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Recent advances in the development of implicit constitutive relations to describe the 
response of both solids and fluids have greatly increased the repertoire of the modeler in 
his ability to describe natural phenomena more faithfully than hitherto possible. It would 
not be an exaggeration to claim that such constitutive relations have the potential to lead 
to breakthroughs in mechanics as they provide very promising novel means to study two 
of the most important and ill-understood problems in mechanics, that of fracturing of 
solids and of turbulence in fluids, in addition to providing a means to describe a plethora 
of phenomena that have eluded explanation in biomechanics, response of colloids, and 
mixtures, etc. In this article, we describe these recent developments within the context 
of both fluid and solid mechanics.
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1. iNTRODUCTiON

Within a purely mechanical context bodies deform due to the application of surface and body forces. 
Their deformation is governed by the balance of mass and the balance of linear momentum, which 
comprise four scalar equations for the unknowns, the density ρ, velocity v, and stress T, namely ten 
scalar variables, leading to a system of equations that is not well posed with regard to the determination 
of the unknowns. This lack of a well posed system of equations stems from our not having provided 
information concerning the make-up of the body that essentially determines how it responds to the 
forces. This lacuna is filled by providing what is referred to as constitutive relations. A discussion 
of the salient aspects in the development of non-linear mechanics can be found in the article by 
Truesdell (1952). The usual approach to the description of the response of bodies, whether they are 
lumped parameter systems or solid or fluid continua, is to provide an expression for the force or stress 
in terms of appropriate kinematic variables. Though in linearized elasticity and viscoelasticity the 
stress is expressed in terms of the strain or vice-versa, when it comes to the development of governing 
equations, one substitutes the expression for the stress in terms of the appropriate kinematic variable, 
the strain for a solid, or the symmetric part of the velocity gradient for the fluid, and obtains an 
equation for the displacement or velocity. Such a procedure leads to a simple mathematical structure 
in that we have to solve a partial differential or an integro-differential equation for the density and 
displacement or velocity. However, this procedure is philosophically unsound as will become obvi-
ous from the discussion that follows. In fact, the procedure of prescribing a constitutive expression 
for the stress in terms of the kinematics in order to obtain a mathematically amenable system is an 
example of what Schwartz (1962) refers to as the “pernicious influence of mathematics on science.”

There are several shortcomings with respect to the manner in which constitutive relations are usu-
ally specified currently, both from a philosophical standpoint and more pragmatic considerations. 
From the philosophical standpoint, expressing the stress in terms of kinematical variables turns 
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FigURe 1 | Mechanical analog and non-dissipative response. (A) A linear spring and an inextensible rope in parallel. The spring need not be a linear spring. 
(B) Non-dissipative response wherein the stress cannot be expressed explicitly as a function.
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causality on its head, as forces and stresses are the causes, and the 
kinematics is the effect. It makes much more sense to describe 
kinematics in terms of the stresses and/or their derivatives [we 
refer the reader to Rajagopal (2003, 2007) for a detailed discus-
sion of this issue]. However, it might not be possible to prescribe 
the kinematics in terms of the stress explicitly, and the best that 
one can do is to prescribe an implicit relation for the stress and the 
kinematical quantity. From a pragmatic standpoint, prescribing 
an expression for the stress and substituting the same into the 
balance of linear momentum increases the order of the governing 
equations thereby creating the need for the specification of addi-
tional boundary conditions, greater regularity of the solution, 
and other complications with regard to computational issues. 
Moreover, the classical approach of prescribing an expression for 
the stress is not possible for numerous bodies.

Simple examples of systems that cannot be described by 
providing an expression for the stress in terms of the kinematic 
variables are illustrated in Figures 1–3. In Figure 1A, we have 
a system wherein we have a spring in parallel to an inextensible 
string. The response of such a system is depicted in Figure 1B, 
and it is obvious that the force cannot be expressed in terms of 
the elongation, while the elongation can be expressed in terms of 
the force. In Figure 2, the response of a Bingham fluid, a popular 
model among rheologists, is depicted. We once again notice that 
the stress cannot be expressed as a function of the shear rate; 
however, the shear rate can be expressed in terms of the stress. 
Figure 3 displays the response associated with Coulomb friction 
and such a response cannot be described by expressing the force 
in terms of the displacement or the displacement in terms of 
force, and we truly need an implicit relationship. A similar situ-
ation presents itself if we try to describe elastic–plastic response.

Very interesting examples of the need for implicit constitu-
tive relations are provided by the response of biological fluids 
and colloidal solutions. In Figure 4, the experimental results of 
Boltenhagen et al. (1997) for the relationship between the shear 
stress and shear rate is portrayed for Tris (2-hydroxyethyl) tallow-
alkyl ammonium acetate (TTAA) surfactant dissolved in water 
containing sodium salicylate (NaSal). The apparent viscosity 
versus shear rate (which of course assumes a specific constitutive 
model) from the same set of experiments by Boltenhagen et al. 
(1997) is depicted in Figure 5, while in Figure 6, corroboration 

of the experimental results of Boltenhagen et al. (1997) using an 
implicit model by Perlácová and Prŭša (2015) is documented. 
With regard to the experimental data of Boltenhagen et al. (1997) 
and a lot of other experimental data for colloids, constitutive 
specifications wherein one has an expression for the stress in 
terms of the history of the deformation gradient cannot be used 
for the data reduction. We need an implicit constitutive relation 
to describe the same [see Perlácová and Prŭša (2015)].

Implicit constitutive relations are the natural class of response 
relations to describe a very large class of materials, polymeric 
fluids, which exhibit pressure1 dependent material properties 
[see Singh and Nolle (1959) and McKinney and Belcher (1963)], 
geological materials, biological solid matter, such as DNA and 
collagenous material [see Freed and Einstein (2013); Freed 
(2014); Freed et al. (2014); Freed and Rajagopal (2016)], elasto-
meric solids whose material moduli depend on the mean normal 
stress [see the discussion in Rajagopal and Saccomandi (2009)], 
magneto–elastic bodies [see Bustamante and Rajagopal (2015)], 
and electro–elastic bodies [see Bustamante and Rajagopal (2012, 
2013)], to name some of them.

An interesting class of problems that the classical Cauchy 
theory of elasticity is impotent to describe is the non-linear rela-
tionship that is observed between the strain and the stress, when 
the strains are so small that it is in the linearized range, that is, 
when the squares and higher powers of the strain are negligible in 
comparison to the strain. Such is indeed the case of many alloys, 
such as Gum metal [also see the experimental works of Saito et al. 
(2003) and Figure  7], and the implicit theory leads to models, 
which when linearized can describe such response with ease. 
The recent paper by Rajagopal (2014) provides one such exam-
ple wherein the linearization, based on the assumption that the 
displacement gradient is small, with regard to an implicit model 
fits the non-linear relationship between the linearized strain and 
the stress, exceptionally well. The ability to model the non-linear 
relationship between the stress and the strain, in the small strain 
range where the classical linearized theory is supposed to hold, 

1 The terminology pressure is used to denote so many different quantities that one 
ought to the be very careful with regard to the sense in which it is being employed 
[see Rajagopal (2015b) for a detailed discussion of the same].

http://www.frontiersin.org/Materials/
http://www.frontiersin.org
http://www.frontiersin.org/Materials/archive


FigURe 5 | variation of apparent viscosity with shear rate in the 
experiment by Boltenhagen et al. (1997).

FigURe 4 | Shear stress versus shear rate in the experiments by 
Boltenhagen et al. (1997) for Tris(2-hydroxyethyl) tallowalkyl 
ammonium acetate (TTAA) surfactant dissolved in water containing 
sodium salicylate (NaSal).

FigURe 3 | Coulomb friction.

FigURe 2 | The response of a Bingham like mass-dashpot system.
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cannot be overemphasized as such response cannot be described 
within the framework of linearization of the classical elasticity 
theory and as there are many metallic alloys as well as geomaterials 
and construction materials that exhibit such response. In Figure 7, 
we present the experimental results of Saito et al. (2003) for Gum 
metal, and in Figure  8, we present the experimental results of 

Grasley et al. (2015). Both the figures clearly show a non-linear 
relationship between the strain and the stress at small strains.

A few remarks concerning the ability of implicit constitutive 
models to describe phenomena hitherto described in an ad hoc 
manner are warranted. One of the most important class of prob-
lems with regard to the response of solids is the problem of the 
development and movement of cracks. The classical linearized 
theory of elasticity and non-linear theories of elasticity predict 
singularities that are physically unacceptable, and in the case of 
the classical linearized theory of elasticity self-contradictory, near 
and at the crack tip. Totally ad hoc procedures have been proposed 
to get around the problem. The newly developed implicit theory 
allows one to describe the response near crack tips in a rational 
and consistent manner.

The new class of implicit models also provides a clean and 
simple way for developing theories to describe limiting strain 
behavior that is observed in a large class of biological and geo-
logical materials. Moreover, it allows one to describe materials 
whose moduli depend on both the invariants of the stress, such 
as pressure dependence of the shear modulus and relaxation time 
that has been observed in polymeric materials.

In the case of fluids, implicit theories present a new approach to 
the modeling of turbulence where one can take into consideration 
the fluctuations in both the stresses and the velocities and its gra-
dients in the modeling. It allows one to model the non-monotone 
relationship between the stress and the shear rate that has been 
observed in experiments involving colloids. And as in the case of 
solids, it allows one to incorporate the effect of the invariants of 
the stresses as well as the relevant kinematical quantities in the 
material properties, which cannot be done in models wherein the 
stress is defined explicitly in terms of kinematical quantities. The 
above are but a few of the many advantages that the new class of 
implicit models offer.

Implicit models also have numerous other important applica-
tions in fluid mechanics. For example, the field of elastohydro-
dynamics is built around the notion that the material properties 
of the lubricant are a function of the mean normal stress of the 
fluid. When one recognizes that most lubricants have also shear 
rate dependent properties, we are naturally led to models that are 
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FigURe 7 | Non-linear relationship between the strain and stress in the small strain range for a gum metal alloy [figure is taken from the paper by 
Saito et al. (2003)].

FigURe 6 | Fit of experimental data of by Boltenhagen et al. (1997) by Perlácová and Prŭša (2015). The qualitative nature of the curve belongs to precisely 
the same class of models introduced by Le Roux and Rajagopal (2013).
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implicit [see Rajagopal and Szeri (2003)]. When one deals with a 
generalization of the Navier–Stokes fluid with a pressure depend-
ent viscosity (usually referred to in the literature as a piezoviscous 
fluid), one cannot express the stress explicitly in terms of the 
velocity gradient, but one can express the velocity gradient as a 
non-linear function of the stress. Such fluids are special cases of 
the more general implicit fluid model and have been studied in 

detail in a variety of applications [see Dowson et al. (1983); Tran 
and Suslov (2009); Saccomandi and Vergori (2010); Szeri (2011); 
Rajagopal et al. (2012)].

Within the context of lumped parameter systems, the govern-
ing equations for the components of the system given in terms of 
implicit constitutive relations reduce to a system of differential-
algebraic systems and lead to interesting and challenging 
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FigURe 8 | Non-linear relation between the stress and strain in the small strain range for concrete. Dots represent experimental data and the full line the 
theoretical fit based on a model belonging to the class equation (32). Data shown are for a concrete cylinder M10B1C2. Figures are taken from Grasley et al. (2015). 
(A) Axial strain versus stress. (B) Circumferential strain versus stress.
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mathematical problems. The development of implicit relation-
ships to describe the components of lumped parameter systems 
was first introduced in Darbha et al. (2010) and Rajagopal (2010). 
Later, Pražák and Rajagopal (2012, 2016) studied mathematical 
questions concerning existence and uniqueness for some special 
lumped parameter system when the components are described 
by implicit relations. Recently, Málek et  al. (2016) studied the 
bifurcation of solution of the differential-algebraic system for 
lumped parameter systems described by implicit constitutive 
relations. They also carried out classical studies concerning 
Lyapunov exponents and Poincare’ surface sections and recur-
rence analysis on the trajectories obtained. Yuan et al. (2015) have 
found numerical solutions to a system of differential-algebraic 
equations that correspond to a mass that is attached to spring that 
has limited extensibility.

While traditionally implicit constitutive relations that involve 
higher derivatives of either the stress or kinematical quantities, or 
both, have been used to describe viscoelastic and inelastic materi-
als, they have not been used to describe purely elastic materials or 
fluids, which are not viscoelastic. Nor has there been a systematic 
attempt to study such response. A fluid whose viscosity depends 
on both the mean value of the stress and the shear rate seems 
to be a reasonable model to describe the response of fluids that 
are subject to a wide range of pressures. The model developed 
by Maxwell (1867) to describe viscoelastic fluid response is not 
an implicit model, though the rate equation that he provides has 
been misconstrued as being one; in the case of this model, the 
symmetric part of the velocity gradient can be expressed in terms 
of the stress and its material time derivative. The one-dimensional 
model developed by Burgers (1935) to describe the response of 
viscoelastic fluids seems to be the first implicit relationship to 
describe the response of viscoelastic fluids.2 Later, Oldroyd (1950) 
systematically developed properly invariant rate type models to 
describe viscoelastic fluid response. Implicit models to describe 

2 However, the generalization of the Maxwell model, wherein the viscosity and the 
relaxation time depend upon the second invariant of the symmetric part of the 
velocity gradient, would be an implicit model.

inelastic behavior, primarily the yield surface, can be traced to 
Prandtl (1935) and Reuss (1930). Implicit models arise as the 
appropriate class of models to describe a variety of materials, as 
mentioned earlier examples are polymeric fluids that have pressure-
dependent viscosity [see Singh and Nolle (1959) and McKinney 
and Belcher (1963)], geological materials, which are viscoelastic 
fluids whose material moduli depend on the mean normal stress 
[see the discussion and references in Karra et al. (2011)], several 
biological elastic solids [see the discussion in Freed and Einstein 
(2013); Freed (2014); Freed et al. (2014)], and elastomeric solids 
whose material moduli depend on the mean normal stress [see the 
discussion in Rajagopal and Saccomandi (2009)].

Rajagopal (2003) started investigation of implicit models by 
considering relationships between the stress and deformation 
gradient in the case of elastic solid bodies, and the stress and the 
symmetric part of the velocity gradient in case of fluids. These 
relationships did not involve higher derivatives of the stresses or 
the kinematical variables and hence can be viewed as a purely 
algebraic relationship between the variables involved. Recently, 
Prŭša and Rajagopal (2011) introduced an implicit relationship 
between the history of the stress, density, and the deformation 
gradient. Many of the classical constitutive relations that are used 
to describe the response of fluids are special subclasses of such a 
general implicit relationship. They also used a generalization of 
the procedure used by Coleman and Noll (1960) to find approxi-
mations within the context of retarded motion that have the same 
form as those of several popular non-Newtonian fluid models. 
However, it is important to bear in mind that these approxima-
tions only hold in these retarded motions, and the procedure does 
not lead to models that can be used to describe general flows of 
the fluids under consideration [see Dunn and Rajagopal (1995)].

Implicit elastic bodies can also be used to describe phenomena 
concerning wave propagation problems that cannot be described 
within the classical construct. For instance, while within the pur-
view of classical theories, one attributes the change in the stress 
wave shape to dissipation, it can be shown that such changes 
of shape can take place within a purely non-dissipative elastic 
framework within the context of bodies described by implicit 
constitutive relations [see Kannan et al. (2014)]. Recently, wave 
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propagation problems have been studied within the context of 
both elastic solids described by implicit constitutive relations 
(Kannan et al., 2014; Rajagopal and Saccomandi, 2014) and fluids 
described by implicit constitutive relations (Kambapalli et  al., 
2014).

From the mathematical perspective, implicit constitutive 
relations lead to exceedingly interesting issues in the analysis of 
partial differential equations [see Bulíček et al. (2009, 2012a,b)]. 
Even simple one-dimensional problems involving certain 
implicit constitutive equations do not even admit solutions in 
the sense of distributions, and one has to consider solutions 
within the context of much more general structures, such as 
Colombeau algebras [see Prŭša and Rajagopal (2011)], for a 
discussion of generalized solutions within the context of flows of 
a pressure dependent Burgers fluid [see Colombeau (1984, 1985) 
and Rosinger (1987) for a discussion of generalized solutions to 
partial differential equations, such as Colombeau algebras, and 
their generalizations].

2. KiNeMATiCS

We provide a minimal discussion of the kinematics that is 
required for the following discussion. A detailed discussion of 
the kinematics of continua can be found in Truesdell and Noll 
(1965) and Truesdell (1977).

Let x  denote the current position of a particle that is at X  in 
a stress-free configuration.3 Let x X= ,χκR

t( )  denote the motion 
of a particle, and let us denote the displacement by:

 u x X:= −  (1)

The displacement gradients ∂
∂

u
X

 and ∂
∂

u
x
 are given by:

 

∂
∂

= ∇ = − ,
u
X

u F IX
 

(2)

and

 

∂
∂

= ∇ = − ,−
u
x

u I Fx
1

 
(3)

where F  is the deformation gradient defined through

 
F

X
=
∂
∂

.
χ

 
(4)

The velocity is defined through

 
v = ∂

∂
.

χ
t  

(5)

and, the velocity gradient L , and its symmetric part D  and its 
skew part W  through

3 We are making the tacit assumption that there exists a stress-free state in which 
the body can exist.

 
L v

x
D L L W L L:=

∂
∂

, := + , := − .
1
2

1
2

( ) ( )T T

 
(6)

The Cauchy–Green tensors B  and C are defined through

 B FF C F F:= , := .T T

 (7)

The Green–St. Venant strain E  and the Almansi–Hamel strain 
e  are defined through

 
E C I e I B:= − , := − 

−1
2

1
2

1

 
(8)

3. iMPLiCiT MODeLS TO DeSCRiBe 
viSCOUS FLUiD ReSPONSe

The classical Navier–Stokes fluid is described by the following 
relationship between the stress and the symmetric part of the 
velocity gradient

 T tr D D= − + +p( ) ( ) ( ) ( )ρ λ ρ µ ρ1 1 2  (9)

where λ(ρ) and μ(ρ) are the bulk and shear viscosities, and ρ is 
the density. The original derivation by Navier (1827) had only 
one of the viscosities, the other being given in terms of the first. 
However, Poisson (1831) developed the full model that appears in 
with both the viscosities. The later derivation, on phenomenologi-
cal grounds, by Saint-Venant (1843) also had one of the viscosities 
being given in terms of the other. In Stokes phenomenological 
development [see Stokes (1845)], the full model shown in equa-
tion  (9) above, with both the viscosities, is derived. However, 
Stokes suggests the simplification that (3λ + 2μ = 0) only to have 
second thoughts and disown the relationship at a later date [see 
Stokes (1851)]. A discussion as to why the Stokes assumption is 
inapt can be found in the recent paper by Rajagopal (2013). Such 
an assumption would never have been even considered as a pos-
sibility had not an expression been given for the Cauchy stress in 
terms of the symmetric part of the velocity gradient. If one started 
with the more appropriate expression:

 D I trT I T= + + ,α ρ β ρ γ ρ( ) ( )( ) ( )  (10)

one would not have arrived at such an erroneous possibility [see 
Rajagopal (2013)]. In the case of an incompressible Navier–Stokes 
fluid, the stress is usually expressed as

 T D= − +p1 2µ  (11)

where p = − 1
3 trT  is the mean normal stress but once again the 

more appropriate expression is the form:

 
D T trT= −




.α

1
3  

(12)

We notice that such a constitutive expression automatically 
satisfies the requirement that the fluid be capable of undergoing 
only isochoric motions.
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If we were to suppose that in a generalization of the above 
incompressible fluid the shear viscosity is a function of the mean 
value of the stress and shear rate (given through the second 
invariant of the symmetric part of the velocity gradient), then the 
stress in such a fluid would be given through the relation

 T I trT trD D= − + ,p µ( )2

 (13)

which is in general an implicit relation of the form

 f ( )T D, = .0  (14)

Since f is an isotropic function in the case of an isotropic fluid, 
it has to meet

 Q T D Q QTQ QDQ Qf f( ) ( ), = , ∀ ∈T T T   (15)

where  denotes the set of all orthogonal transformations. It then 
follows that [see Spencer (1975)]:

 

α α α α α α

α α
0 1 2 3

2
4

2
5

6
2 2

7
2 2

I T D T D TD DT

   T D D T TD DT

+ + + + + +

+ + + +

( )

( ) ( )++ + =α8
2 2 2 2 0( )T D D T   

  (16)

where the material functions αi, i  =  0,  …,  8 depend on the 
invariants

 trT trD trT trD trT trD tr TD tr T D tr D T tr D T, , , , , , , , ,2 2 3 3 2 2 2 2( ) ( ) ( ) ( )).   
  (17)

The above class of models includes as a special subclass the 
models given by

 T I D D= + +λ λ λ0 1 2
2

 (18)

and the new sub-class of the form

 D I T T= + + .γ γ γ0 1 2
2

 (19)

A special subclass that has been studied recently consist in the 
stress power-law models wherein the Cauchy stress is given by

 
D tr T T= + ,







α 1 2( ( )d d  (20)

where

 
dT T T I= − .

1
3

( )
 

(21)

This model allows for describing phenomena that are not 
possible in a classical power-law fluid [see Málek et al. (2010); 
Le Roux and Rajagopal (2013); Perlácová and Prŭša (2015)]. 
The recent paper by Perlácová and Prŭša (2015) shows that such 
models can be used to describe the flows of biological liquids 
that have DNA coils suspended in them. They can also be used 
to describe the flow of colloidal solutions. The response exhibited 
by colloids are such that they cannot be described adequately by 
the constitutive relations that are currently used, and implicit 
constitutive relations provide the arsenal with which to do so, as 

shown by Perlácová and Prŭša (2015). Narayan and Rajagopal 
(2013) have studied wave propagation in fluids modeled by equa-
tions (20) and (21) and show that they exhibit characteristics that 
are quite different from those exhibited by classical power-law 
fluids.

4. iMPLiCiT MODeLS TO DeSCRiBe 
eLASTiC ReSPONSe

Until recently, by elastic bodies, one meant Cauchy elastic bodies 
or some the special subclass of Cauchy elastic bodies, namely 
Green elastic bodies, wherein the stress in derivable from a 
potential. When such models are linearized within the context of 
small displacement gradients, the models reduce to the classical 
linearized elastic model. However, there are many intermetallic 
alloys that exhibit non-linear response between the strain and the 
stress in the small strain range. We shall now show that implicit 
theories allow one to have a non-linear relationship between the 
strain and the stress, in the small strain range. Furthermore, we 
shall also show that implicit constitutive theories lead to mean-
ingful models to describe the state of strain and stress near a crack 
tip. Before getting into a discussion of fully implicit constitutive 
theories for elastic solids, let us consider the class of materials 
defined through

 
F g T= ,( )ρ

 (22)

which, due to the restrictions imposed by frame-indifference, 
reduces to

 C T= ,f ( )ρ  (23)

If the material is isotropic, it follows that

 B T= ,f ( )ρ  (24)

Then, one can use standard representation theorems to express 
the Cauchy–Green tensor B  in terms of the stress, which when 
linearized under the assumption that the displacement gradient is 
small leads to a model that has a non-linear relationship between 
the linearized strain and the stress.

Next, we shall consider a more general class of models wherein 
the relationship between the stress and the deformation gradient 
is implicit. Rajagopal (2003) introduced implicit relations of the 
form

 f ( )ρ, , = ,T F 0  (25)

where F  is the deformation gradient. The classical definition 
of a Cauchy elastic body is a special subclass of the above class. 
In the case of isotropic bodies,4 the relationship reduces to the 
consideration of implicit relations of the form

 f ( )ρ, , = ,T B 0  (26)

4 Recently, Rajagopal (2015a) has defined what is meant by the symmetry group for 
bodies described by implicit constitutive relations.
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and since the body is isotropic, it has to satisfy the invariance

 f f( ) ( )ρ ρ, , = , , ∀ ∈QTQ QBQ Q T B Q QT T T   (27)

where  denotes the orthogonal group. It then follows that [see 
Spencer (1975)]

 

α α α α α α

α α α
0 1 2 3

2
4

2
5

6
2 2

7
2 2

8

I T B T B TB BT

T B B T TB BT

+ + + + + +

+ + + + +

( )

( ) ( ) (( )2 2 2 2 0T B B T+ =   
  (28)

where the material moduli αi, i = 0, …, 8 depend upon

 ρ, , , , , , , , , ,trT trB trT trB trT trB tr TB tr T B tr B T tr B2 2 3 3 2 2 2( ) ( ) ( ) ( 22T ).  

We immediately notice that the classical Cauchy constitutive 
expression

 T I B B= + + ,ν ν ν0 1 2
2

 (29)

where the νi, i = 0, 1, 2 are functions of ρ and the principal invari-
ants of B , as well as the constitutive expression

 B I T T= + + ,α α α0 1 2
2

 (30)

where the αi, i = 0, 1, 2 are functions of ρ and the principal invari-
ants of T are both subsets of equation (28). Let us now linearize 
equation (30) under the assumption that

 
max ( )

( )X xu∈ , ∈
∇ = , << ,

κ
δ δ

B t R
O 1

 (31)

where ||.|| stands for the trace norm, induced through the scalar 
product. Then, equation (30) reduces to

  = + + ,β β β0 1 2
2I T T  (32)

allowing for a non-linear relationship between the linearized 
strain and the stress. Such a relationship can be gainfully exploited 
to describe a variety of phenomena that have been observed. For 
instance, the non-linear relationship observed in Gum metal 
and several metallic alloys can be described through such a 
relationship (Rajagopal, 2003). Also, the relationship allows one 
to describe the state of strain adjacent to a crack [see Rajagopal 
and Walton (2011) and Gou et al. (2015)] and the strain adjacent 
to blunt and sharp notches [see Zappalorto et al. (2016), also see 
Kulvait et al. (2013)] in a meaningful manner.

For elastic bodies, one could also consider rate type equations, 
such as (Rajagopal, 2007)

 A S E (dS/dt) B S E (dE/dt)( ) ( ), + , = ,0  (33)

which are not equivalent to the class of equations defined by 
(25). We shall not discuss such models here but refer the reader 
to Rajagopal (2007).

5. CONCLUDiNg ReMARKS

As implicit models include explicit representations for the stress 
in terms of the kinematics or kinematics in terms of stress, as 
special subclasses, and since the converse is not true, one can 
use implicit constitutive relations to describe a much larger 
class of material response. Some new models have been recently 
developed to describe the complex response exhibited by some 
materials using the new general class of implicit constitutive 
relations with elastic bodies as the backbone, for both viscoelas-
tic and inelastic response (Alagappan et al., 2014; Rajagopal and 
Srinivasa, 2015, 2016). We shall not discuss these models here. 
The aim of this note was to highlight the inherent potential of 
implicit models, and toward this purpose, an overview of elastic 
solids and viscous fluids is sufficient.

Another important goal of this note is to hope to establish a 
change of perspective. The theory of explicit constitutive equa-
tions, as for example the theory of simple materials á la Noll, is too 
narrow to give a complete description of the mechanical behavior 
of materials. The problem is that everybody learns only the 
mechanics of materials described through constitutive relations 
in an explicit manner. To appreciate the generality and the power 
of implicit theories, we have to change our mind set, and if we do 
so, we discover that an axiomatic approach to mechanics that is 
much more promising and deep that allows us to view the great 
work of Cauchy and the other Savants within a proper perspective.
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