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The present work studies the geometrically nonlinear response of class θ =1 tensegrity
prisms modeled as a collection of elastic springs reacting in tension (strings or cables) or
compression (bars), under uniform uniaxial loading. The incremental equilibrium equations
of the structure are numerically solved through a path-following procedure, with the aim
of modeling the mechanical behavior of the structure in the large displacement regime.
Several numerical results are presented with reference to a variety of physical models,
which use two different materials for the cables and the bars, and show different aspect
ratios associated with either “standard” or “expanded” configurations. An experimental
validation of the predicted constitutive response is conducted with reference to a “thick”
and a “slender” model, observing rather good theory vs. experiment matching. The given
numerical and experimental results highlight that the elastic response of the examined
structures may switch from stiffening to softening, depending on the geometry of the
system, the magnitude of the external load, and the applied prestress. The outcomes of
the current study confirm previous literature results on the elastic response of minimal
tensegrity prisms, and pave the way to the use of tensegrity systems as nonlinear spring
units forming tunable mechanical metamaterials.

Keywords: class θ tensegrity prisms, large displacements, path-following, elastic softening, elastic stiffening,
mechanical metamaterials

1. INTRODUCTION

The research area ofmechanical metamaterials has recently paid considerable attention to structures
alternating lumped masses and tensegrity units, which feature unconventional behaviors mainly
derived from the geometry and the nonlinear response of the units in the large displacement regime
(Skelton and de Oliveira, 2010; Fraternali et al., 2012, 2014, 2015a; Micheletti, 2012; Amendola
et al., 2014; Davini et al., 2016; Carpentieri and Skelton, 2017; Cimmino et al., 2017; De Tommasi
et al., 2017; Fraddosio et al., 2017; Magliozzi et al., 2017; Rimoli and Pal, 2017; Rimoli, 2018). The
elastic response of several tensegrity units can be indeed strongly nonlinear, like, e.g., in the case
of bistable systems (Micheletti, 2012), tensegrity prisms (Amendola et al., 2014; Fraternali et al.,
2015a), and three-dimensional lattices endowed with truncated octahedron cells (Rimoli and Pal,
2017; Rimoli, 2018), just to name a few examples. It has been shown, in particular, that the elastic
response of tensegrity prisms may progressively switch from stiffening to softening, through the
tuning of mechanical, geometrical, and prestress variables (Amendola et al., 2014; Fraternali et al.,
2014, 2015a). For what concerns the wave dynamics of tensegrity metamaterials, recent studies
have revealed that systems with stiffening response support compressive strain waves localized in
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very narrow regions of space (Fraternali et al., 2012; Davini et al.,
2016), while softening systems support the propagation of rar-
efaction waves under impact loading (Herbold and Nesterenko,
2013; Fraternali et al., 2014). The stiffening-type response may
be usefully employed to design novel mechanical devices like,
e.g., acoustic lenses (Spadoni and Daraio, 2010; Theocharis et al.,
2013; Donahue et al., 2014), and/or next-generation sensors for
non-destructive structural health monitoring (Rizzo et al., 2014).
On the other hand, the softening-type response is very useful for
the design of innovative impact mitigation devices that do not
rely, or only partially rely, on energy dissipation (Herbold and
Nesterenko, 2013; Fraternali et al., 2015a). The study of band gaps
in tensegrity-based metamaterials, and their tuning for the design
and test of novel waveguides, sound proof layers, and/or vibration
protection devices deserves special attention (Theocharis et al.,
2013). Other innovative uses of latticemetamaterials can be found
in Amendola et al. (2017), Colombi et al. (2017), Feo et al. (2017),
Genoese et al. (2017), Jiang et al. (2017), La Salandra et al. (2017),
Naddeo et al. (2017a,b), Tallarico et al. (2017), Yin et al. (2017),
Miniaci et al. (2018), and references therein.

A new type of tensegrity unit, named class θ = 1 tenseg-
rity prism, has been recently designed and studied in Bieniek
(2017a,b). Such a unit is formed by the superimposition of two sets
of three bars, which may be thought as the compressive members
of twominimal tensegrity prisms placed one over the other. Those
bars are connected each other through six internal strings. The
structure is completed by two terminal bases formed by triangular
sets of external strings (or cables). The symbol θ is used to mimic
the shape of the structure, formed by both external and internal
cables (Modano et al., 2018). Structures of class θ = 1 are formed
by one single set of internal strings/cables.

The numerical and analytical results presented inModano et al.
(2018) deal with the search for free-standing configurations of
tensegrity θ = 1 prisms, in correspondence with different geome-
tries of the following three sets of members: external strings
with equal length ℓ; internal strings with equal length c and
cross cables with equal length v. The length of the bars b is a
function of such design variables (Bieniek, 2017a,b). The study
presented in Modano et al. (2018) also includes the analysis of
the kinematic problem of tensegrity θ prisms, with the aim of
finding the infinitesimal mechanisms of these structures from

the freestanding configuration. It has been proven that the num-
ber of infinitesimal mechanisms of class θ = 1 tensegrity prisms
(Modano et al., 2018) is much larger than that exhibited by
minimal (or standard) tensegrity prisms (Fraternali et al., 2015a).

The present work studies the elastic response of tensegrity θ = 1
prisms in the large displacement regime induced by a uniform
compression loading, which follows from the application of equal
vertical forces to the nodes of the top base, while keeping the
bottom base at rest. We start by analyzing physical models of
the examined structures, which are formed by threaded steel bars
and Spectra® cables, and determining the corresponding free-
standing configurations on the basis of the approach presented
in Modano et al. (2018) (Section 2). A path-following approach
is next formulated, in order to study the elastic response of class
θ = 1 tensegrity prisms in the large displacement regime under
arbitrary loading conditions (Section 3). Section 4 applies such a
procedure to a numerical study on the elastic response of different
tensegrity θ units under compression loading. An experimental
validation of standard thick and slender models under quasi-
static axial compression has been carried out in Section 4 with
reference to “thick” and “slender” models under quasi-static axial
compression, observing a good agreement between theory and
experiment (Section 5). The results presented in Sections 4 and
5 highlight that tensegrity θ = 1 prisms can exhibit an elastic
response that can switch from softening to stiffening, in anal-
ogy with the response theoretically and experimentally observed
in minimal tensegrity prisms (Amendola et al., 2014; Fraternali
et al., 2015a). Such a multifaceted elastic response can be usefully
exploited for the design and construction of novel tensegritymeta-
materials, as it is emphasized in the concluding remarks drawn in
Section 6.

2. PHYSICAL MODELS OF CLASS θθθ ==1
PRISMS

2.1. Freestanding Configurations
We examine in the present study a collection of physical models
of tensegrity θ = 1 prisms, with either thick (v ≈ λ) or slender
(v≥2λ) aspect ratios. On adopting the labeling and nomenclature
introduced in Figure 1 and Modano et al. (2018), for each of such

FIGURE 1 | Reference configuration of a standard tensegrity θ = 1 prism.
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FIGURE 2 | Graphical (top) and physical (bottom) models of the systems analyzed in the present study: standard thick unit (S1); expanded thick unit (S2); standard
slender unit; (S3) expanded thick unit (S4).

a shape we examine both “standard” and “expanded” configura-
tions, which correspond to the values of the design variables λ,
v, and c shown in Figure 2. In the standard prisms, the internal
strings 7-10, 10-9, 9-12, 12-8, 8-11, and 11-7 lie in the interior of
the region delimited by the vertical strings 1-4, 2-5, and 3-6, while
in the expanded systems the internal strings run externally with
respect to the vertical strings. Figure 2 illustrates the freestanding
configurations of the units analyzed in this work (labeled S1, S2,
S3, and S4) thatwere obtained through the approach formulated in
Modano et al. (2018), which searches for the values of two design
variables α and β that ensure existence of a self-equilibrated state
of stress of the structure under zero external forces. The variable
α measures the twisting angle between the top and bottom bases
of the prism, while β measures the inclination of the inner cables
with respect to the horizontal plane (Figure 1).

Figure 2 provides the “self-equilibrium values” of such vari-
ables, while Table 1 gives the corresponding self-stress states, as
a function of the force density in the top and bottom strings xt
(here assumed as the independent prestress variable, cf. Modano
et al. (2018)). The latter can be computed as: xt = kt p0/(1+ p0),
where kt denotes the axial stiffness of top and bottom strings (see
Section 3), and p0 denotes the prestrain of such elements in the
freestanding configuration (Fraternali et al., 2015a).

2.2. Assembling Methods
The physical models examined in the present work make use
of M4 threaded bars, made out of white zinc-plated grade 8.8

TABLE 1 | Force densities (per unit length) characterizing the self-stress acting in the
systems of Figure 2 (forces positive when tensile in cables, and when compressive
in bars).

Member S1 S2 S3 S4

Top and bottom cables 1.000 xt 1.000 xt 1.000 xt 1.000 xt
Internal cables 7-10, 9-12, 8-11 3.611 xt 1.814 xt 3.649 xt 1.860 xt
Internal cables 7-11, 8-12, 9-10 4.438 xt 1.988 xt 4.495 xt 2.045 xt
Vertical cables 1.007 xt 0.709 xt 1.011 xt 0.720 xt
Bars 1.790 xt 1.196 xt 1.799 xt 1.216 xt

steel (BS ISO 68-1:1998, 1998), and cables consisting of braided
Spectra® fibers commercially produced by PowerPro (2018). Such
elements were assembled through the following procedure, which
generalizes that given in Amendola et al. (2014) for minimal
tensegrity prisms (cf. Figures 3–6):

• Insertion and securing of Spectra® cables into eyelets andwash-
ers to be passed through the threaded bars (Figures 3A–C);

• assembling of three distinct networks of Spectra® cables: two
equilateral triangles with side length ℓ connecting the external
nodes (Figure 3D), and a regular hexagon with side length c
connecting the internal nodes;

• cutting of three vertical cables with equal length v equipped
with eyelets andwashers to be passed through the threaded bars
(Figure 3E);

• insertion of the eyelets and washers attached to the top,
bottom, and internal cables into the threaded bars, and
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FIGURE 3 | Photographs illustrating the connection and securing of Spectra® cables to eyelets and washers to be passed through the threaded bars (A–C);
a triangular network of cables (D); and a vertical cable (E).

FIGURE 4 | Assembling steps: mounting of top, bottom, and inner cables on
the bars (A); insertion of vertical cables (B); tightening of the cables (C).

FIGURE 5 | Bar equipment: photographs of a bar before (A) and after
(B) the fastening of the steel nuts.

their securing with two additional steel nuts and a washer
(Figure 4A);

• insertion of the eyelets and washers attached to the vertical
cables into the threaded bars, and their securing with an acorn
steel nut, a washer and a steel nut (Figure 4B);

• tightening of the cables and application of the desired prestress
through suitable fastening of the steel nuts (Figures 4C and 5).

Figure 6 shows an assembled thick prism (system S1). The state
of prestress acting in the physical models S1 and S3 was deter-
mined via identification of the experimental response illustrated
in Section 5.

FIGURE 6 | Standard thick prism: (A) axonometric view and (B) top view.

3. ELASTIC RESPONSE UNDER LARGE
DISPLACEMENTS

The present section generalizes the procedure formulated in Fra-
ternali et al. (2015a) with the aim of studying the elastic response
in the large displacement regime of a generic lattice structure
formed by an arbitrary number m of members. Assuming that
such a structure responds in pure stretching mode, we model the
genericmember, say the ith one, as a linear elastic spring governed
by the following constitutive law

ti = ki
(
li − l̄i

)
i = 1, . . . ,m, (1)

where ti denotes the axial force carried by the member, li denotes
its length in the current configuration, l̄i denotes the rest length in
the stress-free (or natural) configuration, and ki denotes the elastic
stiffness constant. By setting li ̸= l̄i in the reference configuration,
one induces an initial axial deformation of the member, which
is expected to significantly affect the incremental response of
the structure from such a configuration (cf. Section 4). Upon
neglecting the change of the cross section area during the lattice
deformation, we define the stiffness constant ki as follows

ki =
EiAi

l̄i
i = 1, ..,m, (2)

where Ei is the Young’s modulus of thematerial, andAi is the cross
section area. In the case of cable elements, we set ki = 0 when the
cable gets slack, i.e., when it results li < l̄i. All the systems exam-
ined in the present study employ only two materials and cross-
sections: one for the bars and one for the cables. As anticipated,
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we use M4 threaded bars made out of white zinc plated grade 4.8
steel (DIN 976-1) with a nominal cross section area 8.78mm2,
and 203.53GPa Young’s modulus. Such bars are connected each
other through Spectra® cables with 0.76mm diameter in systems
S1 and S2; 0.36mm diameter in systems S3 and S4; and 30.00GPa
Young’smodulus. Themechanical properties of the Spectra® fibers
were determined through tensile tests carried out at the Structural
Engineering Testing Hall (Strength) of the University of Salerno.
The yield stress of the cables was measured approximatively equal
to 2GPa, with the aim of verifying that such members actually
respond in the elastic regime in correspondence with the numeric
simulations presented in Section 4.

TABLE 2 | Path-following algorithm.

Algorithm

Initialize ∆ûsj and ∆λ̂s

repeat
Update the nodal coordinates: n̂s ← n̂s−1 + ∆ûs

Compute the residual rj ←
m∑
i=1

ki
(
l si − l̄i

) ∂ l si
∂(∆ûj)

|∆û=0 − (λ̂)wj

Compute the tangent matrix KT as in equation (5)

Compute the partial solutions ∆û(r)
s

j , ∆λ̂(w)s through equation (7)
Compute the increment ∆λ̂s via equation (10)
Update λ̂ and ∆ûsj through λ̂s ← λ̂s−1 + ∆λ̂s and

∆ûsj ← ∆û(r)
s

j + ∆λ̂s ∆û(w)s

j

until |rs |> tol

The equilibrium equations of the structure under examination
can be written in the following scalar form

rj =
m∑
i=1

ti
∂li
∂ûj

− λ̂wj = 0, j = 1, ..., ndof, (3)

where the index i runs from one to the total number of members
m, while the index j runs from one to the total number of degrees
of freedom ndof = 3× n, n denoting the number of nodes. In
equation (3), λ̂ is a scalar multiplier of the vector w with entries
wj (j= 1, . . ., ndof), which describes the distribution of the external
load; ûj denotes the generic entry of the nodal displacement vector
û from the current configuration; and the quantities ∂li

∂ûj give the
cosine directors of the members’ axes (it clearly results ∂li

∂ûj = 0 if
the kinematics of the ith member is not affected by the jth degree
of freedom).

3.1. Path-Following Procedure
Let us study the elastic response of a class θ = 1 tensegrity prisms
under an arbitrary loading condition, which is characterized by
the control parameter λ̂ and the state variable û. The solution of
such a problem in the large displacement regime can be achieved
through a continuation method in which a predictor step is
followed by a suitable number of iteration steps.

We analyze the incremental response of the structure under
examination from an initial configuration ûj = ûj(λ̂), when the

FIGURE 7 | Top: force-displacement curves of system S1 for different value of the prestrain p0. Bottom: sequence of deformed configurations (A–D) for p0 = 1%.
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control variable is suitably varied, so as tomatch a given constraint
equation f(û, λ̂) = 0, which defines the adopted loading strategy
(Fraternali et al., 2015a).

The Newton-Raphson linearization of equation (3) leads us
to the following approximation of the increment of the residual
drifting errors of the equilibrium problem

ri(ûj + ∆ûj, λ̂ + ∆λ̂) = ri(ûj, λ̂) + KTi,j∆ûj − wi∆λ̂, (4)

where KTjk = ∂rj/∂ûk (j, k= 1, . . ., ndof) is the generic entry
of tangent stiffness matrix given by Guest (2006), Schenk et al.
(2007), Fraternali et al. (2015b), and Modano et al. (2018)

KTjk =
m∑
i=1

ki
∂li
∂ûj

∂li
∂ûk

+
m∑
i=1

ti
∂2li

∂ûj∂ûk
, j, k = 1, ..., ndof.

(5)
By setting to zero the residuals ri at ûj + ∆ûj, λ̂ + ∆λ̂, we are

led to the system of incremental equations

KTi,j∆ûj + wi∆λ̂ = −rj(ûj, λ̂). (6)

It is convenient to make use of the following decomposition of
the increments of the state variables: ∆ûj = ∆ûj(r) + ∆λ̂ ∆û(w)

j ,
∆ûj(r) and ∆ûj(w) being the partial solutions of the following
linear systems

KTi,j∆û(r)
j = −ri, KTi,j∆û(w)

j = wi. (7)

The linearization of the constraint equation gives

f̂(ûj + ∆ûj, λ̂ + ∆λ̂) = f̂(ûj, λ̂) +
∂ f̂
∂ûj

(
∆û(r)

j + ∆λ̂∆û(w)
j

)
+

∂ f̂
∂λ̂

∆λ̂ = 0, (8)

from which we obtain

∆λ̂ = −
f̂ + ∂ f̂

∂ûj ∆û(w)
j

∂ f̂
∂ûj ∆û(w)

j + ∂ f̂
∂λ̂

. (9)

In the case of displacement control, we write f̂ = ûp − û∗
p ,

where û∗
p is a prescribed value of a given displacement component.

Such a position leads us to reduce equation (9) to the following
form

∆λ̂ = −
f̂ + ∆û(w)

p

∆û(w)
p

. (10)

We embed the above solution strategy into a step-by-step, incre-
mental procedure that produces a sequence of updates ∆ûsj , ∆λ̂s

of the state and control variables along a given loading path. The
algorithm presented in Table 2 describes the procedure ruling the
sth step of such a strategy, where tol denotes a given zero tolerance
of the residual vector.

FIGURE 8 | Top: force-displacement curves of system S2 for different value of the prestrain p0. Bottom: sequence of deformed configurations (A–D) for p0 = 1%.
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4. NUMERICAL RESULTS

The present section presents an application of the algorithm
presented in Section 3.1 to the uniform compression loading of
the systems illustrated in Figure 2. The examined loading con-
dition consists of three equal vertical forces applied to the top
nodes, with resultant F (positive if directed downward), while
the bottom base is at rest. It is easily verified that the symme-
try of such a loading condition and the geometric symmetry of
the systems in Figure 2 induces a uniform compression of the
structure, which is characterized by equal vertical displacements
w of the nodes of the top base (also assumed positive if directed
downward).

Figures 7–10 illustrate the force F vs. w responses of sys-
tems S1–S4, which were numerically predicted through the path-
following procedure illustrated in Section 3.1.We employ a hollow
circle mark “◦” to denote the first point of the F–w response
where the vertical strings get slack, and a black circle mark “•”
to denote the first point at which the bars fail due to buck-
ling (“local buckling” occurring when the axial force carried
by the generic bar equals the Euler buckling load). Obviously,
the portions of the F–w curves in Figures 7–10 that are placed

beyond the pointsmarked with the “•” symbol are just theoretical,
since the path-following algorithm presented in Section 1 actu-
ally accounts for the strings getting slack, but does not model
the postyielding and postbuckling responses of bars and strings.
We didn’t observe string yielding in the simulations presented
hereafter.

When the prestrain p0 that characterizes the freestanding con-
figuration is equal to 0.01 or 0.1%, the response of the standard
thick system S1 shown in Figure 7 highlights a stiffening behav-
ior near the origin (small displacements from the freestanding
configuration), which corresponds to an increasing slope to the
F–w curve (giving the effective axial stiffness Kw of the structure)
for increasing w displacements. The above small-displacement
response is first followed by a “stiffness-softening” branch (Kw
decreasing with increasing w), and next by a “force-softening”
branch (F decreasing with increasing w, or, equivalently, kw < 0).
Slightly different is the response of the S1 system under the action
of a prestrain p0 = 1%, since, in such a case, the F–w curve
does not show an initial stiffening branch, but instead exhibits
a stiffness-softening branch followed by a force-softening branch
(Figure 7). The force-softening branch leads the structure to
a snap-buckling collapse phenomenon (hereafter referred to as

FIGURE 9 | Top: force-displacement curves of system S3 for different value of the prestrain p0. Bottom: sequence of deformed configurations (A–D) for p0 = 1%.
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FIGURE 10 | Top: force-displacement curves of system S4 for different value of the prestrain p0. Bottom: sequence of deformed configurations (A–D) for p0 =1%.

“global buckling”), which initiates when it results Kw = 0 (see
Figure 7D). For p0 ≤ 0.01%, the local buckling failure occurs
slightly before global buckling, while for p0 = 1% local buckling
noticeably anticipates global buckling.

The F–w response of the expanded thick system S2 shown in
Figure 8 reveals that such a system features compressive behavior
qualitatively similar to that exhibited by the standard thick system
S1, even if the S2 system carries significantly lower forces than
system S1. It is worth noting that the vertical strings of the S2
system get slack much earlier than those of the S1 system (i.e.,
for lower values of the vertical displacement w), giving rise to
bending points of the F–w curve (Figure 8). In the S2 system,
global buckling anticipates local buckling, differently from what
happens in the case of system S1 (compare Figures 7 and 8).

The slender system S3 exhibits the force–displacement
response that is illustrated in Figure 9. Such a response is again
characterized by the occurrence of local buckling before global
buckling, like in the case of the thick system S1. In the S3 system,
the F–w curves corresponding to different values of p0 are more
close to each other, at least up to p0 = 1%, and the structure is
able to accommodate larger axial displacements, as compared to
the thick systems S1 and S2. We interrupted the F–w curves in
Figure 9 when the bars were close to touch each other (cf. Figure.
9D). The force–displacement response of the expanded slender

system S4 in Figure 10 looks qualitatively similar to that of the S3
system, with the difference that the expanded system S4 carries
markedly lower axial forces F than the S3 system. In the case of
system S4, local buckling does not occur up to the configuration
when the bars touch each other. Moreover, in such a system, the
strings gets slack for lower values of w, as compared to system S3
(cf. Figures 9 and 10).

5. EXPERIMENTAL VALIDATION

We conducted an experimental validation of the numerical results
presented in the previous section with reference to the standard
thick system S1 (cf. Figure 11), and the standard slender system
S3. Quasistatic compression tests on such systemswere performed
at the Strength’s partner laboratory Geo Consult s.r.l. (Avellino,
Italy) on a Matest® electromechanical testing system equipped
with 50 kN load cell, employing displacement control with loading
rate of 4mm/min. The tested structures were placed on a rotating
lubricated base that allowed for relative twisting of the top and
bottom bases. A 140 g drywall plate was placed on the top base
of the tested sample to ensure a uniform distribution of the load
applied by the testing machine, as shown in Figure 11. Friction
effects were minimized by accurately lubricating the contacts
between bars and cables, as well as the junctions between the
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FIGURE 11 | System S1 under testing.

FIGURE 12 | Experimental vs. numerical force–displacement responses of
the thick system S1.

bottom and top nodes and the plates that are in contact with the
terminal bases. Time, force and displacement data were acquired
with 4mm/min sampling rate.

Figure 12 shows a comparison between the predicted F vs. w
curves of the thick system S1, for different values of p0, and the
observed experimental response. The experimental response is
rather close to the theoretical curves corresponding to p0 = 0.01%
and p0 = 0.1%, and shows an initial stiffening branch followed by
a stiffness-softening branch. A theory vs. experiment comparison
for the response of the slender model S3 is shown in Figure 13.
Also in the case of the S3 system, as well as in system S1, a
stiffening branch turns into a softening branch of the experimental
response, and such a response well matches the numerical F
vs. w curves for p0 = 0.01% and p0 = 0.1% (Figure 13). We are
therefore led to conclude that the prestress applied to the S1 and

FIGURE 13 | Experimental vs. numerical force–displacement responses of
the slender system S3.

S3 specimens is characterized by a prestrain p0 of the strings in
the range 0.01/0.1%. In all the tested specimens, the bars touched
each other before global buckling could occur. Such an anticipated
“locking” of the real structures, as compared to the theoretical
models, follows from the actual, nonzero thickness of the bars in
the real prisms.

6. CONCLUDING REMARKS

Wehave formulated a path-following approach to the elastic prob-
lem of tensegrity prisms of class θ = 1 in the large displacement
regime. The proposed numerical procedure (Section 3) has been
applied to predict the response of the several physical models
of the examined structures under uniform compressive load-
ing (Section 4). Such a study has revealed that tensegrity θ = 1
prisms exhibit compressive response characterized by alternat-
ing stiffening and softening branches, with a stiffness-softening
response leading the structure to vertical collapse, due to a global
snap-buckling phenomenon. The initial stiffening branch may be
absent under the action of large or moderately large values of
the applied prestress. In the examined standard systems (internal
strings running in the interior of the region delimited by the
vertical strings), local bar buckling occurs before global buck-
ling, while the opposite happens in the thick expanded system
(internal strings running externally to the vertical strings). In the
expanded systems, the vertical strings get slack for lower values of
the vertical displacement, as compared to standard systems. The
response of slender prisms is sensitive to a locking phenomenon
occurring with the bars touching each other, which anticipates
global buckling. An experimental validation of the theoretical
models has been conducted with reference to standard thick and
slender systems, observing rather good theory vs. experiment
matching. Anticipated locking occurred in the experimentally
tested samples, as compared to the theoretical models, due to the
non-negligible size of the bars.

The results of the present study confirm previous theoretical
and experimental results relative to minimal tensegrity prisms
(Amendola et al., 2014; Fraternali et al., 2015a), highlighting that
tensegrity prisms of class θ may be employed as nonlinear springs
connecting lumpedmasses in tensegritymetamaterials (Fraternali
et al., 2014; Modano et al., 2018). It is worth noting that the high
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number of infinitesimal mechanisms characterizing the response
of tensegrity θ prisms suggests that such structures may be able
to exhibit geometrically nonlinear response under a wide range of
loading conditions (Modano et al., 2018).

Additional mechanical uses of the units analyzed in the present
article, which will be studied in future work, aim to reveal band
gaps in tensegrity-based metamaterials and to exploit the possi-
bility of their tuning for the design and test of novel waveguides,
sound proof layers and vibration protection devices (Modano
et al., 2018). Such systems will be tunable by varying the unit’s
parameters for both the initial static precompression of the con-
stituent units (internal selfstress) and thewhole structure (external
prestress). Additional future work will include the modeling of
postyielding and postbuckling phenomena in bars and strings, as
well as the description of the unit response after the structure’s
locking occurs.
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