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In recent years, two-dimensional (2D) graphitic carbon nitride (g-C3N4) has elicited 
interdisciplinary research fascination among the scientific communities due to its attrac-
tive properties such as appropriate band structures, visible-light absorption, and high 
chemical and thermal stability. At present, research aiming at engineering 2D g-C3N4 
photocatalysts at an atomic and molecular level in conquering the global energy demand 
and environmental pollution has been thriving. In this review, the cutting-edge research 
progress on the 2D/2D g-C3N4-based hybrid nanoarchitectures will be systematically 
highlighted with a specific emphasis on a multitude of photocatalytic applications, not 
only in waste degradation for pollution alleviation, but also in renewable energy production 
[e.g., water splitting and carbon dioxide (CO2) reduction]. By reviewing the substantial 
developments on this hot research platform, it is envisioned that the review will shed light 
and pave a new prospect for constructing high photocatalytic performance of 2D/2D 
g-C3N4-based system, which could also be extended to other related energy fields, 
namely solar cells, supercapacitors, and electrocatalysis.

Keywords: graphitic carbon nitride (g-C3N4), photocatalysis, energy conversion, environmental remediation, 
2D/2D heterojunction, face-to-face interface

iNTRODUCTiON

Photocatalysis is emerged as one of the Holy Grails of sustainable and green technologies for solar 
energy conversion, energy storage, and environmental remediation, which has been intensively 
examined over the past few decades worldwide to search for novel photocatalysts (Inoue et al., 1979; 
Linsebigler et al., 1995; Ma et al., 2014; Ong et al., 2014a, 2016b; He and Que, 2016; Li et al., 2016a; 
Wenderich and Mul, 2016; Zhang et al., 2016a; Eftekhari, 2017; Liu et al., 2017; Osterloh, 2017; Roger 
et al., 2017). By harvesting solar energy as the source of renewable energy, photocatalysis will make 
significant impacts in the areas of (1) light-driven water splitting to hydrogen (H2) and oxygen (O2) 
(Chen et al., 2010; Bai et al., 2016; Wei et al., 2016; Putri et al., 2017; Yubin et al., 2017), (2) conversion 
of carbon dioxide (CO2) to energy bearing fuels (Ong et al., 2013, 2014c; Tan et al., 2014, 2016, 2017; 
Gui et al., 2015; Guo et al., 2016a; Zhang et al., 2016c), (3) mineralization of waste and pollutants (Ong 
et al., 2014d,e; Fang et al., 2016; Liu et al., 2016c; Topcu et al., 2016; Zhao et al., 2016b), (4) selective 
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FiGURe 1 | Schematic of multifarious applications in photocatalysis 
research field.
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organic transformations (Liu et al., 2014; Zhao et al., 2016a), and 
(5) disinfection of bacteria (Keane et al., 2014; Bing et al., 2015) 
(Figure 1). Very recently, two-dimensional (2D) semiconductor 
photocatalysts have triggered a renaissance of interest in the field 
of energy, and environmental-related applications thank to the 
high ratio of surface-to-volume and unprecedented electronic 
and optical characteristics (Ong et  al., 2014b; Bai et  al., 2015; 
Liang et al., 2015d; Fang et al., 2016; Kalantar-zadeh et al., 2016; 
She et al., 2017; Xueting et al., 2017). Among a large array of pho-
tocatalysts, research targeting at graphitic carbon nitride (g-C3N4) 
has been flourishing in recent years. Since the first exploratory 
study on the use of g-C3N4 in photocatalytic H2 evolution in 2009 
(Wang et al., 2009), there has been an exponential increase in the 
scientific research on the subject of g-C3N4-based materials with 
more than 800 publications in 2016 based on Web of Science.

By and large, g-C3N4 can be facilely prepared by nitrogen-rich 
precursors, namely urea, thiourea, melamine, and dicyandi-
amide (Han et  al., 2015; Guo et  al., 2016b; Zhou et  al., 2016; 
Tong et al., 2017). Therefore, the development of g-C3N4-based 
photocatalysts is anticipated to surmount the issues of increas-
ing concerns on fossil fuel depletion and environmental threats 
due to combustion of exhaustible fossil fuels. The metal-free 
g-C3N4 demonstrates distinctive attributes such as visible-light 
responsiveness with moderate band gap of ca. 2.7 eV, appealing 
band structures and electronic characteristic, its earth-abundant 
nature, non-toxicity, relative ease of synthesis, and excellent 
chemical stability (Lu et  al., 2016; Ong et  al., 2016b; Zhang 
et al., 2016b; Lee et al., 2017). Additionally, it has been proven 
that 2D semiconductor possessed improved mobility of charge 
carriers and reduced charge recombination as compared to the 
0D and 1D nanomaterials (Meng et al., 2012; Ida and Ishihara, 
2014). In spite of the fascinating properties possessed by 2D 
g-C3N4, pristine g-C3N4 demonstrated several shortfalls such as 

sluggish separation of electron–hole pairs, limited visible-light 
absorption beyond 460 nm, small specific surface area, and low 
electrical conductivity (Liang et al., 2015b; Hou et al., 2016; Shi 
et al., 2016; Zhang et al., 2016g; Li et al., 2017; Xia et al., 2017). To 
overcome these bottlenecks, modification of bare g-C3N4 such as 
nanostructure design (Niu et al., 2012; Liang et al., 2015c; Zheng 
et al., 2015), intercalation with Li+ and Cl− (Liang et al., 2015a), 
elemental doping (Hu et al., 2015; Huang et al., 2015; She et al., 
2016), copolymerization (Fan et al., 2016; Rahman et al., 2016), 
coupling with metals or noble metals (Tonda et  al., 2014; Ong 
et  al., 2015b), incorporation with other semiconductors (Ong 
et al., 2016a; Putri et al., 2016a; Zhang et al., 2016g; Ye et al., 2017), 
hybridization with metal phosphides (Pan et al., 2017; Wen et al., 
2017; Yi et al., 2017; Zhao et al., 2017a,b), and many more has been 
widely investigated to enhance the photocatalytic efficiency for 
practical benefits. To date, there are a number of excellent review 
articles highlighting on g-C3N4-based photocatalysts ranging 
from materials synthesis, functionalization, and hybridization to 
diversified applications (Cao et al., 2015; Dong and Cheng, 2015; 
Yin et al., 2015; Zhang et al., 2015a; Zhao et al., 2015; Liu et al., 
2016a; Mamba and Mishra, 2016). This undoubtedly connotes 
the significance of this research field hitherto in the scientific 
community.

Recently, the incorporation of 2D g-C3N4 photocatalyst with 
other 2D nanomaterials forming 2D/2D heterojunction hybrid 
nanocomposites has conceivably drawn increasing attention with 
practical importance (Hou et al., 2014; Xing et al., 2017). As a 
matter of fact, the layered heterojunction comprised dissimilar 
2D nanomaterials is projected to give rise to positive impacts on 
charge transfer and separation as a result of built-in electric field at 
the atomically well-defined ultrathin interface (Hou et al., 2013b; 
Lu et al., 2016). Thus, the research on 2D/2D heterojunction with 
intimate face-to-face interface is of timely significance, which will 
elucidate us to deeply comprehend the photocatalytic reaction 
mechanism at the molecular level. Therefore, in this review, this 
leads to my immense interest to summarize the state-of-the-art 
research on 2D/2D g-C3N4 heterojunction nanohybrids to throw 
light on the future research horizon of g-C3N4 in artificial photo-
synthesis and environmental remediation.

DeveLOPMeNT OF 2D/2D g-C3N4-BASeD 
HeTeROJUNCTiON

It is well documented that 2D/2D nanocomposites bestow greater 
electron–hole mobility across the heterojunction interface, which 
will in turn reduce the distance and time of charge transport to 
impede the electron–hole recombination rate (Hou et al., 2013a; 
Cheng et  al., 2015; Ong et  al., 2015c). This is attributed to the 
larger 2D/2D face-to-face contact area compared with line-to-
face contact in 1D/2D heterojunction and point-to-face contact 
in 0D/2D heterojunction as depicted in Figure 2.

Hybridization with 2D Transition Metal 
Chalcogenides
In recent years, the incorporation of 2D metal sulfides has under-
pinned enormous interests in photocatalysis (Liu et al., 2016b; Lu 
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FiGURe 2 | Diagram of (A) 0D/2D, (B) 1D/2D, and (C) 2D/2D 
heterointerfaces.
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et al., 2016; Yu and Sivula, 2016). In a work by Dong’s research 
group, they reported a hierarchical sheet-on-sheet ZnIn2S4/g-
C3N4 heterostructure by growing ultrathin ZnIn2S4 onto g-C3N4 
nanosheets (Zhang et al., 2016e). As a result of intimate hetero-
junction interface formed between ZnIn2S4 and g-C3N4, the hybrid 
nanocomposites demonstrated walloping 17.6- and 3.9-folds 
enhancement of H2 evolution compared to the single component 
g-C3N4 and ZnIn2S4, respectively. From the perspective of lifetime 
of charge carriers evidenced from time-resolved photolumi-
nescence analysis, the average lifetime of the ZnIn2S4/g-C3N4 
nanohybrids was reduced from 10.45 to 8.97 ns relative to that of 
pristine g-C3N4 nanosheets, which was attributed to rapid charge 
transfer and separation to hinder the electron–hole recombina-
tion. In addition to ZnIn2S4, MoS2-decorated S-doped g-C3N4 
heterojunction films were successfully developed by Chen and 
coworkers (Figure  3A) for enhanced photoelectrocatalysis (Ye 
et al., 2016). It is noted that the generation of anodic current by 
the MoS2/S-doped g-C3N4 photoanode was markedly twice than 
that by the S-doped g-C3N4, highlighting the rational importance 
of a robust heterointerface with intact p–n junctions for effective 
charge migration (Figure 3B).

Till now, the theoretical understanding on the coupling 
interaction and transfer of charge carriers between 2D g-C3N4 
and 2D MoS2 has not been exhaustively investigated. Wang et al. 
(2014) elucidated the fundamental mechanism of photocatalytic 
improvements by systematically exploring the interface region 
between MoS2 and g-C3N4. Based on the density functional theory 
(DFT) calculations, it was confirmed the presence of charge redis-
tribution at the 2D/2D heterojunction interface of MoS2/g-C3N4. 
It is worth mentioning that a type II heterojunction structure was 
successfully developed due to the well-matched band alignment 
as attested by the density of states results. As a result of efficient 
migration of charge carriers, a polarized field was formed at the 
contact heterointerface, prohibiting the electron–hole recombi-
nation. Therefore, this DFT finding provides new inroads into 
the importance of constructing 2D/2D nanocomposites for 
face-to-face interaction, which could certainly be extended to 
other binary or even ternary layered heterojunction for enhanced 
photochemistry applications.

Hybridization with 2D Metal Oxides
Apart from 2D transition metal chalcogenides, coupling 
g-C3N4 nanosheets with 2D metal oxides, such as TiO2 (Gu 
et al., 2014), WO3 (Li et al., 2016b), and SnSb2O6 (Zhang et al., 
2016d), has become the recent research focus to improve the 
photocatalytic performance. For instance, Li et  al. (2016b) 

employed a hydrothermal and deposition-heating technique to 
fabricate WO3/g-C3N4 nanosheet arrays on the FTO substrates. 
The photoelectrochemical splitting of natural seawater using the 
WO3/g-C3N4 nanostructures presented two times greater in the 
photocurrent density in reference to the pristine WO3 nanosheet 
arrays under the simulated sunlight source. This was accredited 
to the well-matched band energy of WO3 and g-C3N4 forming 
synergistic interfacial contacts for remarkably boosting the 
charge migration ability. In another work, Xing’s group hybrid-
ized AgIO3 with anisotropic g-C3N4 nanosheets to form a 2D/2D 
layered heterointerface toward increased photodegradation of 
Rhodamine B and methyl orange pollutants (Li et al., 2015). It is 
anticipated that these works will lay a pioneer groundwork and 
shed light for future directions in the interface engineering of 2D 
metal oxides and g-C3N4 for the advancement in solar energy 
conversion and environmental remediation toward practical 
applications.

Most recently, perovskite-type nitrogen-doped La2Ti2O7 
(NLTO), comprising a 2D architecture with a thickness of 7 nm, 
was for the first time hybridized with 2 nm thick g-C3N4 nanosheets 
by means of a facile two-step hydrothermal method and a thermal 
treatment process (Figure 4A) (Cai et al., 2017). The hybrid lay-
ered nanomaterials showed excellent photocatalytic H2 evolution 
with a high apparent quantum efficiency of 2.1% at 400 nm. The 
enhanced photoactivity was ascribed to the successful develop-
ment of the large 2D/2D interface between NLTO and g-C3N4, 
resulting in long lifetime and favorable transfer of charge carriers 
via type II band alignment. Upon visible-light illumination, the 
photoexcited electrons were facilely migrated from g-C3N4 to 
NLTO, whereas the photogenerated holes were transported from 
NLTO to g-C3N4, hampering the charge recombination process 
(Figure  4B). Notably, this was arisen from the band bending 
formed at the heterointerface, which induced a built-in electric 
field for the flow of charge carriers.

Furthermore, 2D niobium phase-layered perovskite Dion–
Jacobson compounds have become a hot focal field in materi-
als science and engineering for clean energy production and 
environmental cleaning in the past few years (Maeda et al., 2014; 
Oshima et al., 2016). It is well known that the layered perovskite 
Ca Nb O2 3 10

−  nanosheets, emerging from NbO6 octahedra build-
ing blocks, are promising owing to their good chemical stabil-
ity, high surface area, and relatively cost-effective (Sabio et  al., 
2010). Therefore, it is expected that by integrating the idea of 
Ca Nb O2 3 10

−  nanosheets into 2D g-C3N4 photocatalysts from the 
viewpoint of materials design, the photocatalytic efficiency of the 
composite nanomaterials will be exhilaratingly elevated. In a very 
recent work published in 2017, Chen’s group designed a visible-
light-responsive 2D/2D K Ca Nb O g-C N+ −

2 3 10 3 4/  nanosheet het-
erojunction, which was fabricated by a hydrothermal process 
(Figure 4C), for photodegradation of tetracycline hydrochloride 
(Jiang et al., 2017). The hybrid photocatalyst manifested a strik-
ingly high activity, which was 6.6 and 1.8 times greater compared 
with that of pure K Ca Nb O+ −

2 3 10  and g-C3N4, respectively, due to 
the well-contacted heterointerfaces with strong interfacial cou-
pling. Similarly, another group of researchers has synthesized the 
nanosheet composites by combining Ca2Nb2TaO10 and g-C3N4 
nanosheets through a simple solution exfoliation-reassembly 
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FiGURe 4 | (A) Transmission electron microscopy image of NLTO/g-C3N4 hybrid photocatalysts. (B) Schematic of effective transfer of photogenerated electrons and 
holes across the heterojunction interface of NLTO/g-C3N4 through a type II band alignment. Reproduced from Cai et al. (2017) with permission from Elsevier.  
(C) Synthesis procedure of 2D/2D K Ca Nb O /g-C N+ −

2 3 10 3 4-layered nanohybrids. Reproduced from Jiang et al. (2017) with permission from Elsevier.

FiGURe 3 | (A) Synthesis route of MoS2/S-doped g-C3N4 heterojunction film on ITO glass. (B) Charge transfer and separation of MoS2/S-doped g-C3N4 photoanode 
via p–n heterojunctions for the improved H2 generation. Reproduced from Ye et al. (2016) with permission from the American Chemical Society.
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technique for solar H2 production (Thaweesak et al., 2017). As 
such, it is believed that this research will cast new opportunities 
for engineering 2D/2D perovskite-based nanosheets coupled 
with g-C3N4 heterojunction interface for multitudinous light-
driven applications.

Hybridization with 2D Graphene
At present, π-conjugated carbonaceous nanomaterials, includ-
ing carbon nanotubes, grapheme, and carbon nanodots has 
emerged as one of the most fascinating and exciting research 

directions in the past 10 years especially in the arena of envi-
ronmental remediation, energy conversion, and energy storage 
(Tan et al., 2013; Cazorla-Amorós, 2014; Li et al., 2014; Cao and 
Wei, 2015; Fan, 2015; Ali Tahir et al., 2016; Carmona et al., 2016; 
Kotal et al., 2016; Xu et al., 2016). These carbon nanostructures 
have been commonly utilized as excellent reduction cocatalysts 
by incorporating with semiconductor photocatalysts to prolong 
the lifetime of charge carriers to diminish the recombination 
of electron–hole pairs (Xu et al., 2013; Himaja et al., 2015; Liu 
et al., 2015; Tan et al., 2015a; Hu, 2016; Zhang et al., 2016f; Ong 
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FiGURe 5 | (A) Fabrication of graphene/g-C3N4 photocatalysts by means of a facile impregnation-thermal reduction process. Reproduced from Ong et al. (2015a) 
with permission from Royal Society of Chemistry. (B) Schematic of reduced graphene oxide (rGO)/pCN samples developed by a sonication-aided electrostatic 
attraction and π–π interaction process. (C) Transmission electron microscopy and (D) scanning electron microscopy images of rGO/pCN samples. Inset of panel (C) 
is the selected area electron diffraction of rGO/pCN. (e) Reaction mechanism of photoreduction of CO2 with H2O over rGO/pCN samples. Reproduced from Ong 
et al. (2015c) with permission from Elsevier.
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et al., 2017). It is discernable that the 2D graphene has directed 
a worldwide trend in the materials research stemming from its 
large surface area, remarkable electronic, optical and mechanical 
features, and high chemical stability (Putri et al., 2015, 2016b; 
Voon et al., 2016; Xiang et al., 2016). Up to now, a plethora of 
literature reports has been devoted to fabricate 2D/2D graphene/
g-C3N4 nanohybrids for photoredox catalysis in H2 evolution, 
pollutant degradation, and CO2 reduction (Xiang et al., 2011; Li 
et al., 2013; Xu et al., 2015; Wan et al., 2016). In a work by Ong 
et al. (2015a), sandwich-like graphene/g-C3N4 nanocomposites 
were prepared via a one-step impregnation-thermal reduction 
process by employing graphene oxide and urea as the precur-
sors (Figure 5A). Interestingly, the absorption band edge of the 
nanohybrids was slightly red shifted toward a longer wavelength, 
resulting in a reduction in the band gap energy. This phenom-
enon was contributed by the covalent cross linker (C–O–C) 
formed between g-C3N4 and graphene as a result of thermal 
heating at the high temperature. For the first time, the metal-
free graphene/g-C3N4 photocatalyst played a prominent role 
in the reduction of CO2 to CH4 under visible light, which was 
2.3 times higher than pristine g-C3N4. In this sense, this study 
incontrovertibly focuses the spotlight on the innovative design 
of metal-free layered photocatalysts as a new class of light-active 
materials for a cornucopia of catalytic applications.

In another closely related work by the similar research group, 
the novel 2D/2D-reduced graphene oxide (rGO)-hybridized 
protonated g-C3N4 (rGO/pCN) was rationally constructed by π–π 
stacking and electrostatic self-assembly between the positively 
charged pCN and the negatively charged rGO (Figure 5B) (Ong 
et al., 2015c). In the rGO/pCN hybrid nanoarchitectures, a well-
dispersed sheet-on-sheet structure of rGO and pCN confirmed 
the well-intact interfacial contact (Figures  5C,D) as compared 
to the rGO/g-C3N4, which employed the unmodified g-C3N4 
with a negatively charged surface. Essentially, the rGO/pCN het-
erojunction nanosheets endowed pronounced 5.4 and 1.7 times 
enhancement in the photoconversion of CO2 to CH4 with respect 
to the pCN and rGO/g-C3N4, respectively. Thus, this distinctly 
underlines the fundamental and technological importance of 
surface charge modification between two dissimilar 2D nanoma-
terials for robust interfacial interactions in unraveling the charge 
dynamics for enhanced photocatalysis. Benefiting from the 
predominant role of graphene as the electron reservoir (Zhang 
et al., 2012, 2015b; Tan et al., 2015b; Mateo et al., 2016; Varadwaj 
and Nyamori, 2016), the photoinduced electrons were transferred 
from pCN to rGO across the interface to overwhelmingly sup-
press the charge recombination rate (Figure 5E). All in all, the 
smart 2D/2D interface engineering design of graphene/g-C3N4 
developed thus far is considered as an auspicious means, which 
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could be eminently extended to heteroatom-doping graphene-
hybridized g-C3N4 for targeting superior photochemistry applica-
tions for real-life applications.

CONCLUSiON AND OUTLOOK

In short, the burgeoning developments of nanoscale architectur-
ing of g-C3N4-based hybrid structures over the past 8 years have 
witnessed a wealth of knowledge and information for the intel-
ligent design and myriads of applications in sustainable energy 
conversion and environmental purification. The applications, 
which encompass water splitting, H2 generation, O2 evolution, 
CO2 fixation, and pollutant degradation, have readily made full 
use of the intriguing features of g-C3N4, namely metal-free 2D 
nanomaterials, earth-abundant nature of the elements, visible-
light optical absorption, high redox power, and excellent chemical 
stability. Since the advent of g-C3N4 photocatalysts by Wang et al. 
(2009) for H2 generation, there is a rocket rise of research works 
on the modification of bare g-C3N4 to conspicuously increase the 
specific surface area, introduce porosity by textural modifica-
tions, extend visible-light absorption to longer wavelengths (even 
up to near infra-red) for the utilization of whole solar spectrum, 
decrease the band gap energy and bolster the charge migration 
and separation.

In this mini-review, a systematic discussion on the most 
updated advancements of engineering 2D/2D g-C3N4 heterojunc-
tion layered nanoarchitectures with boosted photoactivity has 
been reviewed. It is worth mentioning that albeit there is a large 
library of recent research discoveries on the 2D/2D g-C3N4-based 
photocatalysts, there exist numerous open issues, limitations, 
questions, and complexities of materials science, chemistry, phys-
ics, and environmental science, which require extensive research 
now and future. Among all, the actual mechanisms of enhanced 
catalytic efficiency toward the water splitting and CO2 reduction 
followed by their respective reaction pathways are still up in the 
air yet until now. It is envisaged that the pertinent mechanism 
underlying the photocatalytic performance should be deeply 
explored by joining the experimental findings and theoretical 
computational simulations for the future research. In this man-
ner, the rationale behind the profound photocatalytic enhance-
ment especially on the rate determining steps of the reaction in 
the 2D/2D nanohybrids can be entirely comprehended. Apart 
from that, the charge carrier dynamics and transfer pathway for 
the Z-scheme system, p–n heterojunction, n–n heterojunction, 
Schottky junction, homojunction, and facet junction in the 2D/2D 
g-C3N4-based system will be facilely understood. Benefiting from 
both experimental results and first-principles DFT calculations, 
this will in turn provide us a rational outline to advance the state 

of the research on photocatalysis for the next breakthrough in the 
field of energy conversion.

Moreover, the coupling interaction between 2D g-C3N4 
nanosheet and another 2D semiconductor is of utmost impor-
tance for developing intact heterojunction interfaces for efficient 
electron–hole shuttling to prolong the lifetime of charge carriers to 
accelerate the photocatalytic efficiency. In-depth studies in engi-
neering, the intimate heterointerfaces of the 2D/2D nanohybrids 
at a molecular level will give rise to captivating results for tuning 
the existing molecular structure of bare g-C3N4, thereby enhanc-
ing mobility of electron–hole pairs and subsequently improving 
the photocatalytic redox ability. Additionally, it is crucial to attain 
a facile and low-cost metal-free 2D/2D g-C3N4-based photocata-
lyst system without comprising metal-containing semiconductors 
for practical benefits. Thus, continuous efforts in exploring non-
metal semiconductors to couple with g-C3N4 will be advantageous 
for industrialization and commercialization in the long run to 
combat the cost concern for the large-scale processes.

To cut a long story short, it is apparent that the research progress 
has been tremendously impressive at this juncture by viewing at 
the relatively short period of time and history of g-C3N4-based 
photocatalysis. Undeniably, the incessant research efforts on 
the 2D/2D-layered nanocomposites will open new vistas and 
lay a strong foundation for advanced light-driven catalysis and 
electrocatalysis, which undeniably warrant continuous research 
along this direction. Without any doubts, this will act as a new 
paradigm for the next generation smart artificial photocatalytic 
systems for practical and commercial benefits in order to bridge 
the gap between lab-scale research and large-scale industrial 
applications. All in all, with the ceaseless cooperative work from 
all segments and disciplines in the world, the targets of building a 
cleaner, greener, sustainable, and zero-energy environment will be 
systematically accomplished in years to come. Last but not least, it 
is genuinely hoped that this mini-review will paint a much clearer 
image to direct us for the upcoming research horizons in 2D/2D 
photocatalysis for momentous breakthroughs in attaining highly 
effective, efficient, and economical g-C3N4-based system in future.
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