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A broad fundamental understanding of themechanisms underlying the phenomenology of
supercooled liquids has remained elusive, despite decades of intense exploration. When
supercooled beneath its characteristic melting temperature, a liquid sees a sharp rise in
its viscosity over a narrow temperature range, eventually becoming frozen on laboratory
timescales. Explaining this immense increase in viscosity is one of the principle goals of
condensed matter physicists. To that end, numerous theoretical frameworks have been
proposed, which explain and reproduce the temperature dependence of the viscosity
of supercooled liquids. Each of these frameworks appears only applicable to specific
classes of glassformers, and each possesses a number of variable parameters. Here,
we describe a classical framework for explaining the dynamical behavior of supercooled
liquids based on statistical mechanical considerations, and possessing only a single
variable parameter. This parameter varies weakly from liquid to liquid. Furthermore, as
predicted by this new classical theory and its earlier quantum counterpart, we find with the
aid of a small dimensionless constant that varies in size from ∼0.05 to 0.12, a universal
(16 decades) collapse of the viscosity data as a function of temperature. The collapse
appears in all known types of glass-forming supercooled liquids (silicates, metallic alloys,
organic systems, chalcogenide, sugars, and water).

Keywords: glass, universality, data collapse, supercooled liquids and glasses, glass transition, data interpretation,
statistical

PACS numbers: 75.10.Jm, 75.10.Kt, 75.40.-s, 75.40.Gb

1. INTRODUCTION

Human kind has been forming and using glasses for millennia. The unique optical, thermal, and
mechanical properties, as well as ease of working, which arises from the lack of long-range crystalline
order in glasses (Gupta, 1996) has lead to their application in a diverse range of fields (Zallen, 1983;
Hancock and Parks, 2000; Telford, 2004; Greer and Ma, 2007; Wuttig and Yamada, 2007; Berthier
and Ediger, 2016). Despite their ubiquity, a fundamental understanding of the phenomenology
associated with glasses and their formation via the vitreous transition remains elusive. In order to
understand the structural and mechanical behavior of glasses, we must first understand how and
why they form at all. As glasses form from supercooled liquids, this means we must first understand
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the dynamics of supercooled liquids. Ordinarily, when an equi-
librium liquid is cooled to a temperature beneath its melting
point it undergoes a first order thermodynamic transition to the
ordered crystalline solid. However, if the liquid is cooled suffi-
ciently quickly (at material-dependent rate), crystallization can be
bypassed, and the liquid enters a metastable (with respect to the
crystal) state and is termed “supercooled.” The thermodynamic
and kinetic properties of supercooled liquids exhibit a number
of remarkable characteristics, but the most striking is arguably
the behavior of the viscosity (and all associated relaxation times)
(Cavagna, 2009; Procaccia, 2009; Berthier andBiroli, 2011;Hunter
and Weeks, 2011; Kalogeras and Hagg Lobland, 2012; Langer,
2014). The viscosity of supercooled liquids grows by as much as
14 decades over temperature ranges as small as a few hundred
Kelvin, eventually reaching a value of 1012 Pa s at the kinetic
glass “transition” that occurs at a temperature Tg. Calorimetric
signatures of the transition into the glassy state have also been
observed at the dynamic glass transition temperature Tg (Yue,
2009). At temperatures below the glass transition temperature, Tg,
the increasingly sluggish dynamics lead to the onset of rigidity
and solid-like behavior in the liquid on observable timescales.
This immense dynamical slowing occurs without any obvious
structural change/ordering and attempts to find an appropriate
order parameter or growing length scale have remained inconclu-
sive. As such, explaining the spectacular increase of the viscosity
(and associated relaxation time) of supercooled liquids remains an
open challenge in material science.

Liquids, which are in equilibrium at high temperatures above
melting, have a viscosity that is well described by an Arrhenius
function, namely,

η(T) = η0e
∆G(T)
kBT , (1)

with ∆G(T), a (weakly) temperature-dependent Gibb’s free
energy of activation and kB, Boltzmann’s constant. The simple
interpretation of this form is that there exists awell-defined energy
barrier (associated with bond-breaking) that can be overcome by
thermal excitations. As the temperature is lowered, appropriately
sized thermal fluctuations become considerably less likely and
flow decreases appreciably. If this form were maintained in the
supercooled liquid, there would be little mystery. However, all
liquids show a degree of departure from the Arrhenius form.
This degree of departure forms a continuous spectrum and is
quantified by Angell’s fragility parameter (Angell, 1995; Angell
et al., 2000). According to this scheme, the most “fragile” liquids
(those with the high values of the fragility parameter) display
a far more dramatic rise in the viscosity than that predicted by
an Arrhenius law, whereas the deviation from an Arrhenius law
is far smaller in “strong” liquids (having a small fragility). The
underlying physics of the departure from equation (1) is what we
aim to explain.

Some of the first attempts to describe the non-Arrhenius char-
acter of supercooled liquid viscosity were undertaken in the 1920s
by Vogel (1921), Fulcher (1925), and Tammann and Hesse (1926).
Collectively, they discovered that the functional form,

η(T) = η0e
DT0
T−T0 (2)

was able to adequately describe the viscosity of many supercooled
liquids over a fair range of temperatures. In the so-called VFTH

form, the parameter D is related to the fragility, and T0 is a
material-dependent temperature at which a dynamic divergence
is predicted to occur. This form initially appeared as a purely
empirical form, with no rigorous theoretical support. However,
over the years a number of theoretical frameworks have been
proposed (Cohen and Turnbull, 1959; Adam and Gibbs, 1965;
Bengtzelius et al., 1984; Leutheusser, 1984; Kirkpatrick et al.,
1989; Parisi and Mezard, 1999; Lubchenko and Wolynes, 2007;
Gotze, 2008) to reproduce the VFTH form. While the VFTH
form has survived for nearly a century and is widely used, it
has consistently been shown to provide an overall poor fit to the
viscosity of supercooled liquids of all types (classes, fragilities,
bonding types, etc.) over the whole range of data. Additionally,
there is no conclusive evidence for a dynamic divergence at any
temperature above absolute zero (Mauro, 2011). These include
tantalizing experiments that employed 20-million-year-old amber
(Mauro, 2011; Zhao et al., 2013). For these and other reasons,
a plethora of other functional forms have been proposed in the
last 30 years, which do not contain a dynamic divergence and
which have rigorous theoretical foundations. A few of these, which
have been found to accurately describe the viscosity of many
glass-forming liquids, are the KKZNT, Cohen–Grest free volume,
parabolic, and MYEGA forms (Cohen and Grest, 1979; Kivelson
et al., 1995; Nussinov, 2004; Tarjus et al., 2005; Elmatad et al., 2009,
2010; Mauro et al., 2009).

The aforementioned functional forms have all been shown to
do an excellent job of reproducing the temperature dependence of
the viscosity of a wide range of supercooled liquids. For example,
the KKZNT form (Kivelson et al., 1995; Nussinov, 2004; Tarjus
et al., 2005) has become a favorite of some researchers in the
metallic glass community and very accurately describes the behav-
ior of metallic liquids (Blodgett et al., 2015), while the MYEGA
form (Mauro et al., 2009) has become ubiquitous in the silicate
and oxide glass community, as it works very well for covalently
bonded non-organic liquids. The trouble with these forms, as we
will show, is that despite their applicability to some liquids they
do not accurately describe all types of supercooled liquids. This is
made particularly striking in a review by Angell et al. (2000), in
which the authors list ten different functional forms all of which
they discuss are accurate only for certain types/classes of liquids.
Additionally bothersome is that most of these theories contain at
least three adjustable parameters, which cannot be uniquely deter-
mined by correlations with thermodynamic observables. This is
true of the parabolic form (Elmatad et al., 2009, 2010), which
has wide applicability to fragile glasses. It seems reasonable to
expect that if any liquid can in principle be supercooled, then there
should be some universal mechanism/theory that is applicable
across all liquids. Further, the material-dependent parameters of
a given model should be related to thermodynamic observables,
and not arbitrary fitting variables, while reflecting first principles.

In order to remedy the issues discussed above, we will now
propose and assess a classical statistical mechanical framework to
describe the viscosity of supercooled liquids. An earlier quantum
rendition of our theory that mirrors and contains many of the
considerations invoked in the classical approach that we discuss
here first appeared in Nussinov (2015) and motivated the fit and
collapse that we experimentally tested and derive here classically.
Within our framework, the temperature dependence of the
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viscosity contains only a single parameter. Such a functional
dependence implies a collapse of the viscosity data. In the current
work, we collapse the published viscosity data of 45 supercooled
liquids onto a single scaling curve. This collapse is a central result
of our work. Additional aspects of our approach (in particular, the
calculation of Angell’s fragility parameter and the viscosity above
the melting temperature) along with further details concerning
our data analysis and fits appear in Weingartner et al. (2015).
Regardless of our theoretical bias, the existence of the universal
collapse of the viscosity data that we first report on here suggests
[as it has in many other arenas for very different problems
(Stanley, 1999; West and Brown, 2005; Pyrak-Nolte and Nolte,
2016)] an underlying simplicity. Historically, the existence of a
collapse in which the data from numerous systems were seen to
fall on a universal curve pointed to a commonality in standard
equilibrium critical phenomena (Stanley, 1999). Historically, the
discovery that experimental data for various systems in the vicin-
ity of their liquid to gas phase transition can be made to collapse
onto a single curve after a simple rescaling (Guggenheim, 1945)
predated current understanding of critical phenomena by many
decades and hinted at the universality that permeates equilibrium
phase transitions (Stanley, 1999; Nishimori and Ortiz, 2010). We
hope that the viscosity collapse that we find for all studied super-
cooled liquids will spur further investigation. In the next section,
we turn to the rudiments of our classical statistical mechanics
approach.

2. FUNDAMENTALS OF THE ENERGY
SHELL DISTRIBUTION APPROACH

The macroscopic thermodynamic and dynamical observables
(such as viscosity) of a many-body system ultimately result from
the average of the microscopic dynamics of the constituent atoms
of the system. These microscopic dynamics are governed by the
interactions between the system’s constituent members, and these
are encoded in the system’s Hamiltonian, H, which is a function
of the kinetic and interaction energies of the constituent atoms
in the system. We can write down the exact classical, many-body
Hamiltonian for a supercooled liquid of any type as

H =
∑
i

P⃗2
i

2Mi
+

∑
i

p⃗2
i

2me
+

∑
i>i′

e2

4πϵ0 |⃗ri − r⃗i′ |

+
∑
ij

Zie2

4πϵ0|R⃗j − r⃗i|
+

∑
j>j′

ZiZje2

4πϵ0|R⃗j − R⃗j′ |
. (3)

where Zi is the atomic number, me is the electron mass, Mi is
the atomic mass, r⃗i is the position of the i-th electron, and R⃗j
is the position of the j-th nucleus. We consider realistic three-
dimensional liquids of N particles (the total number of electrons
and nuclei). This Hamiltonian is intentionally general; changing
the values of Zi, Mi, and the specific form of any additional
interaction potentials allows one to describe any and all specific
liquids. Although the exact Hamiltonian is given by equation
(3), this precise form of the Hamiltonian will be immaterial in
the very general analysis that follows. Rather, as we will explain,
what matters most in our classical approach [and in its quantum

analog (Nussinov, 2015)] is that the equilibrium properties of
this disorder-free many-body Hamiltonian are empirically well
known. Specifically, the realization of Hamiltonian of equation
(3), as it pertains to standard disorder free materials, typically
exhibits equilibrium solid or liquid phase at, respectively, low or
high energy densities or temperatures.

In what briefly follows, we denote the collection of the momen-
tum coordinates of all particles (electrons and nuclei) by π⃗ and the
collection of all spatial coordinates by x⃗. To compute the dynam-
ics of constituents of the liquid, one needs to solve Hamilton’s
equations,

˙⃗π = −∇x⃗H
˙⃗x = ∇π⃗H (4)

given the Hamiltonian in equation (3). In general, for a many-
body system such as a liquid, this leads to a set of strongly coupled,
highly non-linear, partial differential equations, which are impos-
sible to solve exactly. For our purposes, however, it will suffice to
rely only on simple statistical mechanics ideas in conjunction with
extensively verified experimental observations.

The state of a classical N-body system may be represented by a
point labeled by the positions andmomenta of each of the particles
in 6N-dimensional phase space [a microstate (⃗x, π⃗)]. The time
evolution of the system defines a trajectory in this phase space.
The system is assumed to be in any of the microstates, which are
allowed by the external constraints of the system (macrostate),
with appropriate statistical weights set by the specific ensemble
being employed. The calculation of the average values of
physical observables O proceeds by averaging the value of O of all
microstates in the allowed region(s) of phase space. For an isolated
system, the allowed phase space is given by a shell centered on
the hypersurface of constant energy, H(⃗x, π⃗)= E, with thickness
δE set by the uncertainty in specification of the external energy.
The statistical weights are constant in the allowed region and zero
elsewhere, such that microcanonical averages are given by

Ō(E) =
1

D(E)

∫
d3Nx

∫
d3Nπ

(2π~)3N
O(⃗x, π⃗)δ(H(⃗x, π⃗) − E), (5)

with the density of states

D(E) =
∫

d3Nx
∫

d3Nπ

(2π~)3N
δ(H(⃗x, π⃗) − E). (6)

When the system is coupled to an external heat bath, all energies
are in principle attainable by the system, and the infinitesimally
thick shell (δ-peaked) of allowed phase space (Figure 1) may
become smeared and overlap. This leads to averages of the form

Ō =
∫

dE′Ōm(E′)ρ(E′). (7)

Here, Ōm(E′) is the microcanonical average of O at an energy
E′, and ρ(E′) is a (normalized) probability distribution in phase
space, which is no longer a δ-function. In standard equilibrated
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systems [such as those corresponding to the disorder free Hamil-
tonian of equation (3) that describes equilibrated solids and liq-
uids], the ensemble average of equation (7) is equal to the longtime
average of O (which we denote by O∞) as it evolves according to
equations (4). Empirically, as we remarked earlier, at high enough
temperatures or energy densities, the system of equation (3) is a
fluid, while at temperatures or energy densities below that of freez-
ing the system is an equilibrium solids. Thus, for any observable
O, the microstate average of equation (5) will change character
from featuring equilibrium fluid like features at high energies to
solid-like behaviors at low energies. When latent heat appears
at the equilibrium melting transition (as it nearly always does),
there will be intermediate states displaying mixed fluid and solid
like features (Nussinov, 2015). It follows that, when averaged over
energy shells in phase space, the microstates themselves change
their character across the equilibrium phase transitions. Figure 1
portrays the above simple conclusion.

Since systems in equilibrium, with a well-defined temperature,
have a canonical partition function,

Z =
∫ ∞

−∞
dE D(E)e−

E
kBT . (8)

In this case, ρ(E′) corresponds to the Gibbs distribution,
namely,

ρ(E′) =
D(E′)e−

E′

kBT

Z . (9)

If the system is cooled quasistatically, equilibrium will be
maintained, and the distribution will remain canonical at progres-
sively lower temperatures. This is, in part, guaranteed by Liou-
ville’s theorem, which states that the phase space volume along
trajectories in phase space is preserved for Hamiltonian systems.
Thismeans that as the system is cooled slowly enough, trajectories
will neither bunch nor diverge and will map in a “1-to-1” fashion
to the newly allowed region of phase space, and the distribution
function will adjust accordingly. If instead of slow quasistatic
cooling, we rapidly quench the system, it will cease to be in equi-
librium and its dynamics will no longer be Hamiltonian. The now

FIGURE 1 | At left is a phase space schematic with fixed energy shells.
As described in the text, the microstates change from being “liquid-like” at
high energy densities (or associated high temperatures) to being “solid-like” at
low energies (or low temperatures). On the right, we depict a cartoon of the
atomic microstates both above and below the energy density associated with
melting (dashed line at center).

dissipative system will violate Liouville’s theorem: the trajectories
fromnearby points in phase space can diverge, and the phase space
volume may swell. The initial shape of the initial energy shells
will change due to supercooling. This shape deformation is central
to our description of the supercooling process. Due to this non-
adiabatic evolution, the Gibbs distribution will no longer be the
exactly correct distribution describing the distribution in phase
space. If we allow the system to maintain metastable equilibrium
then the canonical ensemble is still roughly obeyed. However,
in this case, different regions of the initial phase space will map
to regions with, correspondingly, disparate effective canonical
distribution functions, i.e., with different effective temperatures.
This idea, which is seemingly reinforced by the appearance of
dynamical heterogeneities (Kob et al., 1997; Donati et al., 1998;
Sillescu, 1999; Ediger, 2000; Gebremichael et al., 2001; Richert,
2002; Nussinov, 2015) and other phenomena, implies that the
overall system will sample a range of effective global temperatures
(necessitated by the apparent spatial distribution of local effective
temperatures) consistent with the externally imposed tempera-
ture, T. This distribution of effective temperatures forms the nub
of our “Energy Shell Distribution Theory” (ESDT).

With the system now sampling a smeared out distribution of
effective temperatures, the phase space probability distribution for
the averages of equation (7) will now involve a conditional proba-
bility density ρ(E | T′) for the energy given a specific temperature,
namely,

ρ(E) =
∫

dT′ρ(E|T′)ρ(T′). (10)

Here, ρ(T′) is the probability distribution of effective tempera-
tures T′. As the system is in a metastable equilibrium, the proba-
bility density for a given E at a temperature T′ will still reasonably
be described by the Gibbs distribution of equation (9). Similar to
equation (7), the longtime average of O for a general distribution
ρ including that associated with the supercooled liquid (sc) reads
(Nussinov, 2015).

Ō∞,sc =
∫

dT′ρ(T′)Õcan(T′). (11)

Here, Õcan(T′) is the canonical, equilibriumvalue of the observ-
ableO at a temperature T′. We see, then, that supercooling acts to
drive the system into a metastable equilibrium, which leads to the
system sampling a range of equilibrium value averages over a nar-
row, but finite distribution of effective temperatures. The initial
“shock” to the system of supercooling causes microscopic effects,
which broaden the distribution. By virtue of being out of equi-
librium, the distribution ρ must have a finite standard deviation
(SD). This is so as otherwise the system would be described by a
unique uniform effective temperature and be describable by the
equilibrium canonical ensemble. However, since the supercooled
liquid is out of equilibrium, the SD σ associated with the distri-
bution ρ cannot vanish (Nussinov, 2015). When thermodynamic
equilibrium is restored at a uniform global temperature T, the
distribution ρ(T′) becomes a delta function (δ(T−T′)) implying
an equilibrium Boltzmann distribution (and ensuing equilibrium
expectation values for all observables).

With the above statistical mechanics ideas in place, we now
invoke these to calculate the values of observables of interest. One

Frontiers in Materials | www.frontiersin.org November 2016 | Volume 3 | Article 504

http://www.frontiersin.org/Materials
http://www.frontiersin.org
http://www.frontiersin.org/Materials/archive


Weingartner et al. A Universal Collapse of the Viscosity of Glass-Forming Liquids

FIGURE 2 | The viscosity, η(T), scaled by its value at the melting (or liquidus) temperature η(Tl) plotted as a function of the “reduced temperature”
Tl−T
Tl

. When represented this way, a spectrum of behaviors appears, with most glassformers seeming to fall within different “families” corresponding to fragility
classes as defined by experimental values.

method of measuring the viscosity of a liquid is by measuring the
terminal velocity of a sphere dropped into the liquid. In this case,
the viscosity is inversely proportional (η ∝ 1/v∞) to the terminal
velocity of the sphere. The terminal velocity is a macroscopic
property of the system and therefore can be calculated in our
statistical mechanical framework. Setting the observable O to be
the vertical velocity of the dropped sphere, O= vz (Nussinov,
2015), the observed terminal velocity becomes

v̄∞,sc =
∫

dT′ρ(T′)ṽ∞,can(T′). (12)

Thus, the viscosity will be given by

η =
A∫

dT′ρ(T′)ṽ∞,can(T′)
, (13)

with A as a constant. As is well known, for an equilibrium system,
there exists a cutoff temperature, Tc, below which the terminal
velocity must vanish (since the system is completely solid and
no longtime flow occurs). Thus, in the equilibrium canonical
ensemble, only averages of the terminal velocity at temperatures
above this cutoff may contribute to the integral in equation (13)
leading to

η =
A∫ ∞

Tc
dT′ρ(T′)ṽ∞,can(T′)

. (14)

If we further assume that the distribution ρ is sufficiently
narrowly peaked [as will be verified in the next section and seen
from the numerical value of our fit parameter Ā (to be described

therein)] such that the distribution has minimal “leakage” into
effective temperatures T′ above Tc, when the measured global
temperature T<Tc, then the value of v∞,can will change very
little over the region of appreciable weight. Therefore, we can
reasonably replace v∞,can(T′) with v∞,can(Tc). Thus, the viscosity
of the supercooled liquid is

η =
η(Tc)∫ ∞

Tc
dT′ρ(T′)

. (15)

In order to use this expression to make concrete predictions of
the viscosity, wemust knowwhat functional form to use for ρ(T′).
All that is known about the distribution is that it is peaked about
the external temperature, T, must be normalized, and that it has
a small yet finite width. In the absence of additional constraints,
the appropriate distribution ρ for the supercooled liquid may be
ascertained (Nussinov, 2015) bymaximizing the Shannon entropy
HI = −

∫
ρ(T′)log2[ρ(T′)]dT′. As is well known, maximizing

the Shannon entropy with the constraints of normalization and
finite variance leads to a Gaussian distribution. Therefore, the
most probable distribution of effective temperatures is

ρ(T′) =
1√

2πσ(T′)
e
−

(T′−T)2

2σ(T′)2
, (16)

where σ(T′) represents the spread of the distribution, and T is
the external temperature. Inserting the Gaussian distribution of
equation (16) into equation (15), we find that the viscosity

η(T) =
η(Tc)

erfc
[

Tc−T√
2σ(T)

] . (17)
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FIGURE 3 | The SD σ(T) of the probability distribution of equation (16) as inferred by fitting the experimentally measured viscosity to equation (19). In
most cases that we examined, the approximate linearity relation of equation (18) holds reasonably well far enough below the liquidus temperature. Here, we also
show two well-known exceptional liquids: water and glucose. These fluids display anomalies that have been ascribed to putative liquid–liquid transitions, e.g., Johari
et al. (1987), Mishima and Stanley (1989), Ito et al. (1999), Tyagi and Murthy (2006), Li et al. (2013), Murata and Tanaka (2013), and Palmer et al. (2014). The
crossover of σ at high temperature and the one that we similarly found in supercooled salol (Weingartner et al., 2015) may be a signature of these putative transitions.
Indeed, in salol the crossover temperature at which σ(T ) deviates from its low temperature linearity (Weingartner et al., 2015) coincides with earlier experimentally
suggested liquid–liquid transition temperature (Mallamace et al., 2010).

FIGURE 4 | The viscosity data scaled by its value at the liquidus temperature, η(Tl), plotted as a function of the dimensionless temperature ratio x, as
defined in the figure. The viscosity data of 45 liquids from numerous classes/bonding types (silicate, metallic, organic) and kinetic fragilities collapse onto a unique
curve, suggestive of universality among all types of glass-forming liquids. Note the exceptional agreement over 16 decades. The deviations of glycerol and SiO2 are
discussed in Weingartner et al. (2015). The pertinent liquidus temperature Tl and the viscosity at Tl and our single dimensionless parameter associated with all fluids
are provided in Table 1. The continuous underlying “curve” (seen at the high viscosity end where fewer viscosity data are available) is that predicted by equation (19).
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In what follows, we make two conjectures to complete the form
of the viscosity, one involving the cutoff temperature and the other
involving the spread of the Gaussian.

2.1. The Cutoff Temperature
In choosing a value for the cutoff temperature, Tc, we rely on
experimental observations. In pure systems, at the melting tem-
perature, the equilibrium system undergoes a first order phase
transition from the liquid to the ordered crystalline solid state.
At this temperature, in equilibrium, the values of thermodynamic
observables transition from their liquid-like values to their solid-
like ones. In a perfect crystal (an idealization never realized), the
viscosity is infinite (Sausset et al., 2010), and hence the terminal
velocity will be zero at temperatures beneath melting.

The idea of linking the glass transition to melting goes back
decades, and it is easy to understand why (Sakka and Mackenzie,
1971; Uhlmann, 1972; Okui, 1990; Angell, 2008). By definition,
supercooled liquids are formed by avoiding crystallization at the
melting transition, therefore the melting temperature implicitly
determines at which temperatures a supercooled liquid exists at
all. Additionally, the melting transition occurs at a sharp transi-
tion temperature, making it a somewhat less arbitrary reference
point than the kinetically defined glass transition temperature. In
his seminal paperKauzmann (1948)was one of the first to propose
an empirical link between the glass transition and melting. He
observed that for all the liquids he studied, on average the glass
transition andmelting temperatures were related by Tg ≈ 2

3Tm. In
the intervening years, a number of researchers have found that this
relationship holds, on average, for various types of supercooled
liquids/glasses (Kanno, 1981; Wang et al., 2006). However, devia-
tions from this empirical rule have also been observed for decades.
Similar to the argument above, Turnbull reasoned that because
nucleation and growth of the crystalline phase became thermody-
namically possible at the melting temperature, glass formability
may be linked to the gap between the melting temperature and
glass transition temperature. He observed that glass formability
in metallic liquids could roughly be quantified by what he defined
as the reduced glass transition temperature, Trg = Tg

Tm
(Turnbull,

1969; Angell, 2008; Na et al., 2014), where the best glass formers
had Trg ≈ 2

3 . However, as metallic liquids display a range of glass
formability, so to does the reduced glass transition temperature.
Therefore, in metallic liquids at least, the 2/3 rule does not always
hold. Building on the observation of Kauzmann and Turnbull, it
appears reasonable to investigate further what links exist between
melting and the glass transition. What these empirical relation-
ships fail to do, however, is provide a consistent framework for
understanding the dynamics of supercooled liquids and making
predictions about the phenomenology based on melting. This is
made vivid by examining a simple scaling of the viscosities of
several liquids by values associated with melting. In Figure 2, we
plot the logarithm of the viscosity scaled by its value at melting
(or, more precisely, its liquidus temperature, as will be discussed
below) versus the melting-scaled inverse temperature. As the
figure demonstrates, a universal description of the viscosity does
not immediately emerge by simply using themelting temperature;
however, “fragility bands” appear, providing more evidence for
the link between Tg and Tm. This suggests that an “ingredient” is

TABLE 1 | Values of the relevant parameters of all liquids studied
(equation (19)).

Composition
√

2 Ā Tl (K) η(Tl) (Pa s)

BS2 0.157129 1699 5.57
Diopside 0.134328 1664 1.50
LS2 0.170384 1307 22.19
OTP 0.069685 329.35 0.029
Salol 0.087192 315 0.008
Anorthite 0.131345 1823 39.81
Zr57Ni43 0.234171 1450 0.015
Pd40Ni40P20 0.154701 1030 0.03019
Zr74Rh26 0.187851 1350 0.036
Pd77.5Cu6Si16.5 0.124879 1058 0.044
Albite 0.103344 1393 24154952.8
Cu64Zr36 0.142960 1230 0.021
Ni34Zr66 0.209359 1283 0.0269
Zr50Cu48Al2 0.167270 1220 0.0233
Ni62Nb38 0.109488 1483 0.042
Vit106a 0.133724 1125 0.131
Cu55Zr45 0.144521 1193 0.0266
H2O 0.133069 273.15 0.00179
Glucose 0.079455 419 0.53
Glycerol 0.108834 290.9 1.995
Ti40Zr10Cu30Pd20 0.185389 1279.226 0.0165
Zr70Pd30 0.21073 1350.789 0.0228
Zr80Pt20 0.169362 1363.789 0.0480
NS2 0.134626 1147 992.274
Cu60Zr20Ti20 0.103380 1125.409 0.0452
Cu69Zr31 0.157480 1313 0.0115
Cu46Zr54 0.156955 1198 0.02044
Ni24Zr76 0.244979 1233 0.02625
Cu50Zr42.5Ti7.5 0.148249 1152 0.0268
D-Fructose 0.050124 418 7.3155
TNB1 0.07567 472 0.0399
Selenium 0.130819 494 2.951
CN60.40 0.149085 1170 186.208
CN60.20 0.161171 1450 12.5887
Pd82Si18 0.137623 1071 0.03615
Cu50Zr45Al5 0.118631 1173 0.0379
Ti40Zr10Cu36Pd14 0.137753 1185 0.0256
Cu50Zr50 0.166699 1226 0.02162
Isopropylbenzene 0.073845 177 0.086
Butylbenzene 0.085066 185 0.0992
Cu58Zr42 0.131969 1199 0.02526
Vit 1 0.111185 937 36.598
Trehalose 0.071056 473 2.718
Sec-butylbenzene 0.080088 190.3 0.071
SiO2 0.090948 1873 1.196×108

missing. It is our goal to combine the above ideas with our simple
statisticalmechanical treatment, to ultimately arrive at a complete,
predictive theory of supercooled liquids.

In light of the above arguments we will identify the cut-
off temperature Tc with the melting temperature, Tm. There is
an intrinsic difficulty in doing this, however, which must be
addressed. Only certain non-monatomic liquids possess a single
“melting” temperature. In reality, most liquids have a “melting
range” associated with the temperatures between the solidus tem-
perature Ts and the liquidus temperature Tl. Additionally, either
associated with these temperatures or the pure-system melting
temperature, Tm, there will be a range of energies corresponding
to the latent heats/enthalpies of formation. Therefore, regardless of
which temperature we choose to represent “melting,” there will be
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FIGURE 5 | Fits the viscosity of various supercooled fluids (including water) with equation (19).

FIGURE 6 | The fit of equation (19) is tested for CN60.40 and CN60.20,
two silicate systems with slightly different molar compositions.

corrections necessary to account for the melting range. Addition-
ally, many silicate systems are polymorphic in the crystalline solid
state, meaning that at various temperatures below the liquidus, the
crystal transitions between different thermodynamically stable
crystalline configurations. These polymorphs and their associated
temperatures can have a very large impact on the thermodynamic
properties of the system, with minimal apparent impact on the
dynamical properties. One may obtain bounds on the viscosity
by setting the cutoff or melting temperature in equation (12) to
mean the liquidus temperature (Nussinov, 2015). If no longtime
flow appears in this intermediate temperature regime [i.e., if the
terminal velocity of equation (12) vanishes], then this substitu-
tion of Tc =Tl in equations (15) and (17) will be precise. Thus,
because solid-like characteristics will first appear at the liquidus
temperature, we will take it to define the melting temperature at
which point there is a change in the equilibrium dynamics of the
system. This argument can be further understood in the context of

the Lindemann criterion. In Lindemann’s model, the break down
of solidity and onset of flow at the melting temperature is due to
the average amplitude of vibration becoming an appreciable frac-
tion of the lattice length (≈10%). At the temperature where this
occurs, the lattice destabilizes, and constituents become liquid-
like. The average amplitude of vibration is proportional to the
kinetic energy, so this can be seen as the average kinetic energy
of the constituents becoming enough to globally overcome the
average interatomic bond strength. Observations suggest that a
Lindemann-like model also holds for the devitrification of glasses
(Tournier, 2016). Therefore, viewing this from the perspective
of cooling, at the melting (liquidus) temperature, the “sticki-
ness” of the interaction forces/energy first starts to dominate
the kinetic energy, and the constituents begin to more strongly
interact. Inserting the liquidus temperature,Tl, into equation (17),
we obtain η(T) = η(Tl)

erfc
[

Tl−T√
2σ(T)

] . We next motivate a specific

functional form for the distribution σ(T).

2.2. The Width of the Distribution
The spread in effective temperatures, T′, at a given external tem-
perature, T, is quantified by σ(T). This spread (related to the
variance by a simple square root) is the fundamental variable in
the ESDT, as it is caused by, and leads to, the metastable, non-
canonical spread in temperatures/energies. Much like the exact
distribution of temperatures that it governs, we do not know
a priori what its functional form should be. However, there are
a number of physical constraints that will ultimately motivate its
exact form. As the system is cooled, the peak of the distribution
[equation (16)] shifts downward as it is centered on the external
temperature, T. The tails, and not the peak, though, control how
likely a macroscopic flow event will be. In order that the flow
continues to decrease rapidly as the temperature is lowered, the
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FIGURE 7 | Our viscosity fit of equation (19) is applied to a very fragile organic glass former (OTP) and very strong silicate glass former (LS2).

width of the distribution will also have to shrink to “pull” the
tail out of sampling the flowing states. Additionally, as the system
approaches absolute zero, the third law of thermodynamics will
require that the spread in energies (and hence effective temper-
atures) vanish, such that σ(T) must be a decreasing function of
temperature. It is also readily obvious that the only natural energy
scale for the metastable supercooled liquid is set by the external
temperature. Therefore, it is reasonable to assume that σ(T) ∝ T.
With these simple facts in mind, we assert that

σ(T) = ĀT, (18)

where Ā is a small, dimensionless, material-dependent parameter.
That is, the width σ(T) is set by the natural energy (temperature)
scale of the system. Additional analysis is provided in Nussinov
(2015). To confirm the validity of this approximation, we can
invert equation (17) solving for the spread, σ(T), and examine
it for experimental viscosity data. Across the different examined
liquids, we found this to hold relatively well. In some materi-
als, there are deviations from linearity in the vicinity of their
respective solidus and/or liquidus temperatures. This is illustrated
in Figure 3. As seen therein, in both glucose and supercooled
water (Figure 3), σ(T) exhibits such a crossover. We found an
analogous trend in supercooled salol where the crossover tem-
perature associated with σ(T) (Weingartner et al., 2015) coin-
cided with the earlier reported putative liquid–liquid transition
temperature in this system (Mallamace et al., 2010). Similarly,
supercooled water and glucose display anomalies that have been
ascribed to a liquid–liquid transition (Johari et al., 1987; Mishima
and Stanley, 1989; Ito et al., 1999; Tyagi and Murthy, 2006; Li
et al., 2013; Murata and Tanaka, 2013; Palmer et al., 2014). Taken
together, these data suggest that, if and when present, fragile
to strong crossovers or liquid–liquid phase transitions (Sastry
and Angell, 2003) may be associated with deviations in σ(T).
This will be critically addressed in depth in a follow-up paper
where we will further extensively demonstrate that Ā strongly
correlates with various thermodynamic parameters andmay allow

for the prediction of low temperature viscosity from purely high
temperature measurements.

For the time being, we stress that Ā constitutes the only
adjustable parameter in this framework. When combining this
with equation (17), we now arrive, via classical phase space con-
siderations, at our principal result for the viscosity (Nussinov,
2015),

η(T) =
η(Tl)

erfc
[

Tl−T√
2ĀT

] . (19)

It is immediately clear from an examination of equation (19)
that our model does not possess a dynamical singularity. In
fact, if one were to calculate the entropy difference between the
supercooled liquid and equilibrium crystalline solid, it would be
apparent that the excess entropy could only vanish at a pointwhere
the temperature distribution becomes a delta function. When this
occurs, however, the system will, by definition have returned to
equilibrium. Therefore, our approach makes it plain that there
cannot be a finite temperature singularity, and that the above
excess entropy can only vanish if the system regains equilibrium.
The function of equation (19) relies only onmeasurable quantities
associated with the liquidus and a single parameter. While the
specific form of the above equation is only applicable beneath the
liquidus temperature, in Weingartner et al. (2015) we derived an
extension to all temperatures above the liquidus, completing the
theoretical model.

A corollary of equation (19) is that the viscosity data from all
supercooled liquids may be made to collapse onto one master
curve (Nussinov, 2015). That is, for each fluid, the ratio of the
viscosity at temperature T ≤Tl to its viscosity at the liquidus tem-
perature, (η(T)/η(Tl)), is a trivial function of the quotient (Tl −
T)/(ĀT) with Ā being the single dimensionless parameter that
is material-dependent. We tested this prediction in Figure 4 and
found it is indeed be satisfied. Although the value of Ā does not
significantly change across all of the liquids that we examined (see
Table 1), its variations are nevertheless important. In particular, it
can be demonstrated that the fragility parameter is a function of
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both Ā and the reduced glass transition temperature Trg (that are
set, in our theory, by the values of the melting temperature and
Ā themselves) (Weingartner et al., 2015). Thus, albeit being small
in size, the changes in the values of Ā in their relatively narrow
range (alongwith the values ofTrg) differentiate strong fluids from
fragile ones. This is clearly seen in Figure 2; if the dependence on
Ā between different glass formers were weak, the viscosity data in
Figure 2 would have collapsed onto a single curve. The contrast
between Figure 2 and Figure 4 (in which Ā was, for each liquid,
set to the value given by Table 1) highlights the importance of the
deviations in the parameter Ā (the “missing ingredient” that we
alluded to above) from one fluid to another.

3. METHODS: A TEST OF THE PREDICTED
VISCOSITY AND A DATA COLLAPSE

With the theoretical prediction of equation (19) in hand, we now
turn our attention to assessing the accuracy of the model. We
examined diverse liquids belonging to both the strong and fragile
classifications, and spanning all liquid types: silicate, oxide, metal-
lic, organic, chalcogenide, sugars, and even supercooled water.We
used standard non-linear fitting techniques to extract the optimal
value of Ā for each liquid. Surprisingly, for the 45 liquids studied,
the values of Ā fall within a narrow range (having an average
and SD of 0.095 and 0.031 respectively), while simultaneously
providing a visually accurate fit to the data of all studied systems.
In Table 1, we list the values of Ā for all studied liquids and their
corresponding liquidus temperatures. In Figures 5–7, we present
the viscosity data of a representative sample of the supercooled
liquids studied. In the figures, the solid line represents the fit of
the ESDT viscosity function to the data. Visual examination of
the quality of fit suggests a high degree of accuracy. To make this
objective, and quantitatively rigorous, we performed a detailed
statistical analysis of the data of all liquids. In Table 2, we present
the results of the analysis, featuring the computed values for the
sum of squared errors (SSE), reduced χ2, and R2 statistics for each
liquid. The highestχ2 values calculated (with correspondingly low
R2 values) correspond to glycerol and SiO2, which appear to have
anomalous behavior (Weingartner et al., 2015) and will be further
addressed in detail in a follow-up paper (the melting range and
bimodality likely play a role). Outside of these two liquids, the
highest value of χ2 is 0.7, and the lowest R2 is 0.87. These results
provide an objective validation of the ESDT model performance.
From the combination of visual inspection and statistical analysis,
it is within reason to conclude that the ESDT form for the viscosity
is able to reproduce/describe the viscosity of all studied types of
liquids to objectively high degrees of statistical accuracy.

Whether or not the dynamics of supercooled liquids are uni-
versal has been debated for some time. We demonstrated that the
ESDT viscosity form appears to fit the viscosity data of all types
of supercooled liquids, thereby providing the “missing ingredient”
that prevented a universal description of liquids based onmelting.
If the ESDT form is to be a complete picture for all liquids, then it
should allow for a universal scaling of the viscosity of supercooled
liquids. For that reason, we plot the logarithm of the viscosity of
all studied liquids scaled by its value at the liquidus, but this time
versus the argument of the complementary error function. The

TABLE 2 | Statistical measures of the goodness of the fit.

Composition SSE χ2
red R2

OTP 10.617 0.312264 0.997247
LS2 14.8497 0.215213 0.983678
Pd77.5Cu6Si16.5 0.789078 0.0876754 0.998759
Salol 17.1643 0.553687 0.993136
Diopside 13.1776 0.0941259 0.997362
Anorthite 2.25807 0.141129 0.991396
BS2 4.902 0.0505361 0.998646
Albite 13.3105 0.511942 0.87503
Zr74Rh26 0.115181 0.000984452 0.983959
Pd40Ni40P20 12.3782 0.515757 0.993153
Zr57Ni43 0.351164 0.00172139 0.977947
Cu64Zr36 0.190441 0.00307162 0.984655
Ni34Zr66 0.121782 0.00162376 0.993343
Zr50Cu48Al2 10.617 0.312264 0.997247
Ni62Nb38 0.448888 0.00487922 0.9841
Vit106a 6.23195 0.623195 0.996508
Cu55Zr45 0.223386 0.00314628 0.987581
H2O 0.00731595 0.000215175 0.999412
Glucose 1.48859 0.0513308 0.999499
Glycerol 76.0137 1.85399 0.945217
Ti40Zr10Cu30Pd20 0.395717 0.00316573 0.988712
Zr70Pd30 0.080497 0.00134162 0.996159
Zr80Pt20 0.077876 0.00162242 0.971562
NS2 20.9749 0.723273 0.981462
Cu60Zr20Ti20 0.196626 0.0012063 0.985095
Cu69Zr31 0.756104 0.00804366 0.950419
Cu46Zr54 0.650675 0.00971157 0.910136
Ni24Zr76 0.0453595 0.0008584 0.991683
Cu50Zr42.5Ti7.5 0.0535541 0.00172755 0.982531
D-Fructose 0.554086 0.0240907 0.946689
TNB1 8.97792 0.448896 0.996155
Selenium 6.43906 0.292684 0.995906
CN60.40 0.746426 0.0678569 0.998937
CN60.20 0.147407 0.0105291 0.999883
Pd82Si18 1.2915 0.1435 0.998916
Cu50Zr45Al5 0.109111 0.000742252 0.992842
Ti40Zr10Cu36Pd14 0.195736 0.00163113 0.92674
Cu50Zr50 0.235607 0.00420727 0.976969
Isopropyl benzene 4.47953 0.344579 0.993307
Butylbenzene 1.97384 0.140989 0.995543
Cu58Zr42 0.551631 0.0108163 0.966384
Vit 1 46.5891 2.58828 0.956556
Trehalose 8.93373 0.288185 0.934837
Sec-butylbenzene 1.27723 0.159653 0.976809
SiO2 57.7053 1.98984 0.660326

results of this scaling are presented in Figure 4. It is immediately
clear that this scaling collapses the viscosity data of all liquid types
onto a single curve. More significantly, the collapse holds over 16
decades, and for all classes/types of liquids. It should be pointed
out that while this scaling arose as a consequence of the ESDT
framework, even if the theoretical foundations do not hold, this
scaling can always be done. While the analysis of considerably
more liquids is ultimately required, this stunning result suggests
that there is perhaps an underlying universality to the dynamics
of all supercooled liquids.

For completeness, it must be pointed out that all liquids tested
in this work undergo congruent melting and can therefore be
adequately described by their liquidus temperature. There are
numerous liquids, however, which undergo incongruent melting,
and a small molar addition of some material can drastically
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change the liquidus temperature without appreciably affecting the
viscosity. This is because the liquidus is where the small crys-
talline clusters associated with the addition will first appear, but in
small enough concentrations, they cannot impact the dynamical
character of the liquid. This presents a difficulty for using the
liquidus as the scaling temperature for all liquids. The impact of
this will be investigated in a further work but suggests that for
these “pathological” liquids, a description in terms of the solidus
or associated temperatures may be more appropriate.

4. CONCLUSION

We advanced a classical statistical mechanical framework
for understanding the dynamics of supercooled liquids. We
demonstrated, both qualitatively and quantitatively, that the
resultant expression that is predicted by this approach [and by
an earlier companion quantum version (Nussinov, 2015)] for the
viscosity of supercooled liquids below the melting temperature
can describe/reproduce the behavior of all liquids studied to
objectively high accuracy. We demonstrated that the viscosity
data of 45 different liquids can be collapsed onto a single
scaling curve, suggesting that an underlying universality may be
present in the dynamical behavior of supercooled liquids. Further
support to our results, including data and details underlying
our viscosity analysis, appears in Weingartner et al. (2015).
Additional structural aspects are discussed in (Nussinov, 2015)
and (Weingartner et al., 2015). We hope that our newly found

universal 16 decade collapse for the viscosity data of all known
liquid types and the theoretical ideas that led us to it will
prompt further discussion on the underlying phenomenology
of supercooled liquids and the glass transition.
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