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Structure–property relationships form the basis of many design rules in materials science,
including synthesizability and long-term stability of catalysts, control of electrical and opto-
electronic behavior in semiconductors, as well as the capacity of and transport properties
in cathode materials for rechargeable batteries. The immediate atomic environments (i.e.,
the first coordination shells) of a few atomic sites are often a key factor in achieving a
desired property. Some of the most frequently encountered coordination patterns are
tetrahedra, octahedra, body and face-centered cubic as well as hexagonal close packed-
like environments. Here, we showcase the usefulness of local order parameters to identify
these basic structural motifs in inorganic solid materials by developing classification
criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that
probes the response of order parameters to distortions in perfect motifs to validate our
approach. Subsequently, we highlight three important application cases. First, we map
basic crystal structure information of a large materials database in an intuitive manner
by screening the Materials Project (MP) database (61,422 compounds) for element-
specific motif distributions. Second, we use the structure-motif recognition capabilities
to automatically find interstitials in metals, semiconductor, and insulator materials. Our
Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties.
Third, the order parameters are reliable and compact quantitative structure descriptors
for characterizing diffusion hops of intercalants as our example of magnesium in MnO2-
spinel indicates. Finally, the tools developed in our work are readily and freely available
as software implementations in the pymatgen library, and we expect them to be further
applied to machine-learning approaches for emerging applications in materials science.

Keywords: materials science, crystal structure, descriptors, databases, interstitials, intercalation, diffusion

1. INTRODUCTION

Crystals consist of atoms that are arranged in periodic patterns in three dimensions (Sands, 1993).
This regular arrangement is called the crystal structure which, together with the chemical composi-
tion, dictates the properties of a material (Morris, 2007). Typically, the crystal structure is described
with approximations and abstractions (Morris, 2007). One approach is to focus on the immediate
surrounding of each atom (first coordination shell) and to use the number of surrounding atoms
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(coordination number) and the pattern (structure motif) for
structure description, the discipline of which was coined by
Werner and which is today known as coordination chemistry
(Werner, 1912). Among frequently occurring structure motifs are
tetrahedra, octahedra, body-center and face-centered cubic aswell
as hexagonal close-packed motifs (Figure 1).

The occurrence of basic structural motifs in crystalline com-
pounds has been shown to be important indictors for predict-
ing materials properties in several scientific and technological
contexts. Finding and quantitatively assessing primary building
blocks of zeolite materials (SiO4 tetrahedra) can be used to predict
the feasibility of synthesizing a (hypothetical) material (Li et al.,
2013; Mazur et al., 2015) and to rate their likelihood for indus-
trial deployment—for example, as a catalyst—(Zimmermann and
Haranczyk, 2016). Design rules for novel battery materials are
frequently developed employing information about the coordi-
nation pattern of the migrating ion (Rong et al., 2015) and the
host structure (Li et al., 2009; Wang et al., 2015). Models based
on structural fragments can be used to assess influencing fac-
tors to the superconductivity critical temperature (Isayev et al.,
2015). Interstitials in dense inorganic materials are frequently
found in positions where the interstitials assume tetrahedrally or
octahedrally coordinated positions (Decoster et al., 2008, 2009a,b,
2010a,b, 2012; Pereira et al., 2011, 2012; Amorim et al., 2013; Silva
et al., 2014).

Screening large databases for structure motif occurrence has
hence the potential to find new candidate materials for various
emerging applications. The inherent difficulty is to develop recog-
nition tools that allow for reliable and rapid motif identification.
There are two basic steps involved in the (automatic) identifica-
tion of a coordination motif around a given atom: (i) neighbor
finding and (ii) pattern matching. Neighbors can be found on
the basis of interatomic distances—possibly in combination with
typical bond lengths (Brunner, 1977; Hoppe, 1979; O’Keeffe and
Brese, 1991)—or by a topology-based approach (Dirichlet, 1850;
Voronoi, 1908; Mickel et al., 2013). For pattern matching, there
exist two popular conceptual approaches: (i) using Monte Carlo
(MC) moves (Shetty et al., 2002) and (ii) using order parameters
(Steinhardt et al., 1983; Peters, 2009; Zimmermann et al., 2015).
In the MC approach, an ideal structure motif is placed onto a
central atom and its neighbors, and the ideal motif ’s position
and size are varied to yield a small root mean square deviation
between the positions of the ideal motif and the neighbors of the
central atom. In the systematically expandable (Santiso and Trout,
2011) order parameter approach, the bond angles of a given motif
are used in mathematical functions to directly yield a measure

FIGURE 1 | Basic structural motifs that frequently recur in various materials
databases (from left to right): tetrahedron (tet), octahedron (oct) as well as
body-centered cubic (bcc), face-centered cubic (fcc), and hexagonal close
packed (hcp) motifs. The central atom and bonds are shown in orange,
whereas the coordinating atoms are displayed in blue.

of motif resemblance, thus, being a deterministic method. Note
that the MC-based approach is expected to be much more time-
consuming than the order parameter route.

We here develop an effective and computationally efficient
approach for finding atomic neighbors and identifyingmotif types
in inorganic materials using order parameters (Steinhardt et al.,
1983; Peters, 2009; Zimmermann et al., 2015) for pattern match-
ing. Furthermore, we introduce a testing framework (Einstein
crystal test rig) for validation of any such motif-finding effort. We
then apply our approach to the database provided by theMaterials
Project (Jain et al., 2013), where we use well-defined materials
subsets for testing. Finally, the method is used to generate crystal
structure representations of the Materials Project database, to
determine potential interstitial sites in several materials, and to
quantitatively characterize the coordination environment change
along the jump-diffusion path of an intercalating ion.

2. METHODS

We focus on local structural motifs that are based on a central
atom and its first coordination shell. The two basic steps in
identifying structural motifs are therefore:

1. finding bonded neighbors and
2. motif recognition.

More complex patterns such as those involving second-shell
neighbors and cyclicmotifs (rings)would require amore extensive
analysis of the connectivity between atoms.

2.1. Bonding Identification
Bonds are determined on the basis of the distance, di,j, between
two atoms i and j:

di,j =∥ pi − pj ∥, (1)

where pi is the position of atom i. We systematically investigate
three different neighbor-findingmethods, all of whichworkwith a
site-specific cutoff distance, rcut,i. In the firstmethod (“min_dist”),
we determine the (absolute) distance to the nearest neighbor,
dmin,i, of a given site i and, subsequently, we consider all additional
sites that are at maximum rcut,i = (1+ δ)dmin,i apart from site i
(Figure 2), where δ denotes a (relative) neighbor-finding tolerance
(distance). The other two approaches work similarly, except for
the fact that we use dimensionless distances, d̃i,j = di,j/li,j,
where l is a length being characteristic for the considered pair of
atoms i and j. The following two approaches for the characteristic
length are tested: the sum of atom (or, ion) radii (Shannon (1976);
“min_VIRE”: li,j = ratomi + ratomj ) and the typical bond length
(O’Keeffe and Brese (1991); “min_OKeeffe”: li,j = lbondi,j ). The
radii are calculated with a valence-ionic radius estimator (VIRE)
implemented in pymatgen (Ong et al., 2013). The estimator uses a
maximum a posteriori estimation method of the oxidation state
of each site based on bond-valence sums (O’Keeffe and Brese,
1991). Furthermore, a first estimate of the coordination number is
inferred from Voronoi decomposition (Dirichlet, 1850; Voronoi,
1908) as the number of faces making up the polyhedron, weighing
each face’s contribution in proportion to its solid angle subtended
by that face at the center (O’Keeffe, 1979). The oxidation state and
coordination number estimates are subsequently used to calculate
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FIGURE 2 | Atoms that are bonded (blue spheres) to a given central site i
(orange) are identified on the basis of the nearest-neighbor distance, dmin, i

(absolute or dimensionless) and an a priori chosen tolerance, δ, thus, defining
a site-specific cutoff radius rcut, i = (1+ δ)dmin, i.

the atom radius on the basis of the ionic radius list provided
by Shannon (1976). In the case when no oxidation states can
be assigned, the estimator uses the atomic radii as provided by
pymatgen (Ong et al., 2013).

For screening the equilibrium structures found in the Mate-
rials Project database, we will later use a single global tolerance,
δ, that will be optimized on the basis of a diverse structure
test set. By contrast, both the interstitial finding and the ionic
diffusion path characterization proceed with an increasing tol-
erance (from δ = 0.1 in steps of 0.1 until a motif is found or
δ = 0.8 reached) to find neighbors in these (non-equilibrium)
configurations.

Finally, note that the “min_VIRE” and “min_OKeeffe”methods
may seem more reliable because they introduce well-established
chemical properties (atomic/ionic radii and bond lengths, respec-
tively) that are directly connected to the bonded atoms. But our
optimization data suggest that themore ad hoc “min_dist”method
performs in fact best.

2.2. Motif Assessment
Once all neighbors of a central atom i are identified (Figure 3), the
coordination pattern is evaluated. We use analytic order param-
eters (Steinhardt et al., 1983; Peters, 2009; Zimmermann et al.,
2015) to perform the pattern recognition. The order parameters
are typically designed in such a way to give a numerical value of
1 if the coordination pattern perfectly resembles the target motif
and 0 if it is very different from the target motif.

2.2.1. Order Parameters
Order parameters (OPs), q, are mathematical constructs which
aim to provide a numerical measure of the immediate local envi-
ronment around an atom. The simplest OP, qCN, is a coordination
number (CN (Sprik, 1998)),

qCN =
∑
j̸=i

S
(
∥ pj − pi ∥

)
, (2)

obtained from counting neighbors within a cutoff radius rcut,i
around a central atom i. S is a weight that is 1 if an atom j is within a

FIGURE 3 | Definition of atom indices, i, j, k, and m, as well as angles, θ

(polar) and φ (azimuth), which are used in the computation of the order
parameters introduced by Peters (2009) and Zimmermann et al. (2015).

distance di,j < rcut,i of atom i and S= 0 otherwise. The next level of
sophistication is a distance-weighted approach such as using the
Fermi function (Sprik, 1998):

qCN,Fermi =
1

exp[κ(di,j − rcut,i)] + 1
, (3)

where κ−1 defines the transition width in which the contribution
of an atom to the OP changes fastest to go from around 1 toward 0
asdi,j increases (Sprik, 1998).Note that neither of these approaches
provides information about how closely an environment resem-
bles a given structural motif.

Bond-orientational order parameters, introduced by Steinhardt
et al. (1983), can, to some extent, be used to discern different
structural motifs (Mickel et al., 2013). Thermal motion and other
small distortions (e.g., caused by relaxation to the ground state of a
compound from an ideal initial prototype structure) can, however,
yield overlap between the OP distributions so that identification
of the motif type becomes difficult. Hence, there is a need to more
reliably identify structural motifs with order parameters.

Peters (2009) and Zimmermann et al. (2015) have introduced
order parameters based on pattern-matching ideas put forward by
Shetty et al. (2002). The OPs specifically recognize body-centered
cubic-like (Peters, 2009) as well as tetrahedral and octahedral
environments (Zimmermann et al., 2015). The pattern-matching
ansatz places a reward on local environments that are similar to
the target structure, thus, resulting in a value, qi, of (close to) 1
for perfect resemblance. When the surrounding atoms are not in
a configuration resembling the perfect prototype motif, penalties
force the order parameter to attain values around zero. The pattern
matching is achieved by setting up a spherical coordinate system
around a central atom iwith a subset of neighboring atoms j and k
(Figure 3). This allows the determination of the remaining neigh-
bors’ (m, . . .) polar angles, θ, and azimuth angles, φ. If a neighbor
is not located at angles that are commensurate with the expected
positions in the underlying structure motif, the decline in reward
for being away from the perfect position follows a Gaussian func-
tion. Conversely, a full reward is given if any expected remaining
position is exactly assumed. The procedure provides rotationally
invariant order parameters because it is applied to each neighbor j
being used as theNorth pole position and any remaining neighbor
k for defining the prime meridian (cf., Figure 3); all possible
combinations are then averaged. Below, we provide the definitions
of the OPs that we use in this work.

Frontiers in Materials | www.frontiersin.org November 2017 | Volume 4 | Article 343

http://www.frontiersin.org/Materials
http://www.frontiersin.org
http://www.frontiersin.org/Materials/archive


Zimmermann et al. Assessing Motifs Using Order Parameters

The tetrahedral order parameter, qtet, is given by (Zimmermann
et al., 2015):

qtet =
1

Nngh(Nngh − 1)(Nngh − 2)

Nngh∑
j̸=kexp

[
−(θk − 109.47◦)2

2 ∆θ2

] Nngh∑
m ̸=j,k

cos2(1.5 φ)exp
[
−(θm − 109.47◦)2

2 ∆θ2

] , (4)

where Nngh denotes the number of neighbors bonded to the
central atom i in a motif, θk is the polar angle formed between the
bonds of neighboring atoms j and k with their mutually bonded
atom i, φ is the azimuth angle between bond i−m with the plane
spanned by i, j, and k, and ∆θ = 12° a parameter controlling
the reward loss for increasingly non-ideal positions, which was
optimized to distinguish tetrahedral and octahedral environments
in NaCl wurtzite and conventional rocksalt (Zimmermann et al.,
2015). Note that we use a slightly different variant of qtet as in
the original formulation [cos2(1.5 φ) instead of cos(3 φ)] to avoid
negative values.

The octahedral order parameter, qoct, is given by (Zimmer-
mann et al., 2015):

qoct =
1

Nngh[3 + (Nngh − 2)(Nngh − 3)]
Nngh∑

j ̸=k

3 H(θk − θthr) exp
(

−(θk − 180◦)2

2 ∆θ2
1

)
+

 Nngh∑
m ̸=j,k

H(θthr − θk) H(θthr − θm) cos2(2 φ) exp

(
−(θm − 90◦)2

2 ∆θ2
2

) , (5)

where H(x) denotes the Heaviside function which is 1 if the
argument x> 0 and 0 otherwise, ∆θ1 = 12°, ∆θ2 = 10°, and θthr
is a threshold angle to distinguish second neighbors that are
considered to be either in a “South pole” configuration or in a
“primemeridian” position; we set this threshold to 160°. Note that
we change the definition of qoct in a similar manner as we have
done for qtet to avoid negative values.

The body-centered cubic order parameter, qbcc, is given by
(Peters, 2009):

qbcc =
1

Nngh[6 + (Nngh − 2)(Nngh − 3)]
Nngh∑
j̸=k

{
6 H(θk − θthr) exp

(
−(θk − 180◦)2

2 ∆θ2
1

)

+H(θthr − θk)
Nngh∑
m̸=j,k

cos(3 φ) 1.6 θm − 90◦

∆θ2
exp

(
−(θm − 90◦)2

2 ∆θ2
1

)
sgn(θk − 90◦)

}
, (6)

where ∆θ1 = 12°, ∆θ2 = 19.47°, and sgn(θ) is the signum func-
tion which is −1 for θ < 0, 0 if θ = 0, and 1 if θ > 0.

The mathematical definitions of the motif-specific order
parameters qtet, qoct, and qbcc in equations (4)–(6) follow a mutual
recipe:

1. The innermost sum gives the contribution of how closely
neighbor m is located at its expected position with respect
to polar angle, θm, and azimuth angle, φ. For the azimuth
angle, squared cosine functions are preferably used to pinpoint
locations around a circle to ensure that the OP strictly gives
positive values.

2. The outermost sum accounts for neighbor k’s match with the
expected polar angle, θk. The Gaussian functions are used with
the polar angles to penalize deviations fromexpected positions.

3. The preceding factor normalizes the sums to give values
between 0 and 1 based on combinatoric considerations.

For qoct and qbcc, there is furthermore the need to distinguish
whether or not neighbor k is in (approximate) South pole position
via the Heaviside function H(θk − θthr). And, qbcc also requires
incorporating the alternating pattern of subsequent neighbors
m being above and below the equator in bcc via the term
1.6× sgn(θk − 90°)× (θm − 90°)/(∆θ2).

Finally, we use the bond-orientational order parameters (Stein-
hardt et al., 1983) q4 and q6 for identifying close-packed
motifs—fcc and hcp—(Ackland and Jones, 2006):

qi =
1

Nngh

Nngh∑
j=1

Yim

(
θ(pj), φ(pj)

)
, (7)

whereYim are the spherical harmonics of degree i. Note that (i) the
angles θ and φ are here with respect to a fixed frame of reference
(Jungblut et al., 2013) and that (ii), while between 0 and 1, the
values of the bond-orientational order parameters are typically not
close to one for anymotif, which is different to the behavior of qtet,
qoct, and qbcc. Despite the fact that the bond-orientational order
parameters q4 and q6 are frequently used in nucleation studies
involving bcc, fcc, and hcp environments (ten Wolde et al., 1996;
Peters, 2009; Jungblut et al., 2013; Limmer and Chandler, 2013),
they are not highly reliable indicators to distinguish between all
of these motifs when distortions (thermal noise) are introduced
(Gasser et al., 2003). For this reason, we extensively use here those
order parameters that were specifically designed for a given motif
type (e.g., qtet for tetrahedra).

2.2.2. Motif-Recognition Criteria
Motif recognition is typically achieved on the basis of a threshold
approach (Peters, 2009; Zimmermann et al., 2015): if a given order
parameter, qi, is larger than an appropriate threshold, qi ,thr, the
coordination pattern is confirmed. Because of the design of these
OPs, a threshold of 0.5 is often a reasonable a priori choice.
The motif-specific order parameters qtet, qoct, and qbcc should
then be ideally usable as stand-alone identifiers for tetrahedral,
octahedral, and bcc-like coordination environments, respectively.
However, Table 1 indicates that such an approach to defining cri-
teria for motif recognition is not effective. For example, a site in a
diamond structure would be identified as having both tetrahedral
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and bcc-like coordination; this is not surprising because the bcc
motif can be viewed as two point-symmetric tetrahedra. There-
fore, slightly more complex criteria must be developed to accu-
rately distinguish structure motifs on the basis of order parameter
values.We start with following set of criteria that allows us to iden-
tify all motifs separately and unambiguously for perfect prototype
structures:

qtet > 0.5 tetrahedral, (8)
qoct > 0.5 octahedral, (9)
qbcc > 0.5 and qtet < 0.5 bcc, (10)
q6 > 0.5 and qtet, qoct, qbcc < 0.5 fcc, (11)
q6 < 0.5 and qtet, qoct, qbcc < 0.5 hcp. (12)

The fourth-order bond-orientational order parameter q4 is
hence not necessary to identify all motifs. However, as we will
explain later, small modifications to these criteria are needed to
more accurately distinguish non-ideal motifs. In particular, we
will merge the fcc and hcp criteria into a single close-packed
rule (q6 > 0.4 and qtet, qoct, qbcc < 0.4), and we will decrease the
threshold of the tetrahedral order parameter to 0.3.

2.2.3. Validation
Validation is essential for reliable quantitative structure–property
relationships (QSPRs) (Tropsha et al., 2003). We follow a three-
step hierarchical approach for our structure-motif assessment on
the basis of order parameters using perfect prototype structures.
First, the responses of the tetrahedral and octahedral order param-
eters are measured when a single neighbor in the corresponding

TABLE 1 |Coordination numbers and order parameter values for different prototype
structures.

Diamond Cubic bcc fcc hcp

CN 4 6 8 12 12
qtet 1.0 0.014 0.143 0.030 0.030
qoct 0.045 1.0 0.146 0.078 0.090
qbcc 0.728 0.333 0.975 0.000 −0.039
q4 0.509 0.764 0.509 0.191 0.097
q6 0.629 0.354 0.629 0.575 0.485

prototype structure is subjected to defined perturbations. We
focus here on qtet and qoct because those motifs are particularly
important throughout materials science and in corresponding
design rules. Second, we randomly, but systematically, perturb the
locations of sites in all prototype structures to mimic the effect of
small distortions in equilibrium structures on all order parame-
ters. This provides a more detailed insight into the sensitivity of
order parameters to motif distortion, and it provides the neces-
sary data for the next validation level. Third, we calculate motif-
recognition likelihoods based on the histograms of the second
validation level, which provides a first reasonable value of the
tolerance, δ, that is later used for neighbor finding in materials
from a database.

In Figure 4, we display the response of the tetrahedral
(Figure 4A) and octahedral (Figure 4B) order parameter to per-
turbations of a single tagged neighbor in the respective perfect
structure motif along the azimuth (orange) and polar angle (blue)
as well as along an intermediate path (purple). The order param-
eters decline from 1 almost linearly to approximately 0.37 and 0.8
for polar and azimuth angular perturbations up to 27° and 18°
for qtet and qoct, respectively. The response along the intermediate
perturbation path is similar. This indicates that the OPs can
be used as (linear) measures of tetrahedrality and octahedrality
for non-negligible perturbations of single neighbors, making the
tetrahedral OP, for example, also attractive for structure analysis
of liquid and solid water phases (Tao et al., 2017). Figure 4
indicates that configurations with two atoms nearly overlapping
score relatively high, which, however, does not pose a problem
because those arrangements are very unlikely (i.e., two atoms will
not be present at such close distances).

Next, we apply Gaussian-distributed random perturbations
to all sites in the prototype structures via the polar form of
Box–Muller transforms (Box and Muller, 1958) as implemented
in numpy (van der Walt et al., 2011). The perturbations resemble
the spatial distribution behavior of atoms in Einstein crystals
(Einstein, 1906; Frenkel and Ladd, 1984; Aragones et al., 2012),
the procedure of which we therefore call Einstein crystal test rig.
Each lattice atom oscillates independently around its equilibrium
position with a distribution width of σES. We refer the reader
to the Supplementary Material (Section 1.1 in Supplementary
Material) for more details on the Einstein crystal calculations.

A B

FIGURE 4 | Responses of (A) tetrahedral, qtet, and (B) octahedral order parameter, qoct, to well-defined perturbations of a single neighbor in the corresponding
perfect structure motif along the azimuth (orange) and polar (blue) angle as well as an intermediate path (purple). Peaks at intermediate angles indicate overlapping
atoms.
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FIGURE 5 | Relative frequency distribution, p, of all four order parameters qtet,
qoct, qbcc, and q6 in all five prototype structures diamond, cubic, bcc, fcc, and
hcp when the positions of atoms are subject to Einstein crystal-like
perturbations away from their ideal location (here: Gaussian width of
perturbations σES/did = 0.02, and cutoff radius for neighbor finding relative to
the ideal neighbor distance in the perfect prototype structure rcut/did = 1.1).
Note that the small intermediate peak at qbcc =0.35 obtained with the bcc
prototype structure (central panel) is caused by configurations that have a
non-ideal number of neighbors (qCN >8)—not by the order parameter
definition itself.

Figure 5 indicates that the OPs respond to Einsteinian perturba-
tions of magnitude σES/did = 0.02 and a relative cutoff radius of
rcut/did = 1.1 with relative frequency distributions of finite width.
The distributions confirm the validity of both: (i) our proposed
structure motif-recognition criteria and (ii) that qtet and qoct are
in particular well-behaved measures for the degree of a given
motif. The data, however, also suggest that the ability to distin-
guish between fcc and hcp on the basis of q6 will be limited.
Therefore, we redefine those structure motif criteria (equations
(11) and (12)) to provide a single criterion for close-packedmotifs
(cp= fcc+ hcp):

q6 > 0.4 and qtet, qoct, qbcc < 0.4 fcc + hcp. (13)

In this context, the approach by Honeycutt and Andersen
(1987) is worthwhile noting, which compresses information about
local environments—specifically, the number of shared near
neighbors of a pair of atoms and the connectivity among the
shared neighbors—into a four-integer index. This index can, how-
ever, not easily be used as an automatic motif recognition tool for
hcp–fcc distinction because of two reasons. First, it requires visual
inspection of the index-underlying graphs because the fourth

integer is an arbitrary enumeration (cf., indices 1,421 and 1,422
occurring in fcc and hcp). Second, the index is computed for
pairs of atoms so that the index itself cannot be used to directly
characterize the entire coordination environment of a single atom.
We are currently working toward solving the hcp–fcc distinction
problem via definition of additional order parameters, resulting
in an order parameter feature vector that might enable distinction
between hcp and fcc.

To quantitatively assess our structure-motif recognition capa-
bilities, we systematically expand the Einstein crystal sensitivity
test approach to various distortion degrees,σES, and relative cutoff
radii, rcut/did. For this purpose, we use following basic likelihood
function (Sivia, 2012), L:

L =
Nstr∏
i=1

Nmot∏
j=1

[
δKr
i,jNi,j + (1 − δKr

i,j )(1 − Ni,j)
]/

Nsamp, (14)

whereNstr andNmot are the number of tested prototype structures
and motifs, respectively (both are 4 here: tet, oct, bcc, and cp),Ni,j
is the number of times that structure i is recognized as consisting
of motif j of all Nsamp samples for i and j (here: Nsamp = 1,000),
and δKr

i,j is the Kronecker delta function, which is 1 if i= j and 0
otherwise. Since we have merged fcc and hcp to one cp motif, we
average data from fcc and hcp evaluations so that each of the four
regrouped motifs (tet, oct, bcc, and cp) has an equal weight on
L. The likelihood function thus represents the joint probability to
do both: to correctly identify true motifs and to correctly reject
false motifs. Furthermore, the particular form of L as products
of the separate motif and structure likelihoods more stringently
requires that all motifs in all structures are correctly identi-
fied and rejected, respectively, to an acceptable degree. A mere
arithmetical mean would favor compensation effects in which
high recognition scores achieved with one motif and/or struc-
ture would balance entirely unsuccessful recognitions with low
scores.

There exists a very localized optimal region of parameters
where L is maximal (close to 1), which is found in the vicinity
of small perturbations and small relative cutoff radii (Figure 6A).
We expected a more broad distribution at vanishing degrees of
distortion, which is, in fact, observable once the results from
the bcc prototype structure are removed (Figure 6B). This is
a reflection of the well-known issue that, in the bcc structure,
second nearest neighbors are close to nearest neighbors (cf.,
Mickel et al. (2013) and Figure 5). As a result, the bcc issue sets
certain limits to using a global tolerance for successful neighbor
finding.

3. RESULTS

We now apply the validated order parameters based structure
motif recognition criteria and the order parameters themselves
(as a degree of perfect-motif resemblance) to automatically find
structure motifs in a large materials database (Jain et al., 2013),
determine interstitials (Broberg et al., 2016), and analyze the
coordination environment along solid-state jump-diffusion paths
(Rong et al., 2015).
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A B

FIGURE 6 | Likelihood, L, to successfully identify the correct structural motif in any one of the five prototype structures (diamond, cubic, bcc, fcc, and hcp) with
varying degree of relative distortion, σES/did, and varying relative cutoff radius, rcut/did, for finding bonded nearest neighbors: (A) all structures and (B) without bcc
structure.

3.1. Motif Recognition in Materials
Project Database
We aim to apply our structure-motif recognition approach on
the entire Materials Project (Jain et al., 2013) database, which
currently contains over 67,000 inorganic materials.1 The bulk
of Materials Project’s (MP’s) database has originated (Jain et al.,
2013) from the Inorganic Crystal Structure Database (Bergerhoff
et al., 1983; Belsky et al., 2002). Prior to dissemination, structures
are relaxed with electronic density functional theory (Hohenberg
andKohn, 1964; Kohn and Sham, 1965), typically using theVienna
ab initio Simulation Package (VASP (Kresse and Hafner, 1993)) in
the generalized gradient approximation (GGA) with+U correc-
tions for transition metal oxides.

3.1.1. Optimizing Neighbor Finding and Motif Criteria
Before turning to the results from the entire database, we deter-
mine the most suitable neighbor-finding method and the optimal
tolerance parameter, δ, given a reasonable test (sub)set from the
MP database. Our initial test set, for which the number of dif-
ferent motif sites, Ni, is well known, consists of materials that
are members of the structure groups listed in Table 2. Materials
belonging to a given structure group were found by scanning
the MP database for structures that are similar to a reference
structure. Similarity between structures is hereby determinedwith
a structure matcher algorithm implemented in pymatgen (Ong
et al., 2013) using default parameters, except for turning off species
matching (i.e., we match the frameworks of the structures). The
references were ideal prototype structures in the case of unary
materials (diamond-like, simple cubic, bcc, fcc, and hcp) and
the canonical structure in the MP database for all other materi-
als (zinc blende: mp-10695; rocksalt: mp-22862; CsCl-like: mp-
22851; MgAl2O4-spinel: mp-3536), respectively. For the resulting
1,025 test structures, we calculate the order parameter values qCN,
qtet, qoct, qbcc, and q6 of all Nsites sites in each structure. Then, we
determine the numbers of different structure motifs (Ntet, Noct,
Nbcc, and Ncp) in each material on the basis of our recognition

1Current numbers are available on the Materials Project website: http:
//materialsproject.org/.

TABLE 2 | Structure groups defining the initial test set.

Structure group Number of materials Number and type of motifs

Diamond 5 Ntet =Nsites

Simple cubic 8 Noct =Nsites

bcc 48 Nbcc =Nsites

fcc 58 Ncp =Nsites

hcp 23 Ncp =Nsites

Zinc blende 61 Ntet =Nsites

Rocksalt 305 Noct =Nsites

CsCl 340 Nbcc =Nsites

Normal spinels 177 Ntet =Nsites/7
Hosseini (2008) Noct = 2×Nsites/7

criteria (equations (8)–(10) and (13)) as well as the number of
times that a site was assigned tomore than a single structuremotif
(Nmulti).

The different neighbor-finding settings are compared by aver-
aging the fraction, prec,i, of correctly recognized number of
expected motifs j, in each structure i, Nj,i,

prec,i = Nj,i/Nsites,i, (15)

overall 1,025 test structures. Note that we put a very stringent
criterion on multiple assignments: if a structure contains a sin-
gle site that is assigned to different motifs, the structure has no
positive contribution on the recognition fraction (i.e., prec,i = 0).
Furthermore, we address the problem that, in spinels, the target
number of tetrahedral and octahedral sites, respectively, can be
overpredicted by using following functional form for pspinel

rec,i :

pspinel
rec,i = 1 −

∣∣∣∣13 − Ntet,i/3
Nsites,i/7

∣∣∣∣ +
∣∣∣∣23 − Noct,i/3

Nsites,i/7

∣∣∣∣ . (16)

The results in Figure 7 indicate that all three neighbor-finding
approaches yield high recognition rates (>85%) for the chosen
test set if the respective tolerance parameter is small enough
(≪0.1). Furthermore, the prediction quality decreases precipi-
tously when the neighbor-finding tolerance, δ, reaches a value
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of around 0.1 for any of the three methods. The best per-
forming method (p̄rec = 100%) is the minimum distance-based
approach with 0.03≤ δ ≤ 0.08. For all following analyses, we use
this method where we, however, employ a slightly larger tolerance
(δ = 0.1) because this tolerance yields a very low average coor-
dination number of 3 for all sites in the entire Materials Project
database.

Apart from being effective, the minimum distance-based
neighbor-finding method is also computationally exceptionally
efficient. Calculating all order parameters requires only 0.026 s
per site on a compute node of NERSC’s2 Edison cluster (time was
averaged over all sites in the MP database). That is, analyzing a
structure with 100 sites should take 2–3 s, assuming the entire
procedure roughly scales linearly with the number of sites. Note (i)
that we decrease the tetrahedral OP threshold to 0.3 because tests
on Jahn–Teller active structures suggest 0.5 being too strict and
(ii) that we also require the coordination number, qCN, to match
the ideal motif value. Thus, the final set of rules that we use for

2NERSC: National Energy Research Scientific Computing Center (http://www.
nersc.gov/).

FIGURE 7 | Average fractions of sites for which the expected motif types are
correctly predicted, p̄rec, as functions of the tolerance parameter, δ, involved
in the respective neighbor-finding method. Three different neighbor-finding
methods are tested: minimum distance (blue squares), minimum relative
distance using a valence-ionic radius estimator (VIRE; purple circles) as
implemented in pymatgen (Ong et al., 2013), and minimum relative distance
using the bond-valence parameters according to O’Keeffe and Brese (1991),
orange triangles.

motif determination across the entire Materials Project database
are:

qCN = 4 and qtet > 0.3 tetrahedral, (17)
qCN = 6 and qoct > 0.5 octahedral, (18)
qCN = 8 and qbcc > 0.5 and qtet < 0.5 bcc, (19)
qCN = 12 and q6 > 0.4 and qi < 0.4 fcc + hcp. (20)

InAlgorithm 1, we also provide a pseudocode implementation
of our motif recognition method.

3.1.2. Relative Motif Occurrence
The MP database screening results are presented in Figure 8A as
relative motif occurrences for each element separately, and they
agree with several previous observations (Cotton and Wilkinson,
1980; Brown, 1988). For example, Li occurs similarly often as a
tetrahedral site as it occurs as an octahedral site, but bcc-like Li
motifs are rare and close-packed ones are absent. These motif
frequencies follow trends of Li for 4-, 6-, 8-, and 12-fold coordina-
tion that were already established by Brown (1988). Furthermore,
we see comparably good agreement between motif occurrence
and Brown’s coordination statistics for Na, Ca, Ba, Mn, Fe, Co,
B, As, and La. Examples with some differences but still overall
favorable agreement include K, Sr, Pb, Ni, Cd, Sb, and Bi, whereas
we obtain very different dominant motif vs coordination number
distributions for Tl, Hg, Al, and In. In light of these differences,
we note that our material set is far larger (and more diverse) than
the set that Brown used; there is a 100-fold difference between
the number of sites that we have analyzed (>15,000,000) in
comparison to the previous study by Brown (1988) (14,000).

To continue the discussion of how our structure motif data
relate to results from literature and common wisdom we note
that (i) S and Se occur in tetrahedral coordination, (ii) S, Se, and
Te can be seen in octahedra, but (iii) 8-fold coordination only
occurs for Te and (iv) close-packed motifs of S, Se, and Te are not
known (Cotton andWilkinson, 1980). Silicon is known as a strong
tetrahedron-former (e.g., in zeolites (Baerlocher et al., 2007)).
This is confirmed when comparing both panels in Figure 8;
Figure 8B gives the frequency at which a motif (here: tet) occurs
relative to all motifs—recognizable and unrecognizable—with the
same coordination number (here: 4). Figure 8B indicates that 86%
of all 4-fold coordinated Si motifs are tetrahedra. Surprisingly,

ALGORITHM 1 | Motif recognition.

1: Procedure GETMOTIFTYPE(structure, index)
2: Let dmin be← distance of closest neighbor to site with index in structure
3: Let neighs be a new site list← sites within radius of 1.1 dmin from site index
4: Let ops be a new dictionary← all order parameters obtained for site index and its neighs
5: if ops[“cn”]= 4 and ops[“tet”]>0.3 then
6: return “tetrahedral”
7: else if ops[“cn”]= 6 and ops[“oct”]>0.5 then
8: return “octahedral”
9: else if ops[“cn”]= 8 and ops[“bcc”]>0.5 and ops[“tet”]<0.5 then

10: return “bcc”
11: else if ops[“cn”]= 12 and ops[“q6”]>0.4 and ops[“tet”], ops[“oct”], ops[“bcc”]<0.4 then
12: return “closed packed”
13: else
14: return “unrecognized”
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A B

FIGURE 8 | (A) Relative occurrences of motifs (tetrahedra, octahedra, bcc-like, and close packed) for each element in the Materials Project (MP) database; (B)
relative occurrence of each recognizable motif (e.g., tet) to all local environments with the corresponding coordination number (e.g., 4). Note that each site
contributes with a factor of 1/Nsites, where Nsites denotes the total number of sites (atoms) found in the primitive unit cell of the material in question (i.e., the
frequencies are materials weighted, not site-weighted). Also, note that we filtered out 9% of the MP structures because we discarded noble gas-containing materials
and materials that seem very unstable (energy above the convex hull of 0.2 eV per atom or more); in addition, we exclude the results for hydrogen sites. Section 1.2 in
Supplementary Material lists how many sites of a given element were used for generating these figures.

the ratio at which lithium occurs in 4-fold coordination as a
tetrahedron is low (47%). By contrast, the low tetrahedral coor-
dination fraction of Ag and Cu motifs (both 41%) was expected
because these elements are frequently found in square-planar
environments.

An intriguing observation for us is that the known decline in
tetrahedral site preference (Navrotsky and Kleppa, 1967; Burdett
et al., 1982; Rong et al., 2015) as we go from Li over Mg to Ca
in spinel is reflected in the MP database as a whole. The relative
occurrence of Li as a tetrahedron among all 4 recognizable motifs
is is 42%, Mg 20%, and Ca 13%. Zn typically takes a place between
Li and Mg in spinels (Rong et al., 2015), which is, however,
different in the MP database (46%).

The unexpected motif prevalences that are observed for
some elements may hint at the fact that our neighbor find-
ing method could benefit from further study and improvement.
However, the overall approach represents a fast, fully auto-
matic method to determine coordination environment motifs
over large crystal databases that is relatively trustworthy and
intuitive.

3.2. Interstitial Finding
Interstitials in dense inorganic materials are frequently found at
sites that resemble basic structural motifs. Tetrahedral and octa-
hedral coordination environments are particularly prevailing in
isolated (i.e., non-complex) interstitials. This is evidenced by a
series (Decoster et al., 2008, 2009a,b, 2010a,b, 2012; Pereira et al.,
2011, 2012; Amorim et al., 2013; Silva et al., 2014) of β− emission
channelingmeasurements (Hofsäss and Lindner, 1991; Silva et al.,
2013) which were conducted at CERN’s ISOLDE beamline. Those
measurements inspired us to develop our Interstitialcy Finding
Tool (InFiT), which is already used by the Python Charged Defect
Tools (PyCDT)—a Python package for automatic setup and anal-
ysis of isolated charged defect calculations (Broberg et al., 2016).

The key idea of InFiT is to perform a systematic structure-motif
search on a regular grid (∆l≈ 0.2 Å) that is spanned in the unit cell
of a periodic material (Figure 9). For each point of the grid that

FIGURE 9 | The Interstitialcy Finding Tool (InFiT) performs structure-motif
recognition on a regular grid in the unit cell.

is not closer than 1Å to any crystal atom, the algorithm (Broberg
et al., 2016) goes through following steps:

• Place an atom of the target interstitial type at this trial point.
• Perform a loop of increasing neighbor finding tolerance, δ,

starting from 0.1 in steps of 0.1 up to δ = 0.8:

• Get all neighbors and determine motif type.
• If the motif type is recognized, consider the trial position for

further evaluation, store the corresponding order parameter
value, qi, and stop the δ-loop.

After a list of tentative interstitial sites is thus created, two
pruning measures are taken. First, a distance-based clustering of
the trial sites is performed. From each resulting motif-specific
cluster, only one site is retained: the one with the highest order
parameter value for the given motif type. Second, the (typically
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TABLE 3 | Interstitials found in primitive unit cells.

Host MP ID Volume Grid size Initial interstitals After clustering After symmetry pruning Computation timea

V/[Å3] Na×Nb×Nc Ninter
init Ninter

clust Ninter
sym t/[s]

Ge mp-32 47.9 20×20×20 2 2 1 90
GaAs mp-2534 47.5 20×20×20 20 2 2 96
Fe mp-13 11.6 12×12×12 156 9 2 35
Cu mp-30 11.8 12×12×12 120 3 2 59
Ti mp-46 34.7 14×14×23 270 9 5 72

Details of the detected interstitial locations are presented in Figure 10.
aThe computation time was determined on an Intel Core i7-4578U CPU at 3GHz of a 2014 Macbook Pro.

few) remaining sites are tested for (and pruned by) symmetrical
equivalence.

There exists one symmetrically distinct tetrahedral interstitial
site in diamond-like materials (Decoster et al., 2008), bcc (Selet-
skaia et al., 2005), fcc (Rosato et al., 1989), as well as hcp (Igarashi
et al., 1991), where the latter three prototype structures also have
each one symmetrically distinct octahedral site. Furthermore, 2
tetrahedral sites are (geometrically) possible in zinc blende-like
materials, each one with different (host) atom coordination.
Therefore, we use Er in diamond-like Ge (cf., Decoster et al.
(2008)), Mn in sphalerite-like GaAs (cf., Pereira et al. (2011)), He
in iron (bcc structure; cf., Seletskaia et al. (2005)), self-interstitials
in Cu (fcc structure; cf., Rosato et al. (1989)), as well as O in
α-Ti (hcp structure; cf., Yu et al. (2015)) to test our interstitial
finding tool InFiT. The results in Table 3 and Figure 10 indicate
that, apart from hcp-Ti, we always find the correct number and
type of sites. For hcp-Ti, we find 2 similarly looking tetrahedral
interstitials, which only get identified as symmetrically equivalent
when the corresponding symmetry threshold is increased
significantly (i.e., to three times the largest distance between any
two face-connected grid points). As for the octahedral interstitials
in Ti, we find the expected interstitial with a usual value of the
neighbor-finding threshold parameter (δ = 0.2). However, we
also find two very distorted octahedra with as large a δ as 0.8,
the observation of which is used here to define a maximum
reasonable value of δ (<0.8). A relative high neighbor-finding
threshold (0.7) is desirable in some case, as the snapshots and
complementary data for Fe in Figure 10 highlight (cf., octahedral
site). That example also underlines that a low tetrahedral OP
threshold (0.3) can be necessary to find interstitials.

Finally, we highlight three additional points with respect to
InFiT. First, Table 3 shows the effectiveness of the clustering
prune step, especially for the dense metals (from several 100
points to less than 20). Second, on an Intel Core i7-4578U CPU
at 3GHz, the interstitial finding took between 35 and 96 s for the
five test systems (cf., Table 3), which translates into 0.011–0.034 s
per grid point. And third, we successfully tested 19 additional
diamond and sphalerite-like structures that are frequently inves-
tigated in the context of charged defects, and we always obtained
the expected number of tetrahedral interstitials (1 and 2 for dia-
mond and sphalerite-likematerials, respectively; cf., Section 1.3 in
Supplementary Material).

3.3. Diffusion Path Characterization
The ease of ion migration through an intercalant host can be
often correlated with specific coordination environments—CN

FIGURE 10 | Interstitials found in five different materials with our tool InFiT
(here: conventional unit cell for clarity).

and pattern—(Rong et al., 2015). Since both tetrahedral and
octahedral coordination play particularly important roles in pre-
dicting ion transport through promising new cathode materials
for rechargeable batteries (Rong et al., 2015), we show the use-
fulness of the two order parameters qtet and qoct on the exam-
ple of magnesium jump-diffusion hops in (empty) spinel man-
ganese oxide (mvc-15009). The jump-diffusion path is obtained
from a method that Zimmermann, Haranczyk, and co-workers
are currently aiming to publish: the potential of electrostatics
finite ion size (PfEFIS) method. It reliably estimates migration
barriers deduced from nudged-elastic band (NEB; Mills et al.
(1995)) calculations on the basis of electrostatic data (estimate
SE around 50meV). For our particular example, the estimate
gives 711meV (Figure 11; black circles and line), which agrees
well with the NEB barrier (776meV; cf., Rong et al. (2015))
while achieving a speed-up factor of 10,000. The diffusion path
for Mg in spinel goes from a tetrahedral site over an inter-
mediate octahedral site back to a tetrahedral site (Rong et al.,
2015). The solid blue line in Figure 11 indicates the change in
qtet along the path, whereas the dotted orange line depicts the
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A
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FIGURE 11 | (A) A magnesium ion (white spheres) hops in Mn2O4-spinel from
a site at which it is coordinated by four oxygen atoms (red spheres) in a
tetrahedral manner (blue polyhedron) through an intermediate O-octahedron
(orange) back into a tetrahedral site. (B) Change in electrostatic potential, ∆φ̄

(left abscissa, black circles and line) and tetrahedral (blue solid line), qtet, as
well as octahedral order parameter (orange dotted line), qoct (both: right
abscissa) as functions of the fractional jump-diffusion path, d/l. Note that the
electrostatic potential is averaged over a spherical volume of radius 1.475Å;
Zimmermann and co-workers are currently aiming to publish the underlying
method. Furthermore, our diffusion path characterization method is robust as
the additional spinel examples in the Supplemental Material (Figure S2 in
Supplementary Material) underscore.

change of the octahedral OP, qoct. Clearly, the order parameters
help visualize the change in coordination environment along the
diffusion path—in a quantitative and physically meaningful (Wu
et al., 2017) way.

4. CONCLUSION

Wehave shown here that order parameters (Steinhardt et al., 1983;
Peters, 2009; Zimmermann et al., 2015), whenpairedwith efficient
and effective neighbor findingmethods, can be reliably used as fast
automatic structure-motif finding and coordination environment
assessment tools, regardless of a material’s chemistry. We intro-
duced an effective validation framework—the Einstein crystal
test rig—which subjects all atoms in a (prototype) structure to
well-defined (random) distortions, thus, systematically sounding

out the robustness of any motif recognition approach. We then
applied our approach successfully to three important applications
in (computational) materials science: (i) mapping the structural
character of a materials database via element-specific relative
structure-motif occurrence plots, (ii) effective interstitial finding
(InFiT tool developed here; cf., Broberg et al. (2016)), and ion
jump-diffusion path characterization (Rong et al., 2015). Our
effective and efficient motif-recognition and assessment capabil-
ities are freely available through the Python package pymatgen
(Ong et al., 2013).3 Weultimately emphasize thatmaterials science
is currently undergoing a “change of paradigm: from descrip-
tion to prediction” (Heine, 2014). Thus, we expect these tools
to be useful in future machine-learning (Jain et al., 2016; Ward
and Wolverton, 2017) applications as descriptors that capture
much of the most basic—but essential (Wagner and Rondinelli,
2016)—information of a given material: the crystal structure.
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