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Titania is the most widely studied photocatalyst. In its mixed-phase configuration 
( anatase–rutile form) – as manifested in the commercially available P25 Degussa material –  
titania was previously found to exhibit the best photocatalytic properties reported for 
the pure system. A great deal of published research by various workers in the field has 
not fully explained the underlying mechanism for the observed behavior of mixed-phase 
titania photocatalysts. One of the prevalent hypotheses in the literature that is tested in 
this work involves the presence of small, active clusters of interwoven anatase and rutile 
crystallites or “catalytic ‘hot-spots’.” Therefore, non-woven nanofibrous mats of titania 
were produced, and upon calcination, the mats consisted of nanostructured fibers with 
different anatase–rutile ratios. By assessing the photocatalytic and photoelectrochemical 
properties of these samples, the optimized photocatalyst was determined. This consisted 
of TiO2 nanostructures annealed at 500°C with an anatase/rutile content of 90/10. Since 
the performance of this material exceeded that of P25 complete structural characteriza-
tion was employed to understand the catalytic mechanism involved. It was determined 
that the dominant factors controlling the photocatalytic behavior of the titania system are 
the relative particle size of the different phases of titania and the growth of rutile laths 
on anatase grains which allow for rapid electron transfer between the two phases. This 
explains how to optimize the response of the pure system.

Keywords: TiO2, nanofiber, the rate of anatase to rutile, photodegradation, photocurrent density

inTrODUcTiOn

Significant interest in novel photocatalytic technologies for applications ranging from water reme-
diation to energy harvesting via water splitting has involved nanostructured titania. A growing 
need to develop self-supported nanocatalyst configurations that do not disperse in aqueous media 
but rather stay intact and can be recovered following the photocatalytic action drives the research on 
3D non-woven electrospun mats. A novel processing method has been developed for the synthesis of 
photocatalytic nanofiber mats, a pioneering concept that came out of our research laboratory (Lee 
and Gouma, 2011).

Titanium dioxide is the most commonly studied photocatalyst due to its chemical stability, eco-
friendliness, non-toxicity, and cost-effective synthesis (Linsebigler et al., 1995; Asahi et al., 2001; 
Chen and Mao, 2007). Also it finds diverse applications in solar cells (Shim et al., 2008), photoca-
talysis (Li et al., 2012; Hu et al., 2013), batteries, and chemical sensors (More et al., 2008) among 
others. Several studies on the degradation of industrial dye, i.e., pollutants which are considered to be 
carcinogenic and which pollute both the water and air, used TiO2 photocatalysts. Since the synthesis 
method employed plays an important role on the optical, electronic, and chemical properties of TiO2 
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FigUre 2 | structure of PVP.

FigUre 1 | schematic of the processing steps involved in getting the 
calcined nanofibers of titania.
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nanostructures, various methods have been explored to-date 
to fabricate TiO2 in the forms of nanorods (Miao et  al., 2004), 
nanoparticles (Yu et al., 2007; Ba-Abbad et al., 2012), nanotubes 
(Xu et al., 2011), and nanofibers.

Titania as the commercial photocatalyst P25 Degussa has 
been widely studied, yet the full mechanism behind the enhanced 
photocatalytic properties of the mixed anatase–rutile system has 
not been elucidated. Without a thorough understanding of the 
structural and chemical features controlling the activity of pure 
titania as a photocatalyst, it is wasteful to try and optimize the sys-
tem by adding dopants to it. So, this study aims to test a prevalent 
hypothesis for the behavior of mixed-phase titania systems, while 
developing a better, self-supported, pure titania photocatalyst in 
the process. The underlying assumption in P25 Degussa’s activity 
is the presence of closely intertwined nanocrystallites of anatase 
and rutile (Hurum et al., 2003). In order to test this hypothesis, 
non-woven nanostructures of titania were prepared and tested.

Electrospinning (Nakata et  al., 2009; Bhardwaj and Kundu, 
2010) has received more interest in recent years as it produces 
non-woven fibrous mats with controlled architectures. Electrospun 
nanofibers have short pathways for electron transfer (Nakata 
et al., 2011), and could potentially improves the photocatalytic 
properties of TiO2. The calcination temperature of the non-woven 
mats plays a significant role in determining the crystallographic 
and morphological characteristics of product such as crystal-
linity, grain size, and phase structure of the calcined fibers. This 
work aims to establish the precise characteristics of TiO2 nano-
structures that give optimum photocatalytic activity and overall 
photoelectrochemical properties.

eXPeriMenTal DeTails

Preparation of Pure TiO2 nanofibers Mats
First, a 7.5 ml of PVP solution containing 5% PVP was prepared. 
This was done so by adding 0.45 g of PVP in 7.12 ml Ethanol, and 
this mixture was ultrasonicated for about an hour or till it dissolved 
and became a one phase solution. Then, in a glove box filled with 
Nitrogen, 1.6 ml of Titanium Isopropoxide (TIP) was added to a 
mixture of 3 ml Acetone and 3 ml Ethanol. This mixture was left 
undisturbed for about 15 min in the glove box. This solution was 
then removed from the box and poured into the 7.5 ml polymer 
solution, and this final mixture was ultrasonicated for about 1 h 
until a transparent homogeneous light yellow solution was achieved. 
This prepared yellow solution was called the spinning solution. The 
solution was loaded in the plastic syringe having a blunt 22-gage 
stainless steel needle for further electrospinning process. The steady 
jet was maintained for all combinations at a flow rate of 0.030 ml/
min, applied voltage of 12–15 kV, and a fixed needle-to-collector 
distance of 15–20  cm. A collector that was a 20  cm2 glass plate 
covered with aluminum foil, sprayed with Teflon to help smoothly 
peel off the collected fibers from the foil. Gamma High Voltage 
Research DC Voltmeter capable of producing voltages up to 30 kV 
was used for electric field. The collected as-electrospun fibers were 
subsequently subjected to an oxidizing heat-treatment in a tube 
furnace (Lindberg Blue) at 450, 500, 600, and 700°C for 2 h. The 
fiber preparation schematics are displayed in Figure 1.

Polyvinylpyrrolidone (PVP) is used as the carrier polymer 
to prepare the precursor solution for electrospinning. Figure 2 
shows the structure of PVP. PVP has been previously used to 
facilitate the synthesis of ceramic nanofibers by means of elec-
trospinning as reported in many publications by our research 
group and other workers (Li et al., 2012; Zhao et al., 2012). This 
support matrix was chosen due to its high molecular weight of 
1,300,000 g/mol, which ensures that even at low concentrations 
the solution preserves the pairing of chains, even after it experi-
ences severe stretching during the fiber drawing as determined 
by the strong electrostastic field applied (Watthanaarun et  al., 
2005; Nakata and Fujishima, 2012). The polymer is dissolved in 
ethanol, which evaporates during deposition, along with acetone.

structural and chemical  
characterization studies
The samples were characterized by X-ray diffraction (XRD, 
Rigaku miniflex II), Fourier Transform Infrared Spectroscopy 
(FTIR, Thermo Scientific Nicolet 6700), scanning electron 
microscopy (SEM, LEO 1550 Schottky Filed Emission SEM), and 
transmission electron microscopy (TEM, JEOL 1400) to examine 
their microstructure. The optical absorption properties of the 
electrospun mats were examined using a UV-Vis Spectrometer 
(UV-Vis, Perkin Elmer Lambda 950).

http://www.frontiersin.org/Materials/
http://www.frontiersin.org
http://www.frontiersin.org/Materials/archive


FigUre 3 | results XrD analyses of P25 and pure TiO2 nanofibers 
annealed at different temperatures (a: anatase phase, r: rutile 
phase).

TaBle 1 | The size and phase composition of TiO2 nanofibers.

sample Phase content (%) crystalline size (nm)

anatase rutile (101) anatase (110) rutile

TiO2-450°C 100 – 7.08 ± 1.1 –
TiO2-500°C 90 10 15.52 ± 3.1 20 ± 3.0
TiO2-600°C 84 16 19.8 ± 4.1 24 ± 2.0
TiO2-700°C 57 43 30.7 ± 5.2 32 ± 5.0
P25 75 25 24.4 ± 3.0 35 ± 3.0
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The crystal sizes (D) of anatase and rutile were determined by 
the Scherrer equation:

 
D K= λ

β θcos  

where λ is the wavelength of the Cu Kα radiation used 
(λ = 0.1541 nm), β the full width at half-maximum of the dif-
fraction line, K a shape factor (0.9), and θ the angle of diffraction.

Photocatalytic Degradation  
of Methylene Blue
About 0.0017 g of the catalyst was mixed with 50-ppm methylene 
blue (MB) dye solution, which was then kept in dark for 1 h to 
achieve adsorption–desorption equilibrium. A light source with a 
150 W Xenon lamp (Newport) with AM 1.5 G filter was used as the 
source for UV–visible light and visible light with a 400 nm cut-on 
filter in the same set up. Before the solution was placed under UV 
or visible light, about 2 ml of the sample was pipetted out for optical 
absorption measurement, which was recorded as 0 min absorb-
ance. The solution was then kept under the visible light for 3 h. 
Every 30 min, 1.7 ml of the solution was taken out to measure its 
absorbance value, which was transferred back to the reaction ves-
sel after each measurement. The degradation of MB was evaluated 
by studying the changes in the strongest absorbance band at the 
wavelength of 665 nm using UV/Vis spectrophotometer (HR 4000, 
Ocean Optic) with halogen and deuterium lamps as light sources.

Photoelectrochemical characterization
Photo-electrochemical measurements were performed on a 
measurement station equipped with potentiostat (VersaStat, 
PAR) three-electrode, single-compartment glass cell fitted with a 
quartz window. Working electrodes were prepared by mixing the 
as-prepared catalyst with PVP in isopropanol alcohol and drop 
casting onto ITO glass substrate (illumination area of 1.0 cm2) 
to form a thin film, and then the films were annealed at 500°C 
for 10 min with rapid thermal processor (RTP). We used a 0.1M 
KOH solution as the electrolyte; a platinum wire was used as a 
counter electrode. We use an Ag/AgCl (3 M KCl) electrode as the 
reference electrode. A potentiostat (Princeton Applied Research) 
was employed for the chronoamperometry measurements. The 
surface of the working electrode was illuminated with light inten-
sity of 113.0 mW/cm2 from a 150 W Xenon lamp equipped with 
an AM1.5G filter to simulate solar radiation.

resUlTs anD DiscUssiOn

Figure  3 shows the XRD patterns of the pure TiO2 samples 
obtained following calcination at 450, 500, 600, and 700°C 
respectively. The peaks shown correspond to TiO2 and they 
correspond to either pure anatase or anatase and rutile phases. 
The nanofibers annealed at 450°C were just anatase. The (101) 
peak of anatase becomes sharper and stronger with enhancing 
the calcination temperature from 450 to 700°C. Table 1 shows the 

relative polymorph phase content in the various calcined samples. 
Spurr equation (Spurr and Myers, 1957) was used to estimate the 
amount of anatase and rutile phases in TiO2.
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where FA is the percentage of anatase, FR is the percentage of 
rutile, IA is the integral of (101) intensity of anatase, and IR is 
the integral of (110) intensity of rutile phase. The respective 
crytalline sizes were calculated using Scherrer’s equation 
(D  =  Kλ/βcosθ) from (101) anatase TiO2 peak in the XRD 
spectra.

Fourier Transform Infrared Spectroscopy was conducted on 
all the samples. The spectrum obtained as can be seen in Figure 4, 
reveal a strong peak in 600 cm−1 region. The peak can be attributed 
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FigUre 5 | seM images of pure TiO2 nanofibers annealed at (a) 450°c, (B) 500°c, (c) 600°c, and (D) 700°c.

FigUre 4 | FTir spectra of TiO2 fibers.
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to Ti–O bond (Socrates, 2001). No peaks were observed that 
indicated presence of carbon in the samples, indicating that the 
polymer decomposed completely upon heat treatment.

Scanning electron microscopy images of pure TiO2 nanofib-
ers annealed at (a) 450°C, (b) 500°C, (c) 600°C, and (d) 700°C 
at a magnification of 100k× were shown at Figure 5. Fibers are 
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FigUre 6 | TeM images of pure TiO2 nanofibers annealed (a) at 
450°c, (B) at 500°c, (c) at 600°c and (D) at 700°c at high 
magnification and (e–h) are low magnifications, (i,J) P25 TiO2.
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randomly oriented forming non-woven mats. Nanofibers had 
smooth surface with fiber diameters ranging from 100 to 70 nm. 
There was almost no significant change in diameter as the calcina-
tion temperature increased.

The detailed morphology and crystalline structure of TiO2 
nanofibers annealed at 450, 500, 600, and 700°C were investigated 
by TEM and shown in Figure 6 at different magnifications. The 
nanofibers calcined at different temperatures are shown intact, 
indicating that they consist of TiO2 crystallites, and that the grains 
grew with increasing temperature. The grain size distribution is 
consistent with those calculated from the XRD data. Some crys-
talline nanofibers showed lattice fringes.

The corresponding selected area diffraction patterns (SAED) 
are shown in Figure 7. The ring patterns observed confirm that 
the fibers consist of nanocrystals. For TiO2 annealed at 450°C, all 
diffraction rings belongs to anatase. Diffraction pattern of TiO2 
annealed at 500, 600, and 700°C showed reflections form both the 
anatase (101) and rutile (101) phases.

The UV-Visible spectroscopy carried out to investigate the 
adsorption properties of the calcined pure TiO2 nanofibers. 
Figure  8 shows the corresponding UV-Vis spectra of calcined 
nanofibers. All samples displayed a typical absorption with the 
intense transition in the UV region, resulting from electron 
transitions from the valence band to the conduction band (O 
2p to Ti 3d). The absorbance spectra of TiO2 sample at 450 and 
500°C indicates the absorption onset at around 415 nm, which 
is 3.0 eV, i.e., the band gap of anatase phase (Ohno et al., 2003). 
No distinct changes in the band gap energy were observed with 
changing annealing temperature as they remained in the range 
of 3.13–3.0 eV.

The structures of the dye molecules directly determine the 
absorption characteristic of dyes for light. In the electron absorp-
tion spectra of dyes, there are several absorption bands, which 
reflect the state of motion of the electrons in the system. The 
absorption wavelength, absorption intensity, and the shape of 
absorption band are related directly to the structure of dye mol-
ecules. Therefore, it is possible to evaluate the structural variation 
of dyes by investigating the variation of the electron absorption 
spectra during the process of degradation of the dyes (Li et al., 
2012). In order to determine the photocatalytic properties of 
the samples, the degradation of MB under whole spectrum and 
visible light irradiation was studied as shown in Figure  9. The 
degradation of MB dye under light irradiation was estimated with 
using the formula below:

 
% Degradation =

−





×
A A

A
0 1

0

100
 

where A0 and A1 are the absorbance of non-irradiated (0 min) and 
irradiated (at specific time interval) samples. The photocatalytic 
rate of MB under whole spectrum (UV and visible light) in the TiO2 
nanofibers obtained at 500°C was faster when compared the others.

The photocatalytic rate of MB under visible light in the TiO2 
nanofibers obtained at 450, 500, 600, and 700°C were 17, 40, 
35, and 13% after 180  min of irradiation. It was observed that 
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FigUre 7 | saeD pattern of pure TiO2 nanofibers annealed (a) at 450°c, (B) at 500°c, (c) at 600°c, and (D) at 700°c.
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TiO2 nanofiber annealed at 500°C exhibit the best photocatalytic 
activity. Calcination at 700°C was highly detrimental to the pho-
tocatalytic activity as the rutile phase itself has low photocatalytic 
activity.

FigUre 8 | 4UV-Vis spectra of P25, pure TiO2 nanofibers annealed at 
450, 500, 600, and 700°c.

To investigate the photoresponse of the TiO2 nanofibers 
annealed at different temperatures, the photoelectrochemical 
measurement was carried out in a PEC cell under illumination 
with a 150 W Xenon lamp (Newport) equipped with an AM1.5G 
filter. When the TiO2 nanofibers were excited, the photogenerated 
electrons and holes were produced, and the electrons were 
quickly guided away by the applied electric field. The photocur-
rent response of the samples upon the on-off illumination vs. time 
was measured and was shown in Figure  10. The photocurrent 
rapidly rises to a steady-state value upon illumination, which is 
reproducible for several on/off cycles. The annealing temperature 
has an important effect on the photocurrent. For the TiO2-500°C 
sample, the photocurrents were ~0.09 mA, which exhibited the 
highest photocurrent density, due to the formation of anatase and 
rutile phases and the enhancement of crystallization. It could be 
concluded that TiO2-500°C nanomats have better photovoltaic 
performance under visible light. With further increase in tem-
perature, there is a decrease in the photocurrent. Especially at 
TiO2-700°C, the photocurrent dropped rapidly, possibly due to 
the large percentage of rutile phase present (about 50%).

DiscUssiOn

Some workers (Hurum et al., 2003; Ohno et al., 2003; Li et al., 
2008; Chen et al., 2015) have argued that a phase junction exists 
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between anatase and rutile particles that acts to enhance the 
photocatalytic activity of TiO2, compared to the pure anatase 
or pure rutile materials. The idea is that efficient electron-hole 
separation is facilitated between the two phases, allowing for 
enhanced lifetimes of electrons and holes. Heping Li et al. (Li 
et al., 2011) argued that when two phases come together, there is 
a charge transfer across the respective particles and thus electrons 
from the anatase phase are trapped in the lower energy trapping 
sites of rutile (since the band gap of rutile is lower than that of 
anatase) (Li et  al., 2011). With the lifetime of photogenerated 

FigUre 10 | current density (j) – potential curve of in simulated aM 
1.5 illumination for TiO2 nanofibers annealed at 450, 500, 600, and 
700°c.

FigUre 9 | Photodegradation of MB under (a) UV-visible light and (B) visible spectrum (λ > 400 nm) of TiO2 nanofibers annealed at 450, 500, 600, and 
700°c.

e− h+ pairs increased, hydroxyl radical species (⋅OH) form when 
the adsorbed O2 captures the photogenerated electrons, and these 
surface hydroxyls trap the holes, enhancing the photocatalytic effi-
ciency of the mixed-phase material. However, Deanna C. Hurum 
(Hurum et al., 2003) and Wei Kan (Wang et al., 2016) support a 
different hypothesis: that the enhanced activity of mixed-phase 
TiO2 catalysts is due to the transfer of electrons from rutile to 
anatase trapping sites, which hindered the charge recombination. 
Nevertheless, neither of these two mechanisms seem applicable 
to our findings, simply because there is insufficient amount of 
second phase (rutile) to cause significant interactions.

The photocatalytic activity of TiO2 is known to depend on its 
grain size, phase, particle morphology, surface/bulk defects, and 
exposed crystalline facets, and subsequently its specific surface 
area (Sibu et al., 2002; Subramanian et al., 2004). Our TEM images 
showed diffraction contrast that may be attributed to defect 
structures on the particles (Figures 5A–C) similar to those seen 
on anatase nanograins undergoing a transition to rutile. Rutile 
laths were seen to grow on anatase grains [see Figure 3 in Gouma 
and Mills (2001), Subramanian et al. (2004), and Chen and Mao 
(2007)]. Our results showed that the sample TiO2 heat-treated 
at 500°C with ratio of anatase to rutile 90/10, and a particle size 
between15 and 20 nm has the best photocatalytic activity under 
UV and visible light and photocurrent density. Commercial TiO2 
P25 has a ratio of anatase to rutile 75/25 with the particle size 
24–35 nm (Table 1). When comparing our samples with the com-
mercial TiO2 P25, there is a stark difference in the phase content 
and particle size.

Therefore, surface/bulk defects and particle size are consid-
ered the predominant factors determining the photochemical 
properties of the pure titania mats. The observed defect-like 
contrast on the anatase grains is likely due to the nucleation 
and growth of the rutile phase on them. Gouma reported that 
rutile plates forms initially on the surface of anatase particles in 
the form of fine lathers (plates) via a shear process mechanism 
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