows that the
total energy which is collected is reduced as QM decreases. The
energy harvested is also affected by the choice of the resistance
(Figure 4A). It has to be noted that the peak power generation
and the peak energy harvested do not occur at the same load resis-
tance. The peak power is reached at R= 14.4 kΩ, while the peak
energy harvested is obtained at R= 8.7 kΩ. This value represents

A B

FIGURE 3 | Influence of (A) load resistance and (B) mechanical
damping on peak power generation in dynamic analyses for an
impulsive tip load.

A B

FIGURE 4 | Influence of (A) load resistance and (B) mechanical
damping on total energy harvested in dynamic analyses for an
impulsive tip load.
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the optimal load resistance associated to free vibrations of the
harvester.

The FEmodel has been used also in order to explore the validity
of linear kinematics. In fact, the MTD model is based on the
basic hypothesis of small strain and displacement. On the other
hand, the FE analyses have been repeated after switching on the
geometric non-linearity (finite strain and displacement). In that
way, it has been possible to set the deformation limit until which
the linear analysis can be adopted with a reasonable degree of
approximation. This aspect will be treated in the next section.

5. PERFORMANCE ASSESSMENT FOR
A REALISTIC PEH

5.1. Harmonic Excitation
Once validated, themodel of the cantilever beam can be employed
for the characterization and evaluation of the performances of
cantilever harvesters. Parametric analyseswith different geometri-
cal features have been performed in order to analyze the influence
of the beam’s length and of the piezoelectric layer’s thickness on
the harvester response.

The laminate beam is composed of several layers, as summa-
rized in Table 1, which contains the mechanical parameters of all
the layers and the piezoelectric coefficients of the active layer. The
thickness of the piezoelectric film varies between 0.5 and 2µm.
The cantilever width is fixed to be b= 1000µm, while the length
of the beam varies between 400 and 2000µm. A parallelepiped
silicon mass is placed at the beam’s tip and has dimensions
200µm× 1000µm× 1000µm. The mechanical quality factor is
supposed to be QM = 500, which seems to be reasonable for
realistic harvesters. The whole structure is subject to an external
acceleration with harmonic variation:

ÿ = A sinωrt (19)

The amplitude isA= 1 g (9.81m/s2), and the frequency is equal
to the natural frequency of the device. The parametric analyses are
intended to show the influence of the beam’s geometry (length and
thickness) on the response of the harvester in terms of maximum
displacement and voltage in open circuit conditions; maximum
power generation is at the optimal resistance.

Figure 5A shows the influence of the beam’s length on the
open circuit peak displacement. The straight black line is intro-
duced for pointing out the limit of validity of the linear model
adopted herein: in fact, the preliminary FE analyses have shown
that the linearized model entails a maximum relative error of 15%
on displacement (with respect to non-linear geometry analyses)
if the maximum oscillation of the beam’s tip does not exceed
one half the beam’s length. For each value of the parameter
tP, all the length’s values higher than Lmax = 2Wmax (which are
highlighted through opaque rectangles) must not be considered
because a non-linear model which includes finite deformations
and rotations would be more appropriate. All the forthcoming
plots include some “forbidden regions,” highlighted again by col-
ored rectangles, for reminding this fact. Figure 5B shows the peak
OC voltage which is in the range of 0.4÷ 1.5V, while Figure 6
shows (a) the resonance and antiresonance natural frequencies,

TABLE 1 | Geometrical features and material parameters for the various
layers of the cantilever MEMS harvester (listed in the correct order from
top to bottom), ε0 =8.854× 10–12 F/m.

t
(µµµm)

ρ

(g/cm3)
E

(GPa)
ν

(−)
e31

(N/Vm)
e33

(N/Vm)
εS333333
(ε0)

SiO2 Passivation 0.30 2.33 70 0.27 – – –
Ru Electrode 0.10 4.50 447 0.30 – – –
PZT Active 0.5–2 7.70 100 0.30 −12 20 2000
Pt Electrode 0.12 21.45 180 0.30 – – –
SiO2 Passivation 0.62 2.33 70 0.27 – – –
Poly-Si Structural 5.00 2.33 148 0.33 – – –
SiO2 Passivation 0.50 2.33 70 0.27 – – –

A B

FIGURE 5 | Open circuit peak (A) displacement and (B) voltage as a
function of beam’s length and PZT thickness for a resonant cantilever
harvester with QM =500.

FIGURE 6 | Resonance (solid) and antiresonance (dashed) (A) natural
frequencies and (B) optimal resistances as a function of beam’s length
and PZT thickness for a resonant cantilever harvester with QM =500.

which span from 350Hz to 1.5 kHz; (b) the resonance and antires-
onance optimal load resistances, which are barely 1.4÷ 2.2 kΩ at
resonance and span from 30 to 400 kΩ at antiresonance. Finally,
Figure 7 shows the peak power generation, which is in the range
of few microwatts. It is worth noting that the power generation
is a non-monotonic function of tP, even though this fact cannot
be appreciated in Figure 7: some extended parametric analyses
prove that themaximumpower is attained for tP = 0.18µm,which
is lower than the minimum thickness considered herein in view
of technological constraints. The effect of a reduction of PZT
thickness is explained by the fact that there is a trade-off between
the increase of the oscillation amplitude, which is a consequence
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FIGURE 7 | Peak power generation at optimal resistance as a function
of beam’s length and PZT thickness for a resonant cantilever
harvester with QM =500. Maximum amplitude of external acceleration: 1 g.

of lower stiffness, and the decrease of power generation, due to the
lower amount of piezoelectric material.

These results are qualitatively and quantitatively in agreement
with literature results on cantilever harvesters with dimensions
similar to the ones considered herein (Muralt et al., 2009). It is
worth noting that these preliminary results already show that can-
tilever beams of standard MEMS dimensions are not suitable for
being efficiently employed as resonant energy harvesters. Indeed,
although the obtained power generation can be considered use-
ful for some applications that require few microwatts as power
supply (e.g., pacemakers), this power is obtained in very strict
conditions. Cantilever beam harvesters are efficient only at the
resonance frequency. Unfortunately, applications where the input
vibrations are monoharmonic in the useful range of frequencies
are extremely rare. Clearly, it is extremely inefficient to use such
harvesters with random and low-frequency vibrations because
the resonance regime cannot be obtained. For that reason, many
authors in recent years spent a lot of efforts in looking for solutions
to overcome frequency matching limitation, which is inherent
in linear harvesters. For instance, the frequency band can be
extended by exploiting the non-linear mechanical behavior, as
attempted by Gafforelli et al. (2014). Another possible solution to
overcome this problem is frequency-up conversion (FupC), which
aims at the realization of a mechanical interface between the low-
frequency excitation and the high-frequency vibration mode of
the harvester. FupC can be achieved in different ways, for instance,
by means of magnetic contactless interaction (Tang et al., 2011) or
by exploiting the snap-through instability of special mechanical
devices (Cottone et al., 2012). In many cases, if FupC is applied,
then an impulsive action is exerted on the piezoelectric beam: that
case is studied in the next section.

It is worth reminding that the previous analyses have been done
fixing the mechanical quality factor to 500. From a general point
of view, the quality factor of an energy harvester should be as high
as possible in order to improve the performances of the system,
because highQM means high displacements and high deformation
to be transduced. However, the maximum displacement must be

A B

FIGURE 8 | (A) Open circuit peak displacement and (B) power generation as
a function of beam’s length and PZT thickness for a resonant cantilever
harvester with QM = 3000.

compatible with the device design, and the deformation must be
sustainable for the materials. This consideration basically means
that in high-QM harvesters the stiffness should be high enough
to exclude unsustainable deformations, and this ends up in small
and stiff devices with high resonance frequency. As an example,
the reader should consider the previous cantilever beam with a
quality factor of 3000 instead of 500. As shown by Figure 8, for
a given length the power generation is higher than that of high
damping harvesters. However, the useful range of lengths is much
smaller than in the previous case.

5.2. Impulsive Excitation
Cantilever piezoelectric beams are not only used as resonant
energy harvesters but are also part of non-linear harvesters
that consider jump phenomena or implement frequency-up-
conversion. From a general point of view, such devices implement
techniques that impulsively stimulate the piezoelectric beams,
which then execute the energy conversion.

At this stage, the focus is more on the evaluation of the
performances of the piezoelectric beam rather than the design
of frequency conversion techniques. Similar to what has been
done with resonant cantilever beams, parametric analyses have
been performed in order to highlight the influence of the beam’s
geometry on the conversion of energy under impulsive solicita-
tions. The parametric study has been performed using the same
cantilever beam used for resonant harvesters, but in this case,
no seismic mass is provided at the free edge of the beam. The
mechanical quality factor is again QM = 500. The cantilever has
been initially submitted to a smooth step load (Fmax = 1µN/µm),
followed by a sudden jump to zero. In this way, the beam is
free to oscillate until the unperturbed configuration is reached
again. The external load resistance is supposed to be designed
such that the harvester works at its optimum; it is possible to
demonstrate that the optimal performances, in terms of energy,
are obtained when Ropt = (CEωr)−1. It is worth reminding that
the maximum peak power would be obtained at a value, which
is roughly 1.7 times Ropt.

The peak displacement (Figure 9A), the peak voltage
(Figure 9B), and the peak power generation (Figure 10A) are
obtained just after the beam is released. Their values depend on
the maximum value of the applied force and on the harvester
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A B

FIGURE 9 | (A) Peak displacement and (B) peak voltage as a function of
beam’s length and PZT thickness for an impulsive cantilever harvester.

A B

FIGURE 10 | (A) Peak power generation and (B) total oscillation time as a
function of beam’s length and PZT thickness for an impulsive cantilever
harvester.

elastic, piezoelectric, and electric characteristics. For this reason,
their values are considerably affected by the type of model chosen
to describe the beam behavior. Herein, the modified transverse
deformation theory (MTD) has been used in order to correctly
reproduce the beam behavior for the whole range of width–length
ratios. As a result, the peak voltage and the peak power generation
are not perfectly linear with respect to the length. It is worth
noting that the maximum displacement is much lower than the
one obtained for the same beam employed in resonant harvesters.
This actually means that the piezoelectric beam is not employed
at its maximum performances with this type of solicitation, and
the harvester performances can be further increased.

The duration of the oscillation (τ osc, Figure 10B) depends on
the beam’s geometry, in particular on the resonance frequency and
on the damping (mechanical and electrically induced). The oscil-
lations are arbitrarily truncatedwhen the peak displacement is less
than 1/100 of the initial displacement.Figure 11A reports the total
energy harvested in this time lapse, whereas Figure 11B shows
the mean value of power generation computed as the total energy
divided by the oscillation time. In this case, the influence of the
mechanical damping on the response is different than for resonant
harvesters. Indeed, the peak displacement, power, and voltage are
not much affected by the value of damping as already shown in
Section 4. On the contrary, the value of damping significantly
affects the oscillation time and the total energy harvested, which

A B

FIGURE 11 | (A) Total energy harvested and (B) mean power generation as a
function of beam’s length and PZT thickness for an impulsive cantilever
harvester.

A B

FIGURE 12 | (A) Total energy harvested and (B) peak (blue) and mean (red)
power generation as a function of PZT thickness for an impulsive cantilever
harvester with length equal to 1000µm.

will be equal to the all injected elastic energy in the hypothetical
case of null mechanical damping.

Figure 12 reports the influence of PZT thickness on the device
performances for a beam length of 1000µm. The figures show
that themaximumenergy harvested is obtainedwhen tP = 0.7µm,
while the maximum peak and mean power are obtained when
tP = 1.9µm.

6. CONCLUSION AND FUTURE
PROSPECTS

The present paper is focused on parametric analyses of realistic
MEMS PEHs, with the main purpose of pointing out the most
important features to be considered in the design phase. The
analyses have been carried out in the time domain (step-by-step
analyses), and the computational burden has been substantially
reduced by using the MTD model. In that way, a simple one-
d.o.f. can be adopted without any loss in terms of accuracy. The
proposed model can be improved by the introduction of non-
linear kinematics, in order to simulate also the cases of large
oscillations. Moreover, the design procedure of real PEH deserves
a more detailed study of mechanical damping and of other
possible external circuits (e.g., RLC circuits, non-linear electric
behavior, etc.).
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Two possible operation modes of PEHs have been considered.
Power generation in resonant harvesters is directly proportional to
the beam’s width and length, but a non-monotonic dependence on
the PZT thickness has been highlighted. The peak power can reach
reasonable levels, but that happens only in resonance conditions,
with non-negligible displacements and high excitation frequency.
For instance, resonant PEHs with L= 1300µm, b= 200µm, and
tP = 0.5µm can produce a peak power Pmax = 2.4µW, if the
load resistance is R≈ 1.5 kΩ and the excitation frequency is
fr = 360Hz. Resonant MEMS harvester are reasonable only for
high-speed rotating machinery, without any possible application
in case of human-induced or environmental vibrations.

On the other hand, the cantilever piezoelectric beam shows
good performances when impulsively solicited, possibly in con-
junction with a FupC device. Remarkable peak power generation
can be obtained (more than 25µW in the example of Figure 12),
and the mean power generation is comparable to the one of a
resonant harvester with the important advantage of being uncou-
pled from the source frequency. Moreover, the performances
can be further increased if one considers the full deformation
capability of the beam subject to higher forces. The major issue

regards the technique how the impulsive force is applied. In case
the applied force has a limit value which cannot be overcome
(this might be due to external conditions such as the input
acceleration content or the maximum transferable force of the
frequency-up conversion mechanism), the beam’s length must be
designed in order to assure the maximum performances of the
harvester.
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