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Depth-Dependent Three-Layer Model
for the Surface Second-Harmonic
Generation Yield
Sean M. Anderson* and Bernardo S. Mendoza

Centro de Investigaciones en Óptica, A.C., León, Mexico

We present a generalization of the three-layer model to calculate the surface second-
harmonic generation (SSGH) yield, which includes the depth dependence of the surface
non-linear second-order susceptibility tensor χ(−2ω; ω, ω). This model considers that
the surface is represented by three regions or layers. The first layer is a semi-infinite
vacuum region with a dielectric function ϵv(ω) = 1, fromwhere the fundamental electric field
impinges on thematerial. The second layer is a thin layer (ℓ) of thickness d characterized by
a dielectric function ϵℓ(ω), and it is in this layer where the SSHG takes place. We consider
the position of χ(−2ω; ω, ω) within this surface layer. The third layer is the bulk region
denoted by b and characterized by ϵb(ω). We include the effects caused by the multiple
reflections of both the fundamental and the second-harmonic (SH) fields that take place
within the thin layer ℓ. As a test case, we calculate χ(−2ω; ω, ω) for the Si(111)(1×1):H
surface and present a layer-by-layer study of the susceptibility to elucidate the depth
dependence of the SHG spectrum. We then use the depth-dependent three-layer model
to calculate the SSHG yield and contrast the calculated spectra with experimental data.
We produce improved results over previous published work, as this treatment can
reproduce key spectral features, is computationally viable for many systems, and most
importantly remains completely ab initio.

Keywords: surface, second-harmonic generation, SHG, multiple, reflections, semiconductor, spectroscopy

1. INTRODUCTION

Surface second-harmonic generation (SSHG) has been shown to be an effective, non-destructive,
and non-invasive probe to study surface and interface properties (Chen et al., 1981; Shen, 1989;
McGilp et al., 1994; Bloembergen, 1999; Lüpke, 1999; McGilp, 1999; Downer et al., 2001a,b).
SSHG spectroscopy is now very cost-effective and popular because it is an efficient method for
characterizing the properties of buried interfaces and nanostructures. The high surface sensitivity
of SSHG spectroscopy is due to the fact that within the dipole approximation, the bulk second-
harmonic generation (SHG) in centrosymmetric materials is identically zero. The SHG process can
occur only at the surface where the inversion symmetry is broken. SSHG has useful applications for
studying thick thermal oxides on semiconductor surfaces (Hasselt et al., 1995; Kolthammer et al.,
2005) and thin films (Yeganeh et al., 1992). The accurate determination of these studies is highly
dependent onmultiple reflections of both the SHand fundamental waves in the surface region. These
considerations have been taken into account to study thin films (Hase et al., 1992; Buinitskaya et al.,
2002, 2003) and, using the Maker-fringe technique (Maker et al., 1962), other materials (Tellier and
Boisrobert, 2007; Abe et al., 2008).
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Bloembergen and Pershan (1962) were the first to consider
multiple reflections in their treatment of SHG in a non-linear slab.
However, they only considered the second-harmonic (SH) fields
and derived results for a dielectric with a small linear reflectance.
They also neglected the multiple reflections of the fundamental
waves inside the media. Surface effects were modeled by taking
the limit of a thin slab with a thickness much smaller than the
wavelength of the incoming light. Dick et al. (1985) used this
methodology to determine the components of the non-linear opti-
cal susceptibility tensor, χ(−2ω; ω, ω), of a fluorescent dye over
fused silica. Later works (Sipe et al., 1987; Mizrahi and Sipe, 1988)
developed a simplified method using phenomenological models
in which the surface is treated as an infinitesimally thin dipole
sheet. The inclusion of multiple reflections is necessary for both
the SH radiation and the incoming fundamental fields; this was
experimentally verified in the study by Morita et al. (1988), where
they show that the lineshape of the SSHG radiation is composed
of resonances from both the SH and fundamental waves. Recent
studies in amorphous silicon thin (and thick) films (Kessels et al.,
2004; Aarts et al., 2006; Lettieri et al., 2007) have had success
in characterizing the polarization and angular dependence of the
SH signal produced from within the film. A very comprehensive
review of SHG from films and substrate systems can be found in
the study by Gielis et al. (2008).

As mentioned above, SSHG is particularly useful for studying
the surfaces of centrosymmetric materials. From the theoretical
point of view, the calculation of χ(−2ω; ω, ω) proceeds as fol-
lows. To mimic the semi-infinite system, we construct a supercell
consisting of a finite slab of material plus a vacuum region. Both
the size of the slab and the vacuum region should be such that
the value of χ(−2ω; ω, ω) is well converged. A cut function is
used to decouple the two halves of the supercell to obtain the
value of χ(−2ω; ω, ω) for either half. If the supercell is itself
centrosymmetric, the value χ(−2ω; ω, ω) for the full supercell
is identically zero. Therefore, the cut function is of paramount
importance to obtain a finite value for χ(−2ω; ω, ω) for either
side of the slab (Reining et al., 1994; Anderson et al., 2015, 2016).
The cut function can be generalized to one that is capable of
obtaining the value of χ(−2ω; ω, ω) for any part of the slab. We
can easily obtain the depthwithin the slab forwhichχ(−2ω;ω,ω)
is non-zero; conversely, we can verify that it goes to zero toward
the middle of the slab, where the centrosymmetry of the material
is restored (Mejía et al., 2004). Therefore, for the surface of any
centrosymmetric material, we can find the thickness of the layer
where χ(−2ω; ω, ω) is finite.

On the basis of this approach for the calculation of χ(−2ω;
ω, ω), in this article, we generalize the “three-layer model” for
the SH radiation from the surface of a centrosymmetric material
(Anderson and Mendoza, 2016). This model considers that the
SH conversion takes place in a thin layer just below the surface
of the material that lies under the vacuum region and above the
bulk of the material. It is the three-layer model that allows us
to integrate the effects of multiple reflections for both the SH
and fundamental fields into the SSHG yield. As we show in this
article, this treatment can be generalized to take into account the
depth dependence of χ(−2ω; ω, ω) perpendicular to the surface.
As shown in the study by Anderson and Mendoza (2016), the

inclusion of these effects is necessary to accurately model the
SSHG radiation.

This article is organized as follows. In Section 2, we present the
relevant equations and theory that describe the SSHG yield that
includes the depth dependence of χ(−2ω; ω, ω). In Section 3,
we present calculated spectra for the Si(111)(1× 1):H surface as
a test case and contrast against experimental data. Finally, we list
our conclusions and final remarks in Section 4.

2. THE THREE-LAYER MODEL FOR
THE SSHG YIELD

In this section, we will generalize the results from our previous
publication (Anderson andMendoza, 2016) to allow for the depth
dependence of χ(−2ω; ω, ω). The three-layer model proposed
in the aforementioned reference considers that the surface is
represented by three regions or layers. The first layer is the vacuum
region (denoted by v) with a dielectric function ϵv(ω) = 1, from
where the fundamental electric field Ev(ω) impinges on the mate-
rial. The second layer is a thin layer (denoted by ℓ) of thickness
d characterized by a dielectric function ϵℓ(ω); it is in this layer
where the SHG process takes place. The third layer is the bulk
region denoted by b and characterized by ϵb(ω). Throughout this
work, we take µ= 1. Both the vacuum and bulk layers are semi-
infinite (see Figure 1). The non-linear polarization responsible for
the SHG is immersed in the thin layer ℓ and is given by

Pa
ℓ(z; 2ω) = ϵ0χ

abc(z; −2ω; ω, ω)Ebℓ(z; ω)Ecℓ(z; ω), (1)

where χ(z; −2ω; ω, ω) is the dipolar surface non-linear depth-
dependent susceptibility tensor, and the Cartesian superscripts
(a, b, and c) are summed over if repeated. For ease of notation,
we simply use χ(z). Also, χabc(z)=χacb(z) due to the intrinsic
permutation symmetry, since SHG is degenerate in Ebℓ(z; ω) and
Ecℓ(z; ω). We first approximate that the linear field E(z; ω) is
independent of the z position. The calculation of the position
dependence of the linear field is a complicated problem worth
pursuing; Tancogne-Dejean et al. (2015) present a promising
method for tackling this issue, which is a rather involved, non-
trivial calculation. After following the method outlined in the
study by Anderson and Mendoza (2016), we define the linear
reflection coefficient rMi as

rMi ≡ rℓbi eiφ

1 + rvℓi rℓbi eiφ
, i = s, p, (2)

with
rM±
i = 1 ± rMi , i = s, p. (3)

This coefficient accounts for the multiple (M) reflections of the
fundamental field that depends on the thickness d of the layer ℓ
included in the phase φ= 4π(d/λ0)wℓ(ω), where λ0 is the wave-
length of the incoming light, wℓ(ω)= (ϵℓ(ω)−sin2θ0)1/2, θ0 is the
angle of incidence, and nℓ = (ϵℓ(ω))1/2. The Fresnel factors tiji and
riji for the vacuum-layer (ij= vℓ) and layer-bulk (ij= ℓb) interfaces
are defined in equations (13) and (14) of the same reference.
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FIGURE 1 | Sketch of the three-layer model for SHG. The vacuum region (v) is on top with ϵv = 1; the layer ℓ of thickness d is characterized by ϵℓ(ω), and it is
where the SH polarization sheet Pℓ(2ω) is located at a distance zn. The bulk b is described by ϵb(ω). The blue lines within the slab represent the SH multiple
reflections. The Si(111)(1×1):H surface used in this work is represented by the ball and stick model (H: small spheres, Si: large spheres) in the background. The red
dotted line is the one of the many possible zn positions.

2.1. Depth Dependence
The calculation of χ(z) using the layer-by-layer method has been
developed in detail in the study by Anderson et al. (2015). Indeed,
we calculateχ(zn) at fixed positions zn, where n= 1, 2, 3, . . .,N/2
denotes the atomic layer within the slab and N is the total num-
ber of atomic layers used in the supercell method, as described
in the introduction. We take n= 1 as the topmost atomic layer
and n=N/2 as the middle atomic layer, where it is expected
that χ(zN/2)= 0 due to the centrosymmetric environment at the
center of the supercell (Anderson et al., 2015). To obtain the SH-
radiated field induced by the non-linear polarization of equation
(1), we generalize equation (35) from the study by Anderson and
Mendoza (2016) as

Eℓ(zn; 2ω) =
iω

c cos θ0
e2ω,F
ℓ (zn) · χ(zn) : eω,i

ℓ eω,i
ℓ , (4)

which is the non-linear field radiated from depth zn as induced
by χ(zn). In this expression, i= s, p denotes the incoming polar-
ization of the incident field, and eω,i

ℓ eω,i
ℓ are given in equations

(42) and (43) of the aforementioned reference. We must include
the depth dependence for the 2ω Fresnel vector and obtain the
following results for e2ω,F

ℓ (zn),

e2ω,P
ℓ (zn) =

Tvℓ
p

Nℓ

(
sin θ0RM+

p (zn)ẑ − WℓRM−
p (zn)cos ϕx̂

−WℓRM−
p (zn)sin ϕŷ

)
, (5)

for F= P outgoing polarization, and

e2ω,S
ℓ = Tvℓ

s RM+
s (zn) (−sin ϕx̂ + cos ϕŷ). (6)

for F= S outgoing polarization. Here,

RM±
i (zn) = 1 ± RM

i (zn), (7)

and

RM
i (zn) ≡ Rℓb

i

1 + Rvℓ
i Rℓb

i eiδ
ei8πWℓ(zn/λ0), i = s, p, (8)

is the reflection coefficient that takes into account the mul-
tiple reflections of the SH field within the layer ℓ, with
δ = 8π(d/λ0)Wℓ. The remaining terms are the 2ω equivalents of
those described below equation (3). Finally, the SSHG yield can be
expressed as

RiF(2ω) =
ω2

2ϵ0c3cos2θ0

∣∣∣∣∣∣ 1nℓ

1
N/2

N/2∑
n=1

ΥiF(zn)

∣∣∣∣∣∣
2

, (9)

where
ΥiF(zn) = e2ω,F

ℓ (zn) · χ(zn) : eω,i
ℓ eω,i

ℓ . (10)

Note that χ(zn) is given in square meters per volt since it
is a surface second-order non-linear susceptibility and RiF(2ω)
is given in square meters per watt. The SSHG yield, RiF, can
be derived for the usual combinations of pP, pS, sP, and sS
incoming and outgoing polarizations for different surface sym-
metries. The interested reader can refer to the study by Ander-
son and Mendoza (2016), where these derivations are included
in full.
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3. RESULTS: LAYER-BY-LAYER ANALYSIS
AND SSHG YIELD FOR A SI SURFACE

Tobetter view the effects of the z-dependence ofχ(zn) on the SHG
yield, we will apply our formulation on a test surface. We choose
the Si(111)1× 1:H surface, since the (111) symmetry relations
has only four non-zero components, and we can directly compare
our theoretical calculations with experimental data available in
the study by Mejía et al. (2002). We only present results for the
p-in P-out (RpP) polarization case since it has the strongest yield
and thus the best signal-to-noise ratio for the measured data.
The (111) surface has only the following non-zero components
of χ(zn): χzzz(zn), χzxx(zn)=χzyy(zn), χxxz(zn)=χyyz(zn), and
χxxx(zn)=−χxyy(zn)=−χyyx(zn), so we can easily work out that

ΥpP(zn) =
Tvℓ
p

Nℓ

(
tvℓp
nℓ

)2(
sin θ0

[(
rM+
p

)2
sin2θ0RM+

p (zn)χzzz(zn)

+
(
rM−
p

)2
w2

ℓRM+
p (zn)χzxx(zn)

]
− wℓWℓ

[
2rM+

p rM−
p sin θ0RM−

p (zn)χxxz(zn)

+
(
rM−
p

)2
wℓRM−

p (zn)χxxx(zn)cos 3ϕ
])

, (11)

where the threefold azimuthal symmetry of the SHG signal that is
typical of the C3v symmetry group is seen in the 3ϕ argument of
the cosine function.

We consider that the Si(111)(1× 1):H surface is an excellent
case to test the versatility of the three-layer model; in particular, to
study the effect that the z-dependence ofχabc(zn) and themultiple
reflections will have on the SSHGyield. This surface is experimen-
tally well characterized (Mitchell et al., 2001; Mejía et al., 2002;
Bergfeld et al., 2004), and we have had success in reproducing
these experimental results using the three-layer model with and
without multiple reflections in our previous publications (Ander-
son and Mendoza, 2016; Anderson et al., 2016). The details of the
ab initio calculation ofχabc are discussed in the study byAnderson
et al. (2016). We note that we apply a scissors shift of 0.7 eV to the
theoretical spectra to include the effects of the electronic many-
body interactions within the independent particle approach of our
ab initio calculation. This 0.7 eV value allows the SH resonant
peaks to acquire their corresponding energy positions and is
obtained from a G0W0 calculation (Li and Galli, 2010; Anderson
et al., 2016).

The number of layers N for which χabc converges is a com-
promise between accuracy and the expenditure of computational
time and resources.We found thatN = 50, which includes 2 layers
of H and 48 layers of Si, is an excellent compromise. Recall that
the slab used in the calculation is centrosymmetric and that only
half of the atomic layers of the slab is what actually contributes
to χabc. In Figure 2, we show the largest component that con-
tributes to RpP, χxxz(zn), for several choices of zn. z1 is the layer
that corresponds to the H layer. To recover the centrosymmetric
environment of the (111) surface, we must add pairs of atomic Si
layers, so that they include a vertical and a slanted bond of the
tetrahedral unit cell corresponding to this face. This is described

FIGURE 2 | Main plot: imaginary part of χxxz(zn) for the H layer (z1), the
sum of the two topmost Si layers (z2 + z3), and the sum of the
bottom-most Si layers (z24 + z25) for the 25-layer half-slab used in this
work. Left inset: the first two Si layers at z2 and z3. Note how the spectra are
almost identical in line shape, thus enhancing the overall component intensity.
Right inset: the last two Si layers at z24 and z25. The individual spectra are
almost opposite in sign, thus producing a much smaller contribution.

in detail in the study by Mejía et al. (2004). As we move from
the surface toward the bulk of the system, χabc will decrease
steadily. In the same figure, we show χxxz(z2)+χxxz(z3), which
corresponds to the sum of the responses from the first and second
Si layers. Likewise, we also include χxxz(z24)+χxxz(z25), which
corresponds to the last two Si layers of the half-slab. We can
see that the contribution from the H layer (z1) is considerably
smaller than that of the first two Si layers, as expected from the
fact that the H atoms saturate the dangling bonds of the topmost
Si, quenching the response (Mejía et al., 2002). The contribution
from the deepest Si layers (z24 and z25) is quite small compared to
the topmost layers. It is logical to assume that their contribution
should be zero, as the slab regains its intrinsic centrosymmetry
toward the center. This is not exactly the case, however, as the
relatively small size of the slab yields a correct qualitative result for
this regime. Figure 2 also presents two insets with the individual
responses for the mentioned Si layers. The left inset depicts the
spectra for the first two Si layers, at z2 and z3; both have a similar
line shape with matching signs and thus interfere constructively
creating an overall enhancement of the final intensity. On the
other hand, the right inset depicts the equivalent spectra for the
Si layers at z24 and z25. These two have a very similar line shape
but with opposite signs and therefore interfere destructively and
contribute very little to the total response.

For this slab, we find that

23∑
n=1

χabc(zn) >> χabc(z24) + χabc(z25), (12)

and thus χabc is well converged. We present this comparison in
Figure 3, contrasted against χxxz

hs , which is the total response from
all 25 layers of the half-slab. The sum of the layer responses from
z1 to z23 is quite close to the total half-slab response. As before,
layers z24 and z25 contribute very little to the overall SH spectrum.
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FIGURE 3 | Imaginary part of χxxz(zn) from different layer sums. The
solid black line is the sum of all 25 layers (1 H+ 24 Si) that comprise the
half-slab (χxxz

hs ); the dashed blue line is the sum of the first 23 layers, and the
solid red line is the sum of the last two layers (z24 + z25). Note the consistency
with equation (12), since the last two layers have a relatively small contribution
to the overall spectrum.

From these findings, we can establish that the thickness of the layer
ℓ, where the SHG takes place is around d= 3.6 nm for N/2= 25
active layers of SHG. These results prompt us to propose the
following plausible scenario. We could use a larger value for d to
achieve χabc(zN/2−1)+χabc(zN/2)= 0, for which we need to go to
increasingly larger slabs. But to keep the computational burden
reasonable, we choose N = 50 and only change the value of zn
such that d =

∑
n zn gives the new chosen value of d. In view

of equation (12), we can keep the same value for each of the
χabc(zn) components already calculated forN = 50. This would be
equivalent to say that from equation (9),

23∑
n=1

ΥiF(zn) >> ΥiF(z24) + ΥiF(z25), (13)

regardless of the actual value of zn. We will refer to this plausible
scenario as “Stretched zn” below, where a factor of 2.7 is used to
stretch zn such that d= 2.7× 3.6≈ 10 nm.

In Figure 4, we compare the theoretical results for the SSHG
yield for p-in P-out, RpP, with the experimental results from the
study by Mejía et al. (2002) that were taken over a SH energy
range of 2.5–5 eV. We use θ = 65◦, ϕ= 30◦, and a broadening
of σ = 0.075 eV. With ϕ= 30◦, the contribution of χxxx from
equation (11) is completely eliminated. The following scenarios
are presented in the figure. First, “Nominal zn” (solid blue line) is
the layer-by-layer calculation for a layer thickness of d= 3.6 nm.
This is the thickness ofN/2= 25 atomic layerswith the different zn
positions obtained directly from the slab used in the full ab initio
calculation. Second, “Stretched zn” is the scenario proposed in
the previous paragraph, where the zn positions are now stretched
by a factor of 2.7, but the same χabc(zn) of the layered ab initio
calculation are used. Finally, two “Average” curves are presented
for d= 3.6 (dashed green line) and d= 10 nm (dashed yellow line)
that use

χabc
hs =

N/2∑
n=1

χabc(zn), (14)

FIGURE 4 | RpP for zn as given by the slab (Nominal, red line), with zn
stretched by 2.7 (Stretched, blue line), and using the half-slab value of
χhs

abc for d=3.6 (Average, dashed green line) and d=10nm (Average,
dashed yellow line), see text for details. The experimental data are from
the study by Mejía et al. (2002). We use θ = 65◦, ϕ= 30◦, and a broadening
of σ = 0.075 eV. Both the Nominal and Stretched results are ab initio, while
the Average spectra are not; the Average (d= 10 nm) spectrum is the primary
result of the study by Anderson and Mendoza (2016).

which is the total response for the complete half-slab of 25 layers,
along with the average value of equation (8), as proposed in the
study by Anderson and Mendoza (2016),

R̄M
i ≡ 1

d

∫ d

0
RM
i (z) dz =

Rℓb
i eiδ/2

1 + Rvℓ
i Rℓb

i eiδ
sinc(δ/2). (15)

This choice is very similar to placing χabc(zn) at zn → d/2
in equation (8), which can be interpreted as placing the non-
linear polarization sheet in the middle of the thin layer ℓ. These
last curves are neither depth dependent nor ab initio, since the
value of d= 10 nm does not come naturally from the calculation
of χabc(zn). Indeed, the Average spectrum for d= 10 nm is the
primary result from the study by Anderson and Mendoza (2016).
On the other hand, the Nominal (d= 3.6 nm) result calculated
from the theory developed in this work is completely ab initio.

The experimental spectrum shows two very well-defined reso-
nances, which come from electronic transitions from the valence
to the conduction bands around the known E1 ~ 3.4 eV and
E2 ~ 4.3 eV critical points of bulk Si (Yu and Cardona, 2005).
The theoretical results reproduce the features of the spectrum,
although we see that the E2 peak is blueshifted by around 0.3 eV.
We postulate that this discrepancy is mainly due to three factors.
First, theRpP spectrum tends to redshift as temperature increases
(Dadap et al., 1997). Since this experiment was conducted at room
temperature, our theoretical results (which consider that T = 0K)
will be blueshifted to some degree. Of course, the experimental
temperature at which the spectra are measured should be taken
into account in a more complete formulation. Second, equation
(11) shows that RpP includes all four non-zero components of
χ(zn). In particular, χzzz and χxxz include out-of-plane incoming
fields that are affected by local field effects (Tancogne-Dejean,
2015); these reveal material inhomogeneities that are far more
prevalent perpendicular to the surface than in the surface plane.
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Therefore, we expect that these out-of-plane components will be
more sensitive to the inclusion of these local field effects. As
mentioned earlier, these effects are quite challenging to compute
(Tancogne-Dejean et al., 2015) and are beyond the scope of this
article. Third, GW transition energies are needed to accurately
predict the SSHG spectrum. A Bethe–Salpeter calculation will
improve the position and the amplitude of the peaks, but is far
beyond our current computing capabilities. The included ab initio
scissors correction produces an E1 peak position that is similar to
experiment, and we have checked there is no single scissors value
that can reproduce the energy positions of both the E1 and E2
peaks. We consider that RpP requires the proper treatment of all
three of these factors to improve the calculated spectrum.

We can clearly see that RpP for the layered calculation using
d= 3.6 nm (the value from the slab) differs from the one with the
stretched values of zn that lead to d= 10 nm. These enhancements
are larger for E2 than for E1. This can be understood from the fact
that the corresponding λ0 for E1 is larger than that of E2. From
equations (2) and (8), we see that the phase shifts are larger for E2
than for E1, producing a larger enhancement of the SSHG yield at
E2 from the multiple reflections. As the phase shifts grow with d,
so does the enhancement caused by the multiple reflections. We
have also verified that the effects of the multiple reflections from
the linear field are significantly smaller than those of the SH field.
This is clear since the phase shift of equation (8) is not only a
factor of 2 smaller than that of equation (2) but also wℓ<Wℓ. For
larger energies, such as E2, λ0 becomes smaller, and the multiple
reflection effects become more noticeable. The selected value for
d<< λ0, which comes naturally from the ab initio calculation of
χabc, is thus very reasonable tomodel a thin surface layer below the
vacuum region where the non-linear SH conversion takes place.
Moreover, choosing a larger value d improves the peak ratio E2/E1
from 1.8 (d= 3.6 nm) to 2.0 (d= 10 nm), which is closer to the
experimental value of 2.8 (Anderson and Mendoza, 2016). Note
that the average values obtained by using R̄M

p with d= 3.6 and
d= 10 nm are very similar to the depth-dependent results for the
corresponding value of d. In general, this means that using χabc

hs
in combination with R̄M

i is a reasonable first approximation of the
SSHG yield.

We remark that there is a significant dielectric contrast between
the thin layer ℓ and the bulk region b. As discussed in Figure 6 of
the study by Mendoza et al. (2006), the layer-by-layer ϵℓ(zn;ω) of
a Si(100) surface begins to resemble the bulk dielectric function
as we go deeper toward the bulk of the system. However, for the
atomic layers of the thin layer, ℓ, ϵℓ(zn;ω) differs substantially from
ϵb(ω).Wehave carried out a similar analysis for the Si(111)1× 1:H
surface used in this work and obtained equivalent results. As
ϵℓ(ω)=

∑N/2
n=1 ϵℓ(zn; ω) ̸= ϵb(ω), it follows that there are sizeable

reflections from the layer–bulk interface. It is tempting to use
ϵℓ(zn;ω) instead of ϵℓ(ω) in the theory developed in Section 2;
however, this is related to the calculation of E(z; ω), as mentioned
above, is outside the scope of this work.

SSHG is a powerful tool for characterizing film/substrate sys-
tems, and we consider that the flexibility of the three-layer model
provides a good theoretical foundation for calculating the SH
spectra at an ab initio level. On the one hand, this revised model
does away with all adjustable parameters; namely, the depth of

the film d is now determined exactly from the size of the slab.
This approach differs from our previous work (Anderson and
Mendoza, 2016), which considered d as an adjustable parameter
that can be varied to match the experimental resonance intensity.
Our new ab initio formulation allows us to readily simulate the
effect of film thickness on the spectrum. Calculation time will
increase rapidly with the slab size, but can be computed for any
film thickness with sufficient computational resources. On the
other hand, we must remember that χ(zn) is strictly a surface
quantity that can be calculated on a layer-by-layer basis. Thus, it
is independent of the dielectric properties that conform the bulk
material (substrate). These properties obviously play an important
role in the calculation of the SSHG yield, in the form of the bulk
dielectric function ϵb(ω). If that quantity is known, then we can
effectively calculate the SHG spectra of any crystalline film over
any bulk substrate. Indeed, our formulation properly accounts for
both the exterior surface (vacuum layer) and interior interface
(layer bulk) contributions to the overall SH signal. Our model is
agnostic to any surface symmetries and can effectively model pas-
sivated (like the Si(111)1× 1:H example used here) or clean sur-
faces with dangling bonds. The layer-by-layer approach will even
provide us with the SH contribution from the layer that includes
the passivation or the dangling bonds. With these elements,
we consider that the depth-dependent three-layer model with
multiple reflections is a robust, versatile, and computationally
efficient method that is well suited for characterizing thin/thick
film systems.

4. CONCLUSIONS

We have derived a formalism to calculate the SSHG yield based
on the three-layer model that accurately describes the radiating
system. This treatment includes the effects of multiple reflections
inside the material from both the SH and fundamental fields
and also takes into account the depth variation of the second-
order non-linear susceptibility χabc(zn). We applied this theoreti-
cal development to calculate the p-in and P-out SSHG yield of the
Si(111)(1× 1):H surface. Our depth-dependent three-layermodel
reproduces key spectral features and also yields an intensity very
close to experiment. We consider it an upgrade over our previous
model featured in the study by Anderson and Mendoza (2016),
since the thickness d of the layer in which the SHG takes place can
be directly determined for the calculation and requires no other
free parameters.
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