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The paper presents the study of waves in a structured geometrically chiral solid. A special
attention is given to the analysis of the Bloch-Floquet waves in a doubly periodic high-
contrast lattice containing tilted resonators. Dirac-like dispersion of Bloch waves in the
structure is identified, studied, and applied to wave-guiding and wave-defect interaction
problems. The work is extended to the transmission problems and models of fracture,
where localization and edge waves occur. The theoretical derivations are accompanied
with numerical simulations and illustrations.
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1. INTRODUCTION

We introduce a novel concept of a multi-scale shield/filter, which couples pressure waves and
rotational motion in an elastic lattice. Such a structure incorporates high-contrast tilted resonators,
and their dynamic response is linked to the rotational wave forms.

The interest in elastic waves in chiral media is high, as reflected by the series of papers on micro-
structured media, which incorporate active gyroscopes (Brun et al., 2012; Carta et al., 2014, 2017;
Süsstrunk and Huber, 2015; Wang et al., 2015; Huber, 2016). Waves in such periodic structures
possess fascinating, sometimes counter-intuitive, properties. These include filtering, polarization,
as well as directional preference and/or localization.

The present paper, in contrast with (Brun et al., 2012; Carta et al., 2014, 2017), deals with the
lattice that does not include any active chiral mechanical elements, such as gyroscopic inclusions and
a gyroscopic foundation.However, the geometry of themulti-structure considered here is chiral, and
this, in turn, contributes to the coupling between the pressure and shear waves, which is supported
by the lattice. The Bloch-Floquet waves in doubly periodic structures with tilted lattice resonators,
and their dispersion properties, were studied in Tallarico et al. (2017). Other geometrically chiral
lattices were studied in Spadoni et al. (2009), Liu et al. (2011, 2012), Spadoni and Ruzzene (2012),
and Bigoni et al. (2013) in the continuum approximation. When dealing with effective properties
of periodic media, high-frequency homogenization techniques (Craster et al., 2010, 2013; Movchan
and Slepyan, 2014; Colquitt et al., 2015) can be used.

The notion of the multi-scale multi-structure (Kozlov et al., 1999) was used in Bigoni et al. (2013)
to approximate the frequencies of standing waves of amulti-scale periodic structure with resonators,
consisting of disks connected with the ambient medium by thin ligaments. In particular, the issue
of degeneracies was noted for configurations of resonators with special inclinations of the thin
ligaments.
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The influence of the micro-structure on a dynamic crack in a
lattice was discussed in Colquitt et al. (2012), Carta et al. (2013),
and Trevisan et al. (2016). For a transient propagating crack,
the crack edge emanates waves, which interact with the ambi-
ent medium. Even in subsonic regimes, the problem of a crack
advancing in a micro-structured solid is a challenge. Analytical
approaches applicable to cracks propagating at an average constant
speed were presented in Slepyan (2002).

We draw the attention of the reader to the papers (Süsstrunk
and Huber, 2015; Wang et al., 2015; Huber, 2016), which
addressed the formation of unidirectional edge waves in active
chiral elastic systems by achieving time-reversal symmetry
breaking.

In the present work, we give a special attention to micro-
structured solids containing cracks, and we show how a coating,
built of a tilted resonator lattice, can absorb vibrations or otherwise
can channel the energy away from the crack tip.

An adaptive finite element computation has been performed to
model a transient propagation of a crack inside a channel of the
micro-structuredmaterial. The earlier work (Trevisan et al., 2016)
has addressed the question of a transient advance of a crack sub-
jected to a dynamic load. The influence of a geometrically chiral
multi-scale lattice on the field around the crack is demonstrated
in the present paper.

An additional focus of this paper is on the effect of geometric
chirality on the edge waves propagating along structured inter-
faces. In this context, we would like to mention the earlier work
(Joseph and Craster, 2013) where asymptotics for elastic waves
propagating along line defects in triangular and square lattices
were investigated. Here we analyze waves around a “coated” crack,
where the coating is introduced as a multi-scale structure of tilted
resonators. We show examples of dynamic localization and edge
waves.

The structure of the paper is as follows. The formulation of
the problem and an outline of the dispersion properties of the
Bloch-Floquet waves in a lattice with tilted resonators are included
in Section 2. Wave localization and edge states are discussed in
Section 3. In Section 4, we model a crack in a triangular lattice,
surrounded by a structured coating containing tilted resonators.
In Section 5, we study an edge crack sandwiched between two
strips of resonators and subjected to a pulsating thermal load. The
advance of the crack is studied in the transient regime. In Section
6, we draw our main conclusions.

2. BLOCH-FLOQUET WAVES IN A
TRIANGULAR LATTICE WITH TILTED
RESONATORS

In this section, we refer to the earlier paper (Tallarico et al., 2017)
and give an outline describing the propagation of Bloch-Floquet
waves in a triangular lattice with tilted rotational resonators. A
schematic representation of the triangular lattice with resonators
(TLR) is given in Figure 1A. Here, we demonstrate that the Bloch-
Floquet frequency dispersion surfaces for the TLR can exhibit
Dirac-like dispersion. Dirac-like dispersion arises from the triple
degeneracy of two conical bands and one flat band, as also stated
in Mei et al. (2012). In contrast, the pure Dirac dispersion is
represented by a conical surface, incorporating two cones above
and below the common vertex, called the “Dirac point.” Such
dispersion surfaces are observed, for example, for lattices of high
order of symmetry, such as graphene. Dirac-like dispersion can
be achieved via the fine tuning of the unit cell’s eigenvalues in
a plethora of phononic and photonic metamaterials. Dirac-like
phononic lattices remain highly attractive because of their inter-
esting physical properties: dynamic neutrality has recently been
observed in a platonic crystal (Smith et al., 2014; Haslinger et al.,
2017). Perfect transmission and tunneling were reported in Li and
Mei (2015), which focused on a photonic crystal governed by the
Helmholtz wave equation and exhibiting Dirac-like dispersion.

2.1. Governing Equations
We consider an elastic triangular lattice (TL) containing tilted
rotational resonators, as the one represented in Figure 1A. Point-
wise masses m (black full circles) are considered at the triangular
lattice nodes in Figure 1A, the lattice vectors being

t1 =
(
1
0

)
L and t2 =

(
1√
3

)
L
2
, (1)

where L is the distance between nearest neighbors. Figure 1B
shows the first Brillouin zone of the TL, together with its irre-
ducible part (gray area). The high-symmetry points are

Γ =
(
0
0

)
, M =

2π√
3L

(
1/

√
3

1

)
and X =

2π√
3L

(
0
1

)
. (2)

The nodal points of the lattice whose mass is m are linked to
each other by non-flexible, massless, extensible rods (thin lines) of

FIGURE 1 | (A) A schematic representation of the triangular elastic lattice containing resonators, tilted by an angle ϑ0; the unit cell of the lattice is highlighted in
yellow. (B) The first Brillouin zone for the triangular lattice and irreducible fraction (gray-shaded region).
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longitudinal stiffness cℓ. The unit cell of the lattice (semitranspar-
ent yellow region in Figure 1A) contains a resonator, an equilat-
eral triangle of side ℓ with point massesmo attached to its vertices
(empty circles in Figure 1A). The vertices of the resonators are
linked to the nodal points of the TL by non-flexible, extensible
rods of longitudinal stiffness cℓo (medium-thickness black lines in
Figure 1A). In this paper, the resonators are assumed to be rigid,
i.e., the longitudinal stiffness co of the links connecting the vertices
of the resonators is such that co/cℓo → +∞ and co/cℓ → +∞.
The resonators are tilted with respect to the external triangular
lattice by an angle ϑ0, marked in Figure 1A.

We now give some geometric definitions useful to represent the
dispersion equation for the triangular lattice with resonators. We
denote by b̃i, i= {1, 2, 3}, the position vector of the ithmass relative
to the center of mass r̃cm = L/2 (1, 1/

√
3)T, where “T” denotes

transposition. The explicit expression is

b̃i = bR̂iβ̃1 = bR̂i

(
sin ϑ0
cos ϑ0

)
, with

R̂i = R̂ϑ

∣∣∣
ϑ=2π(i−1)/3

, i = {1, 2, 3}, (3)

where ϑ0 is the tilting angle, b = ℓ/
√
3, and

R̂ϑ =
(

cos ϑ sin ϑ
− sin ϑ cos ϑ

)
, (4)

is the clockwise rotation matrix. The vector linking the triangular
lattice to the ith mass of the resonator in the reference cell n= 0 is

α̃i = R̂iα̃1, i = {1, 2, 3}, with

α̃1 = t2 − r̃cm − b̃1 =
(

b sin ϑ0
−(B − b cos ϑ0)

)
, (5)

where B = L/
√
3, b has been introduced in equation (3) and the

matrix R̂i is given in equation (3). Given the set of vectors (1) and
(5), we introduce the corresponding projector matrices

τ̂1 =
1
L2 t1t

T
1 , τ̂2 =

1
L2 t2t

T
2 , τ̂3 =

1
L2 (t1 − t2) (t1 − t2)T ,

Π̂i =
1
ℓ2r

α̃iα̃
T
i , i = {1, 2, 3}, with

ℓr = ||α̃i|| =
1√
3

√
L2 + ℓ2 − 2ℓL cos(ϑ0). (6)

The notation vuT in equation (6) is used to denote the dyadic
product v ⊗ u of two vectors u and v.

We consider time-harmonic elastic Bloch-Floquet waves prop-
agating through the lattice. Following Tallarico et al. (2017),
the Bloch-Floquet displacement wave’s amplitude with Bloch
vector k is

Uk =
(
uT0 (k), uTcm(k), ϑ(k)

)T
, (7)

where the vectors quantities uT0 (k) and uTcm(k) are the in-plane
displacements of the TL nodal points and of the center of mass
of the resonators, respectively. In equation (7), ϑ(k) represents
the angular displacement with respect to the equilibrium ϑ0.

In the time-harmonic regime, the equations of motion in the
lattice characterized by the displacement (7) have the matrix
form (

Σ̂k − ω2M̂
)
Uk = 0, (8)

where ω is the Bloch-Floquet radian frequency and the vector
Uk is given in equation (7). The inertia matrix that appears in
equation (8) is

M̂ = diag(m,m,M,M, I), (9)

where M= 3mo is the total mass of the resonator, I = moℓ
2 is its

moment of inertia, and m is the mass of the nodal points of the
triangular lattice. In Tallarico et al. (2017), it has been shown that
the stiffness matrix in equation (8) is

Σ̂k =


Σ̂0,0(k) Σ̂0,cm(k) Σ0,ϑ(k)

Σ̂†
0,cm(k) Σ̂cm,cm Σcm,ϑ

Σ†
0,ϑ(k) Σ†

cm,ϑ Σϑ,ϑ



=
3∑

i=1



−2cℓ(cos(k · ti) − 1)τ̂i −cℓoφi(k)Π̂i −cℓoφi(k)Π̂iR̂′
i b̃1

+cℓoΠ̂i

−cℓoφ∗
i (k)Π̂i cℓoΠ̂i cℓoΠ̂iR̂′

i b̃1

−cℓo(φi(k)Π̂iR̂′
i b̃1)

† cℓo(Π̂iR̂′
i b̃1)

† −cℓob̃
T
1 · (R̂′

i Π̂iR̂′
i b̃1)

,

(10)

where φ1(k)= exp(−k · t2), φ2(k)= exp(−k · t1), φ3(k)= 1, and
R̂′

i = d/dϑ
(
R̂ϑ

)∣∣∣
ϑ=2π(i−1)/3

. Consider the 3× 3 block inde-

pendent of k that appears in equation (10). We observe that

σ =

(
Σ̂cm,cm Σcm,ϑ

Σ†
cm,ϑ Σϑ,ϑ

)

=

(
3cℓo/2 Î2×2 0

0T cℓoℓ2 sin2 ϑ0/(1 + ℓ2/L2 − 2ℓ/L cos(ϑ0))

)
,

(11)

where Î2×2 is the 2× 2 identity matrix. The diagonal matrix (11)
is the stiffness matrix for a single resonator for which the natural
frequencies squared are (Tallarico et al., 2017)

Ωcm =
3
2
cℓo
M , and Ωϑ =

cℓoℓ2

I
sin2 ϑ0

1 + ℓ2/L2 − 2ℓ/L cos ϑ0
.

(12)

In equation (12), Ωcm is the frequency of oscillation of the
center of mass of a single resonator, whereas the frequency Ωϑ

describes the harmonic rotation of the resonator.

2.2. Triple Eigenvalue and Dirac-Like
Dispersion Surfaces near k= 0
The elastic Bloch-Floquet waves in the doubly periodic structure
of tilted resonators have interesting dispersion properties shown
in Figure 2. A special feature is the Dirac-like cone with the vertex
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FIGURE 2 | The Bloch-Floquet dispersion surfaces for a triangular lattice with
resonators whose lattice parameters are listed in set 1 of Table 1. The color
scale represents Bloch-Floquet frequencies ω.

corresponding to k= 0, which is themain focus of this paragraph.
Seeking non-trivial solutions for equation (8) requires

D(k, ω) = det
(
Σ̂k − ω2M̂

)
= 0, (13)

whose roots ω vs k determine the dispersion of Bloch waves (see,
e.g., Figure 2). At k= 0, the roots of the fifth-degree in Ω=ω2

polynomial equation (13) can be found in their closed forms.
Introducing the notation Ω(i)

Γ = Ω(i)
k

∣∣∣
k=0

, with i the index of the
root, we find

Ω(1)
Γ = 0, Ω(2)

Γ = Ωcm

(
1 +

3mo

m

)
and Ω(3)

Γ = Ωϑ. (14)

where Ωcm and Ωϑ have been introduced in equation (12). The
first and second eigenvalues in equation (14) have multiplic-
ity two, and the third one has multiplicity one. The geometric
conditions

0 <
ℓ

L <
1
2

and |ϑ0| < ϑmax ≡ arcos
(

ℓ

L

)
, (15)

guarantee that the trusses do not cross each another. We observe
that it is possible to obtain a triple eigenvalue corresponding to
Ω(2)

Γ = Ω(3)
Γ , if there exists

m̄ =
cos 2ϑ0 + ℓ̄ 2 − 2ℓ̄ cos ϑ0

2ℓ̄ cos ϑ0 − ℓ̄2 − 1
> 0, (16)

with m̄ = 3mo/m and ℓ̄ = ℓ/L. We observe that

m̄ > 0 ⇐⇒ cos ϑ0 − | sin ϑ0| < ℓ̄ < cos ϑ0 + | sin ϑ0|. (17)

The substitution of the expression (16) for mo into the Bloch
frequencies at Γ in equation (14) gives the frequency squared for
the triple eigenvalue

Ω(te)
Γ = −3cℓo

m
sin2 ϑ0

ℓ̄2 − 2ℓ̄ cos ϑ0 + cos 2ϑ0
, (18)

TABLE 1 | Sets of parameters for selected triangular lattices with resonators whose
frequency dispersion (see Figure 3) is Dirac-like at ω =π.

cℓ m L ℓ cℓo mo ϑ0

set 1 1 0.8 1 0.21 1.534 0.11 0.82
set 2 1 0.8 1 0.25 2.6319 0.27 1.32
set 3 1 0.8 1 0.1 0.2722 0.0145 0.74

SI units of measurement are understood.

which is a positive quantity if the condition on ℓ̄ andϑ0 of equation
(17) is satisfied.

Figure 3A represents the frequency dispersion surfaces for a
TLR as a function of a set of Bloch wave vectors that comprise
the first Brillouin zone (see Figure 1B). The lattice parameters
have been chosen in such a way that equation (16) is satisfied.
This implies the occurrence of a triple eigenvalue at Γ, as it can
be seen by direct inspection of the optical part of the dispersion
diagram. Specifically, we choose ℓ̄ = 0.21 and ϑ0 = 0.82, which
gives m̄ = 0.41. Moreover, we fix L = cℓ = 1 andm= 0.8, which
influences themaximum frequency of the acousticmodes. Finally,
the choice cℓo = 1.53 guarantees that the frequency of the triple
eigenvalue (18) is √

Ω(te)
Γ = π. (19)

Figures 3B,C show the slowness contours of Figure 3A around
the triple eigenvalue’s frequency ω =π. Figures 3B,C refers
to frequencies just above and just below ω =π, respectively.
Figures 3B,C show that the dispersion in the vicinity of the triple
eigenvalue is isotropic. In Figure 3D, we compare along the path
MΓXM the optical branches of three different TLRs whose lattice
parameters are listed in Table 1. The black solid line refers to set 1
in Table 1 which has been already used in Figure 3A. Hence,
the dispersion around the triple eigenvalue’s frequency ω =π is
linear, suggesting that the triple eigenvalue is a Dirac-like point.
Other choices of the parameters are possible resulting in different
effective group velocities at Γ. In Figure 3D, we use set 2 (red
dashed line) and set 3 (blue dotted line) listed in Table 1. The
chosen sets of parameters satisfy (19), which corresponds to the
occurrence of a triple eigenvalue at Γ and ω =π. We observe that
Dirac-like dispersion is robust over the chosen sets of the lattice
parameters.

3. LOCALIZATION AND EDGE WAVES AT
THE DIRAC-LIKE POINT

In this section, we investigate the wave forms, which correspond
to the frequencies in the neighborhood of the Dirac-like point.
In addition, we study the propagation of edge waves along the
interfaces obtained by modifying the bulk homogeneous lattices.
The periodic lattice’s dynamic response to point loads of dif-
ferent orientations is studied using the Finite Element Method
(COMSOL Multiphysics). In the computations, we truncate the
lattice retaining an N ×N cluster of TLR cells, where N ≈ 50.
In order to reduce spurious reflections from the boundaries of
the computational window, the dynamic equations of the nodal
points close to the sides of the grid include a damping term.
The damping layer has width LD = 4 L and is non-uniform with

Frontiers in Materials | www.frontiersin.org June 2017 | Volume 4 | Article 164

http://www.frontiersin.org/Materials
http://www.frontiersin.org
http://www.frontiersin.org/Materials/archive


Tallarico et al. Edge Waves and Localization

BA

DC

FIGURE 3 | In panel (A), a side view of Figure 2 is provided. Panels (B,C) are slowness contours of panel (A). The frequencies represented here lie just above panel
(B) and just below panel (C) ω =π, corresponding to the Dirac-like point. The color scale represents Bloch-Floquet frequencies ω. Panel (D) shows the dispersion
curves of the optical modes for three set of lattice parameters. The solid black lines correspond to the lattice parameters used in panel (A); red dashed lines and blue
dotted lines correspond to “set 2” and “set 3” in Table 1, respectively.

spatial distribution η(x) = η0(1 − exp(−σ|x|)), where σ = 1/L
and η0 is a frequency-dependent factor and x= [0, LD] spans
from the inner to the outer boundary of the damping frame.
The harmonic responses shown in this section are triggered by
a point force of frequency ω =π rad/s, linear polarization, and
amplitude F= 0.1N. We assume that the force is exerted on a
triangular lattice node located at the center of the clusters. The
lattice parameters considered here are listed in Table 1, where SI
units ofmeasurement and angles in unit of radiant are understood.
These parameters have been chosen to reproduce a triple eigen-
value at Γ and frequency ω =π rad/s at the Dirac-like point (see
Section 2.2).

The effective properties of the dispersion surfaces emanat-
ing from the Dirac-like point strongly influence the harmonic
response of the structure. Special attention is given to the influence
of the effective mass of the parabolic-in-k mode, and to the

effective group velocities of the conical modes, on the local-
ization patterns and on the amplitude and wavelength of the
edge waves propagating along the interfaces obtained from the
bulk TLRs.

3.1. Edge Waves along the Interface
between Non-Homogeneously
Tilted TLR
Figures 4A–C show the harmonic responses of a cluster with
lattice parameters as in set 1 of Table 1. In these computations,
three different linearly polarized forces have been used, each of
which is oriented at 0, π/3, and π/6 with respect to the horizontal
axis (see black arrows). InFigures 4A–C, we observe a localization
pattern consistent with the flat band intersecting the Dirac cone
at the triple eigenvalue. The symmetry axis of the localization
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FIGURE 4 | Panels (A–C) are the responses of a homogeneous TLR to a harmonic force of amplitude F =0.1N and frequency ω =π rad/s applied to a TL nodal
point. The point loads (see black arrows) form an angle of 0, π/6, and π/3, respectively, with respect to the horizontal axis. Panels (D–F) are the responses of a
non-homogeneous TLR to harmonic forces identical to those considered in panels (A–C), respectively. The thin horizontal line marks the interface between
anticlockwise tilting (upper part, ϑ0 =−0.82 rad) and clockwise tilting (lower part, ϑ0 = 0.82 rad). The lattice parameters used in all panels—the same as in
Figure 3A—are given in the first row of Table 1.

pattern follows the polarization angle of the force. Figures 4D–F
show the harmonic responses of a special cluster of resonators
in which an inhomogeneity has been introduced via the tilting
angle. The remaining parameters are listed in “set 1” of Table 1
and the harmonic force is the same as in Figures 4A–C. Above
the thin black line, the resonators are tilted in the anticlockwise
direction (ϑ0 =− 0.82), while below the line, a clockwise tilting
(ϑ0 = 0.82) is implemented. This inhomogeneity introduces an
interface that runs along the thin black line. It shall be pointed
out that the dispersion surfaces of the lattice of resonators with
clockwise and anticlockwise tilting are identical. In particular,
the effective group velocities at the Dirac-like point are identical.
Nevertheless, the harmonic response of the non-homogeneous
cluster differs significantly from the corresponding responses
of the homogeneously tilted cluster. In fact, we observe that a
point force of frequency ω =π rad/s, corresponding to the Dirac-
like point, triggers an edge wave traveling along the interface.
The amplitude of the edge wave depends on the orientation of
the harmonic point force, being larger for larger deflections from
the horizontal direction (cf. Figures 4D–F). In each of the three
panels, the elastic edge wave propagating along the interface has
elliptic polarization whose principal axis is oriented at π/3 with
respect to the interface. When the linear polarization angle of
the source matches π/3 (see Figure 4F), the amplitude of the
edge wave is greater than the other two cases for geometrical
reasons.

In the same spirit as in Figure 4, Figure 5 shows the harmonic
responses of clusters whose lattice parameters are listed in “set 2”

(panels (A,B)) and “set 3” (panels (C,D)) of Table 1. The aim
here is to illustrate how different dispersive properties near the
Dirac-like point, already highlighted in Figure 3D, affect the har-
monic responses of homogeneously tilted clusters (Figures 5A,C)
and non-homogeneously tilted clusters (Figures 5B,D). The
non-homogeneity considered here has the same meaning as in
Figure 4. Figures 5A,C show localized patterns similar to that
encountered in Figure 4A. Figures 5B,D show an edge wave
traveling across the interface. We remark that the wavelength of
the edge waves is larger for smaller effective group velocities at the
Dirac-like point ω =π rad/s. This suggests that the dynamics of
the edge waves is controlled by the effective group velocities at the
Dirac-like point.

3.2. Edge Waves along a Line Defect in a
Non-Homogeneously Tilted TLR
Figure 6 shows the modulus of the displacement field for a
forced TLR containing a defect, which consists of a missing line
of resonators, as shown in the magnified inset highlighted in
yellow on the right of the figure. The lattice parameters used in
this computation are listed in set 1 of Table 1 and the tilting
angle is anticlockwise and clockwise, above and below the defect,
respectively. The harmonic force is identical to the one used
in Figure 4A and is exerted on a triangular lattice nodal point
below the line defect (see blue arrow in the inset). We observe
that the defect acts as a wave guide for an edge wave whose
wavelength differs from the one in Figure 4B.We emphasize again
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FIGURE 5 | Panels (A,C) are the responses of a homogeneously tilted cluster of resonators to a harmonic horizontal force of frequency ω =π rad/s and amplitude
F =0.1N. The lattice parameters are the same as represented in Figure 3D by the red dashed line and the blue dotted line, respectively. Panels (B,D) are the
responses of a non-homogeneously tilted cluster of resonators to a harmonic horizontal force of frequency ω =π rad/s and amplitude F =0.1N. In panels (B,D), the
tilting angle is oriented anticlockwise (clockwise) above (below) the thin horizontal line. The remaining lattice parameters, including the modulus of the tilting angle, are
the same as in panels (A,C).

that the wave-guiding behavior in Figure 6 differs significantly
from the localization pattern in Figure 4A, the bulk homogeneous
counterpart.

4. WAVE FORMS AROUND A
CRACK SURROUNDED BY A
MICRO-STRUCTURED COATING

In this section, we study a special coating for one-dimensional
cracks inside a TL. We consider a shear plane wave of angular
frequency ω =π rad/s impinging on the crack. The coating is
obtained by introducing resonators around the crack.

The physical parameters of the exterior triangular lattice in
which the planewave propagates can be chosen in order to guaran-
tee an isotropic dynamic response. In this section, the maximum
plane wave’s frequency is ω =π rad/s. The stiffness of the links
cTL = 50N/m, for the mass of the nodal points corresponding to
mTL =m+ 3mo = 1.43 kg (see set 1 in Table 1), guarantees an
isotropic dynamic response. We observe that the aforementioned
choice of the mass minimizes the spurious scattering effects asso-
ciated with a contrast of inertia. Figure 7A shows a shear plane
wave of frequency ω =π rad/s propagating through the isotropic

triangular lattice. Thewave is excited by applying a time-harmonic
horizontal displacement to the nodal points of the lattice close
to the horizontal line y= 45. In Figure 7B, a crack obtained by
removing some links from the triangular lattice scatters the shear
plane wave.

In this section, the lattice parameters of the structured coat-
ing are given in set 1 of Table 1. The corresponding disper-
sion surfaces are reported in Figure 3A. The different frequency
regimes are discussed via the analysis of the scattered displace-
ment fields: in section 4.1, we address the frequencies close to
the Dirac-like point and in section 4.2 we focus on the band gap
regime.

4.1. Dirac-Like Regime
In Figure 8, we compare the modulus of the displacement field
resulting from the interaction of an elastic shear wave with a
cluster of resonators (Figure 8A) and with a cluster of resonators
containing a crack (Figure 8B). The source of the excitation is a
plane wave of frequency ω =π rad/s, which corresponds to the
Dirac-like point for the periodic TLR (see Figure 3). Figure 8A
shows that scattering of elastic waves is highly anisotropic, the
displacement field being concentrated on the right side of the

Frontiers in Materials | www.frontiersin.org June 2017 | Volume 4 | Article 167

http://www.frontiersin.org/Materials
http://www.frontiersin.org
http://www.frontiersin.org/Materials/archive


Tallarico et al. Edge Waves and Localization

FIGURE 6 | Response of a defective triangular lattice with resonators to a harmonic point force. The defect consists of a horizontal line along which resonators are
removed, as highlighted in the yellow magnified inset on the right. The point force is represented in the right inset by the blue arrow and has amplitude F = 0.1N and
frequency ω =π rad/s. The parameters used in this computation are listed in the first row of Table 1 and the tilting angle is anticlockwise and clockwise, above and
below the defect, respectively.

FIGURE 7 | Panel (A) shows a shear plane wave of angular frequency ω =π rad/s traveling through a homogeneous triangular lattice. In panel (B), the same shear
wave is scattered by a one-dimensional uncoated crack.

FIGURE 8 | The harmonic responses to a shear plane wave of frequency ω =π rad/s corresponding to the Dirac-like point for the TLR. Panels (A,B) represent a
cluster of resonators and a crack surrounded by a cluster of resonators, respectively. The parameters used to model the clusters are listed in set 1 of Table 1.

cluster. It is worthwhile noting that if the resonators are rotated
in the anticlockwise direction (ϑ0 =− 0.82), the displacement
field is mirror-symmetric compared to the one in Figure 8A.
The introduction of a crack within the cluster (Figure 8B) trig-
gers the propagation of elastic waves around the crack itself.

The displacement field and the corresponding stresses are still
visibly concentrated around the right tip of the crack. This sug-
gests that a coating of resonators in the Dirac-like regime is
likely to lead to a left–right asymmetry in the propagation of the
crack.
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FIGURE 9 | The harmonic responses to a shear plane wave of frequency ω =π rad/s corresponding to the Dirac point for the triangular lattice with resonators. In
panels (A,B), we substitute the cluster of Figure 8B, which is finite in the horizontal direction, with an infinite strip. In panels (A,B), the tilting is clockwise and
anticlockwise, respectively. The structure in panels (C,D) is obtained from panel (A) by removing a horizontal line of resonators along the extension of the crack. In
panel (C), a homogeneous tilting is used; in panel (D), the resonators above the line are rotated anticlockwise and those below clockwise.

FIGURE 10 | The harmonic response of a cluster of resonators to a shear plane wave of frequency ω = 2.4 rad/s inside the stop band for the TLR. Panels (A,B) are
without and with a crack. Panels (C,D) include a line of resonators missing along the extension of the crack. In panel (C), the tilting angle is homogeneous, whereas
in panel (D), the resonators are tilted through opposite angles. Panel (E) is a detail of the lower boundary of the cluster in panel (A) showing an edge wave. The lattice
parameters are as in Figure 8.
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In Figure 9, long strips of resonators containing a crack
interact with a shear plane wave impinging on the strip from
above. Several arrangements for the resonators are considered. In
Figure 9A,B, the resonators in the strip are homogeneously tilted
in the clockwise (anticlockwise) direction. Similar to Figure 8A,
this leads to an enhancement of the displacement field close to
the tips of the cracks. Moreover, the results are mirror-symmetric
about the vertical line passing through the center of the crack. This
is consistent with what we observe in Figure 8B. In Figure 9C,
the homogeneously tilted strip analyzed in Figure 9A has been
replaced by a strip with an interface. The interface is repre-
sented by a line of missing resonators. The stiffness of the tri-
angular lattice links that define the interface is assumed to be
cTL = 50N/m, as in the exterior triangular lattice. In Figure 9D,
the strip is similar to the one in Figure 9C, but anticlockwise
tilting above the line and clockwise tilting below the line are
implemented. In Figures 9C,D, the displacement field is mirror-
symmetric with respect to a vertical line passing through the
crack.

4.2. Band Gap Regime
In Figure 10, a shear plane wave coming from above impinges
at normal incidence on a cluster of resonators (Figure 10A) and
on clusters of resonators containing a crack (Figure 10B–D).
The frequency of the excitation is ω = 2.4 rad/s corresponding
to the band gap in Figure 3A. It is remarked that the coating is
not penetrated by the incident wave. In particular, Figure 10B
shows that the structured cluster acts as a protective layer for the
crack, as one would expect from the analysis of the dispersion
diagram for Bloch waves. In Figures 10C,D,we introduce a defect

consisting of a missing line of resonators along the extension
of the crack. In Figure 10C, the tilting angle is homogeneous,
whereas in Figure 10D, the resonators are tilted in opposite
directions above and below the line defect. The stiffness of the
links of the line defects is the same as of the exterior triangu-
lar lattice. Figures 10C,D show a displacement enhancement at
the perimeter of the cluster, however away from the crack tip.
Figure 10E highlights an edge wave traveling along the boundary
of the cluster.

FIGURE 12 | The Fast Fourier Transform of the input pulsating load has
identified a countable number of spikes at different frequencies. Two spikes in
the low frequency regime are shown here.

FIGURE 11 | The harmonic response to a shear plane wave. Panels (A,D), (B,E), and (C,F) comprise a crack, a cluster of resonators, and a crack surrounded by a
cluster of resonators, respectively. The angular frequency for panels (A–C) is ω = 2.1 rad/s corresponding to the lower edge of the band gap of Figure 3A. The shear
wave’s angular frequency for panels (D–F) is ω = 2.7 rad/s corresponding to the upper edge of the band gap of Figure 3A.
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In Figures 11A–C, the angular frequency ω = 2.1 rad/s of
the plane wave corresponds to the lower edge of the band gap
of Figure 3A. In Figures 11D–F, the frequency ω = 2.7 rad/s
corresponds to the upper edge of the band gap. For the lower
edge frequency, although the cluster is partially protective (see
Figure 11B), the introduction of the one-dimensional defect
increases the stress concentration around the crack (Figure 11C),
compared to the uncoated configuration (Figure 11A). A sim-
ilar effect is reported for the upper edge of the band gap in
Figures 11E,F. In the vicinity of the band gap edges, the coating
of resonators enhances the displacement field around the crack,
increasing the chances for the crack to propagate.

5. EDGE CRACK SUBJECTED TO A
TRANSIENT THERMAL LOAD

The governing equations, loading configuration, and the fracture
criterion are the same as in the earlier computations for the
thermoelastic crack advancing through a homogeneous triangular
lattice (Trevisan et al., 2016). Here, a geometrically chiral coating
surrounding the crack is introduced into the model. An elastic
wave is generated as a result of a rapid variation of the boundary
temperature. The fracture criterion is based on a normalized
threshold elongation ϵ = ∆L/L. The crack advances when the
ligament at the crack tip reaches the critical threshold elongation.
The loading configuration is made of square pulses applied to the
left edge of the computational domain. The period of the load
is θ = 4τ , where τ = 16 s is the duration of a single pulse. The
radian frequency of the pulse is ωs = 2π/θ = 0.0982 rad/s, where
the subscript s stands for “striping”. The duration of the pulse is

60 θ. Figure 12 shows the Fourier spectrum of the temperature
loading. We observe that the spectrum is dominated by spikes
occurring atmultiples ofωs.We limited the plot to ω̄ ∈ [0, 2.1ωs],
where the most pronounced spikes of the spectrum appear.

Tilted resonators are added as four layers (two above and two
below the crack). The trusses that link the resonators to the TL’s
nodal points are thermally insulating. The mass of the unit cell
containing a resonator is not equal to the mass of the exterior
triangular lattice nodal points. InTable 2, we list the thermoelastic
parameters used in the transient non-linear simulations. The
dispersion diagrams corresponding to the periodic lattices are
represented in Figure 13. Figure 13A represents the dispersion
surfaces for the triangular lattice outside the cracked strip.
Figures 13B,C show the dispersion diagrams for two triangular
lattices with resonators that differ from each other by the tilting
angle (47° and 78°, respectively). The structured lattices are
deliberately designed in such a way that ωs lies in the passband for
Figure 13B and in the stop band for Figure 13C, as highlighted
by the horizontal red lines.

From the transient solution of the thermoelastic problem
described above, we extracted the crack length Lc at several time
intervals. The results are represented in Figure 14 for differ-
ent normalized elongation thresholds ϵ. Figure 14A corresponds
to the lower tilting angle and Figure 14B to the higher one.
At the same elongation thresholds, the average crack speeds in
Figure 14A are slightly higher than those in Figure 14B. We
provide a qualitative interpretation of this phenomenon as follows.
The thermal shocks trigger elastic waves whose amplitudes vs
frequency at the left edge of the computational window differ
from Figure 12 by a multiplicative constant. When ωs is in the
passband, i.e., when ϑ0 = 78°, elastic waves can propagate along

TABLE 2 | Thermoelastic parameters for the ambient triangular lattice (third row) and for triangular lattices with resonators (first and second rows).

cℓ [N/m] m [kg] L [m] ℓ [m] cℓo [N/m] mo [Kg] ϑ0 [°] α [C−1]

Set 1, TLR 1 181.82 1 0.21 1 90.91 47 10−3

Set 2, TLR 1 181.82 1 0.21 1 90.91 78 10−3

TL 1 1 1 10−3

The parameter α= (dL/dT)/L is the longitudinal coefficient of thermal expansion, which applies to the triangular lattice links only. The remaining links are such that α= 0.

FIGURE 13 | Dispersion surfaces for a TL (panel (A)) and for two TLRs (panels (B,C)). Panel (A) has been obtained using the parameters listed in the third row of
Table 2. Panels (B,C) correspond to the parameters listed in the second and first rows of Table 2, respectively.
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A B

FIGURE 14 | Crack length Lc as a function of time for two configurations corresponding to two tilting angles. The hosting triangular lattice and the parameters for the
two lattices with resonators are reported in Table 2. (A) ϑ0 =47°. (B) ϑ0 = 78°.

FIGURE 15 | Instantaneous modulus of the displacement for the time step
t/θ ≈10 in the transient simulation represented in Figure 14B for the
elongation threshold ϵ = 5 · 10−3 (red dotted line). The crack tip “emits”
elastic waves that propagate along the coating.

the strip of tilted resonators (see Figure 13), resulting in a reduc-
tion of strain concentration at the crack tip compared to the
ϑ0 = 47° configuration. Equivalently, the strip of resonators acts
as a structured waveguide that channels the energy away from
the crack tip, as illustrated in Figure 15. On the contrary, when
ϑ0 = 47°, the waveguide action is being suppressed, which leads
to the field localization around the crack and hence the stronger
advance of the fracture through the lattice.

6. CONCLUDING REMARKS

We have identified several important applications of a novel
geometrically chiral micro-structure in the design of advanced
materials, used as filters/polarizers of elastic waves.

A transient advance of a crack, whose instantaneous snapshot
is given in Figure 15, has been studied in a micro-structured layer
where tilted resonators in the lattice are present. The analysis of
the transient crack advance illustrated by Figures 14A,B is linked
to the tunable dispersion properties of the lattices (see Figure 13)
and to the guiding features of the structured coating around the
crack, as shown in Figure 15.

The Dirac-like dynamic regime deserves a special mention.
It has been achieved and studied here in relation to the wave-
guiding and wave-defect interaction problems. Asymmetries in
the scattered elastic field have been identified for waves at the

Dirac-like frequency. This in turn empowers further studies in the
context of asymmetric crack initiationmechanisms (see Figures 8
and 9).

Shielding of a defect from an incident elastic shear wave has
been achieved in the regimes, which correspond to the complete
band-gap of the triangular lattice with resonators. In addition
to the usual low penetration of external waves within the pro-
tecting coating, we emphasize that edge waves occur around the
perimeter of the coating in our model (see Figure 10). This is
a “finger-print” of the lattice’s geometric chirality and cannot
be achieved by the straightforward adjustment of the triangular
lattice parameters, e.g., by introducing a contrast in the inertia or
stiffness.
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