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As they differentiate from neuroblasts, nascent neurons become highly polarized

and elongate. Neurons extend and elaborate fine and fragile cellular extensions that

form circuits enabling long-distance communication and signal integration within the

body. While other organ systems are developing, projections of differentiating neurons

find paths to distant targets. Subsequent post-developmental neuronal damage is

catastrophic because the cues for reinnervation are no longer active. Advances in

biomaterials are enabling fabrication of micro-environments that encourage neuronal

regrowth and restoration of function by recreating these developmental cues. This

mini-review considers new materials that employ topographical, chemical, electrical,

and/or mechanical cues for use in neuronal repair. Manipulating and integrating these

elements in different combinations will generate new technologies to enhance neural

repair.

Keywords: neuroregenerative therapy, neural scaffolds, topography, electrical stimulation, hydrogels, self-rolled-

up membranes, nerve-guide-conduits, flexible electronics

INTRODUCTION

Neurons are characterized by dendrites, multiple slender filamentous protrusions that receive and
integrate incoming information, and a single axon, which transmits integrated signals downstream
in a multicellular network. These cellular extensions are typically several times longer than the
relatively small cell body and form a myriad of interconnections that enable humans to sense,
integrate, remember, and respond to the world. Unlike other systems in the human body, cues
for growth and repair in the nervous system are no longer active post-developmentally and,
consequently, structural and functional losses following disease or damage are catastrophic.
Neurological deficits contribute to over 600 classified neurological disorders and affect∼50 million
people in the United States alone (Brown et al., 2005). Neurological disorders often result in
debilitation rather than immediate death, and the personal and financial costs become staggering.
The global burden of neurological afflictions, measured in disability-adjusted life years (DALYs),
exceeds that of other diseases including heart disease and cancer (WHO, 2006). Therefore, new
methods of treatment that ameliorate or resolve neurological disorders are necessary.

Innovative therapies for neurodegeneration and traumatic injury are emerging from novel
biomaterials. Development of materials that support and nurture growth without introducing
trauma while facilitating neural repair have the potential to alleviate peripheral neuropathies;
diabetic sensory neuropathy or spinal cord trauma would benefit (Teng et al., 2002; Gu et al., 2014).
New techniques and advances in material design, such as pore-enhanced hydrogels to promote
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neuronal alignment (Lee et al., 2015b), are facilitating targeted
neuronal growth and repair. Innovations in neural monitoring
through flexible, biodegradable electronics provide a means to
understand these processes at amore fundamental level, as well as
track and monitor repair in vivo (Viventi et al., 2011; Kang et al.,
2016). These engineered interfaces address specific challenges
inherent to damaged neural tissue by reducing glial scarring and
overcoming limited distances of regeneration (Orive et al., 2009;
Tam et al., 2014).

Unmodified planar substrates inadequately capitalize on
endogenous factors that could enhance the efficacy of the
substrate to promote targeted cellular development and
growth. Modifying the substrate to better approximate the
native developmental environment of neurons encourages the
extension of neurites and repair of lesions. This review explores
recent advances in the manipulation of topography, electric
cues, and stiffness in biomaterials to enhance neuronal dynamics
(e.g., neuritogenesis), improve growth, and allow monitoring
of neural systems. Cues or properties are compared for relative
impact on neuronal behavior and development (Table 1). While
the integration of chemical cues into materials has been widely
employed in other neuronal studies (Moore et al., 2006; Patel
et al., 2007; Millet et al., 2010), the influence of chemical signals is
intertwined in the discussion of the aforementioned parameters.
This review focuses on neurons, while discussion of neural
repair of all major cell populations within the nervous system,
including glia, has been considered elsewhere (Schmidt and
Leach, 2003; Tian et al., 2015).

TOPOGRAPHICAL CUES DRIVE
ALIGNMENT AND DIRECTIONALITY

Cellular dynamics are strongly influenced by substrate
topography (Bettinger et al., 2009; Ventre et al., 2012).
Throughout the body, the extracellular matrix (ECM), with
its fibers of collagen, fibronectin, and/or laminin, provides
scaffolding that cells can adhere to and climb on, over, and
through to travel to their terminal point. Neurons themselves
can provide critical topography. An example is during formation
of laminar brain structures, where new daughter cells use the
scaffold provided by radial glial cells to migrate outward and
form successive cortical layers (Rakic, 1972; Edmondson and
Hatten, 1987; Kriegstein, 2005; Barros et al., 2011).

When designing customized materials and substrates for use
in neural repair, the relationship between neuronal cells and
native in vivo topography informs the relation to the desired
functional outcome. Neuronal migration and neurite extension
or directionality can be guided by the addition of topographical
cues to a substrate, which enhances control by providing a

Abbreviations: DALYs, Disability-adjusted life years; ECM, Extracellular matrix;

PLLA, Polylactic acid; DRG, Dorsal root ganglia; ESCs, Embryonic stem cells;

iPSCs, Induced pluripotent stem cells; hBMSCs, Human bone marrow stromal

cells; S-RuMs, Self-rolled-up membranes; NGCs, Nerve-guide-conduits or nerve-

guidance-channels; PHB-HV, Poly(3-hydroxybutyrate-co-3-hydroxyvalerate);

EFs, Electric fields; DC, Direct current; AC, Alternating current; PPy, Polypyrrole;

E, Elastic modulus; NPCs, Neural progenitor cells; CSF, Cerebral spinal fluid.

recognizable path (Jang et al., 2010; Baranes et al., 2012). In
the case of damaged spinal neurons, a 3D scaffold can provide
a sturdy framework to support directional neurite regrowth.
A tubular design allows for directed tunneling of the neurite
to the distal region needing reinnervation. Nanotopography is
also important for cell adhesion and plays a critical role in
material design (Yu et al., 2008; Khan and Newaz, 2010). Cellular
adhesion depends on surface properties such as wettability and
charge. These elements can be modified during fabrication and
functionalization through protein deposition to the substrate
surface (Subramanian et al., 2009). Furthermore, cells can
respond to nanoscale features in ways that change morphology,
attachment, proliferation, and even gene expression in response
to nano-gratings, posts, and pits (Bettinger et al., 2009).

Polymer nanofibers are used to build scaffolds that support
and direct neurite extension of neuron cultures in vitro. These
scaffolds are fabricated using electrospinning, a technique that
allows for accumulation of nanofibers in specific orientations.
The process is highly customizable and the fibers can be spun
in nm or µm scales (Pettikiriarachchi et al., 2010). Polylactic
acid (PLLA) fibers of large diameter (>1,000 nm) have been
shown to enhance neurite extension in dissociated chick dorsal
root ganglia (DRG) cultures (Wang et al., 2010). Functionalizing
PLLA fibers with fibronectin or laminin further improves
neurite interaction by replicating these endogenous chemical
cues (Koppes et al., 2014). Other electrospun nanofiber scaffolds
improve DRG neurite extension, promote differentiation of
mouse embryonic stem cells (ESCs) into neural progenitors,
and enhance outgrowth of neurites on the scaffolds with
aligned fibers. Neural crest stem cells differentiated from iPSCs
cultured within nanofiber-modified conduits enhanced sciatic
nerve regeneration (Xie et al., 2009; Schaub and Gilbert, 2011;
Wong et al., 2011). Nanofibers can be spun from a variety
of biocompatible materials, including natural proteins such
as collagen. However, there are several limitations to these
scaffolds. It is difficult to create an environment mimicking
the endogenous ECM, because its components are smaller
than what is currently achievable when fabricating nanofibers
(∼100 nm thick). Additionally, nanofiber scaffolds cannot
support embedded cells without compromising the structural
integrity of the scaffold (Liu et al., 2012).

Hydrogels, networks of polymers that have been swollen
with water, are attractive materials for cellular applications due
to their biocompatibility, ease of fabrication, and capacity for
customization (Caliari and Burdick, 2016). One advantage of
hydrogels is that their porosity is not detrimental to their
structure and can allow for migration of cells within the hydrogel
scaffold. Hydrogels fabricated with an additional internal
topography promote alignment or directionality of hippocampal
and DRG neurons (Liu et al., 2015), and differentiation of stem
cells into a neuronal cell-type (Lee et al., 2015b). When human
bone marrow stromal cells (hBMSCs) were cultured in hydrogels
with both aligned microchannels (Figure 1A) and stochastically
formed micropores (Figure 1B), hBMSCs differentiated into
neuronal cells and elongated to grow within the microchannels
(Figure 1C). Differentiation was attributed to the topography
facilitating binding between cellular integrins and ligands, which
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TABLE 1 | Impact of various material properties on neuronal behavior and development.

Material property Neurites Directionality Cell fate

Topographicala • Increased neurite length Neurite direction guided by

• Tubular structures

• Microchannels

• Confined spaces

iPSCs, ESCs, hBMSCs differentiate to

neural cell type

Electricalb • Increased neurite length

• Enhanced neuritogenesis

• Neurites grow/extend in direction of EF

• Neurite growth rate increased

• Neurons migrate in EF direction

• Polarization of neurons

• Direct neural tube formation

• Direct cell migration and organization

• Influence neuronal differentiation

Mechanical Stiffnessc Decreased stiffness supports increased neurite length

Increased stiffness results in:

• Improved network connectivity

• Improved signal transduction

No effect Decreased stiffness directs stem cell

differentiation toward the neural lineage

aTopographical References: (Xie et al., 2009; Schaub and Gilbert, 2011; Wong et al., 2011; Froeter et al., 2014; Koppes et al., 2014; Lee et al., 2015b).
bElectrical References: (Jaffe and Stern, 1979; Patel and Poo, 1982; Hotary and Robinson, 1991; Davenport and McCaig, 1993; Metcalf and Borgens, 1994; Yao et al., 2008, 2009,

2011; Graves et al., 2011; Koppes et al., 2014; Kim et al., 2016; Ma et al., 2016).
cMechanical Stiffness References: (Balgude et al., 2001; Discher et al., 2005; Jiang et al., 2010; Keung et al., 2012; Lee et al., 2013; Zhang et al., 2014; Mosley et al., 2017).

is important for stem cell differentiation to neurons. The
stochastic micropore gels could not support this binding, leading
to mostly undifferentiated hBMSCs (Lee et al., 2015b). Hydrogels
can also be used for cell encapsulation or fabricated with particles
bearing trophic factors to enhance cellular interactions on and
within the gel (Carballo-Molina and Velasco, 2015).

A semiconductor-based microtube substrate, composed of
a thin nanomembrane of oppositely strained layers of silicon
nitride that can self-roll, significantly enhances neurite alignment
(Figure 1D). These self-rolled-up membranes (S-RuMs) have
a unique combination of features that make them attractive
for manipulating topography. S-RuMs are optically transparent
under most conventional microscopy techniques, including
phase-contrast and fluorescence imaging, which makes them
ideal for use with cultured cells. Since they are manufactured
using a scalable semiconductor process (Li, 2008; Huang et al.,
2012), they are highly customizable and versatile, which facilitates
many different designs (Froeter et al., 2013). They also are
biocompatible, an essential characteristic for cell and tissue
interfaces (Froeter et al., 2014). The S-RuMs can be tuned to
a range of diameters and lengths, can be rolled into a single
or binocular tube, and can be incorporated with pores to allow
for nutrient and gas exchange across the tube membrane. By
restricting the diameter of the S-RuM to the 5-µm range, a
single neurite can be captured within each tube. By altering the
fabrication process to widen the diameter, a bundle of neurites
can traverse a single tube. Additionally, a thin deposition of
metal can be added during the fabrication process to create
an electrode that is rolled within the S-RuM (Figure 1E).
This characteristic will enable selective and targeted stimulation
and recording of a neurite contained on a single substrate
and continuous tracking of functional neurite dynamics under
electrical stimulation. Scanning electron microscopy (SEM) of
rat hippocampal neurons in culture reveal the S-RuMs provide
adequate space for neurites to extend, turn, and extend through
the lumen (Figure 1F).

Nerve-guide-conduits or nerve-guidance-channels (NGCs)
are 3D constructs for whole nerve therapies in vivo (Anderson
et al., 2017; Lackington et al., 2017). They are currently
used as implants for neural repair in humans. Commercially
available NGCs are primarily single-lumen tubes, with no
added topographical features, through which the two ends of
a severed nerve are inserted and left to grow together (de
Ruiter et al., 2009). There are limitations to these models, most
notably in the injury gap distance over which they are effective.
Functionalization to improve rate of regrowth, limit scarring,
and improve permeability for nutrient transfer has yet to be
integrated into these devices.

Techniques that have proven successful during in vitro
neuroregenerative studies are currently being applied and
evaluated in NGCs in animal models. An experimental NGC,
composed of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
(PHB-HV) and enhanced with a conductive polypyrrole
co-polymer coating along the inner diameter of the NGC,
has been implanted in Sprague-Dawley rats with severed
sciatic nerves. When the conduits were harvested at 8 weeks
and analyzed for neuronal markers, nerve tissue was found
throughout the conduit with no evidence of inflammation.
Thus, the NGC supports and promotes regeneration of damaged
nerves (Durgam et al., 2010). A more recent study in rats
demonstrated nerve regeneration in vivo that utilized NGCs
made of zein, a corn-derived polymer. NGCs were fabricated
in three configurations: non-porous NGCs, porous NGCs, and
porous NGCs that contained smaller zein microtubes. A 10-mm
section of the sciatic nerve was removed and replaced with the
NGCs, and recovery was tracked over a 4-month period. The
rats showed improved gait 2 months after implantation. The
porous zein conduit showed significantly increased density of
myelinated nerve fibers and increased myelin sheath thickness
at 2- and 4-months post-implantation (Wang et al., 2017). The
porous nature of these zein NGCs enabled nutrient diffusion
and facilitated eventual degradation of the scaffold over the
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FIGURE 1 | Material applications of topography, electrical stimulation, and stiffness. (A) Scanning electron micrograph (SEM) of fractured hydrogels reveals the

internal structure of the hydrogel with microchannels, or (B) micropores (images A,B adapted from Lee et al., 2015a). (C) Human bone marrow stromal cells

(hBMSCs) cultured on hydrogel with aligned microchannels differentiate into a neuronal phenotype. Fluorescence imaging reveals MAP2 (neuronal marker, green),

GFAP (glial marker, red), and DAPI (nuclear marker, blue) immunoreactivity, demonstrating differentiation of hBMSCs into cells expressing neuronal or glial markers,

and elongating in the microchanneled hydrogel (image contributed by H. J. Kong, University of Illinois at Urbana-Champaign). (D) SEM of array of self-rolled-up

membranes (S-RuMs) composed of thin-film silicon nitride bilayers. (E) A multi-electrode array chip (left) with S-RuMs patterned in a pentagon formation (orange box,

right). Black inset shows schematic of single S-RuM with gold electrodes rolled inside (images D,E contributed by X. Li, University of Illinois at Urbana-Champaign). (F)

SEM of rat hippocampal neurons cultured on S-RuM substrate (3 days in vitro). Inset: Fluorescence imaging reveals MAP2 (neuronal marker, white) immunoreactivity,

confirming neuronal cell type. Orange arrows correspond to entry of neurites into S-RuMs. (G) An example of flexible, biocompatible, dissolvable electronics: an

electronic circuit dissolving in a stream of water. White arrows indicate the path of the water and the region of the circuit that is dissolving (image contributed by J.A.

Rogers, Northwestern University).

course of 4 months, when nerve regeneration in the conduit
with microtubes was comparable to the regeneration observed
in autograft controls (Wang et al., 2017). Collectively, these
results highlight how topography can positively promote neurite
outgrowth and enhance regeneration.

APPLICATION OF ELECTRIC FIELDS TO
MANIPULATE NEURITE EXTENSION

The nervous system relies on electrical signals for development
and communication. In early development, electric potentials
define migration paths of the cells and differentiation, driving
the formation of the neural tube (Hotary and Robinson, 1990,
1991; Metcalf and Borgens, 1994; Yao et al., 2008; Ma et al.,
2016). Signal transmission in neurons is mediated by ion fluxes
across the cell membrane. In instances of traumatic injury, ion
flux establishes an electric potential gradient that promotes repair
(Reid et al., 2007; McCaig et al., 2009). Numerous studies support
the positive effect of electric fields (EFs) on neurite extension,

growth-rate, and neuron polarization and migration (Jaffe and
Stern, 1979; Patel and Poo, 1982; McCaig, 1990; Davenport and
McCaig, 1993; Yao et al., 2009, 2011; Graves et al., 2011; Kim et al.,
2016). Consequently, electrical cues can be utilized to positively
regulate, facilitate, and enhance neuroregeneration.

Nanofiber scaffolds can be augmented to enhance neurite
outgrowth by providing both electrical stimulation and
topographical cues. An external EF was introduced in parallel or
perpendicular orientation to planar PLLA fiber scaffolds using
an agar salt-bridge and platinum reference electrode. When rat
DRG cultured on each of these scaffolds were stimulated with
an applied direct current (DC) EF for 8 h, neurite outgrowths
on the electrically stimulated scaffolds were significantly longer
compared to controls. Neurite outgrowth increased by 74%
on the PLLA fibers (topography alone), 32% on the PLLA
planar films (electrical stimulation alone), and by 126% on the
PLLA fibers aligned to the direction of the DC EF (Koppes
et al., 2014). Therefore, the combination of topographical and
electrical cues greatly improves length of neurite extension.
Electrical stimulation can be further integrated into the scaffold
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by choosing a conductive base material. Polypyrrole (PPy) is
biocompatible, biodegradable, as well as electrically conductive,
so NGCs augmented with PPy can support electrical stimulation
(Nguyen et al., 2014). When DRGs on PPy-modified flat scaffolds
were stimulated with an electric field, neurite extension was
enhanced by 13% in a DC EF, and 21% in an alternating current
(AC) EF. PPy-modified NGCs without electrical stimulation
were shown to support regrowth of severed sciatic nerves in rats
in vivo (Durgam et al., 2010). To translate this technology to in
vivo models, electrical stimulation needs to be introduced to a
PPy-modified NGC. Electric stimulation is a native signal that
strongly impacts neurons and can be further manipulated to
direct neuritogenesis in strategies for neuroregenerative therapy.

MANIPULATION OF SUBSTRATE
STIFFNESS

The intrinsic mechanical properties of the body determine
neuronal differentiation, dynamics, behavior, and organization
(Hynes, 2009; Janmey and Miller, 2011; Koser et al., 2016).
The importance of substrate mechanics as a cue is evident
during differentiation of stem cells in environments of
controlled stiffness. Increasingly higher stiffness encourages
their differentiation into muscle [elastic modulus (E) ∼10 kPa]
or bone (E > 30 kPa), whereas a lower stiffness on the order
of hundreds of Pa encourages differentiation into neurons
(Lee et al., 2013). This is consistent with the elastic modulus
within the central and peripheral nervous systems, which ranges
between 0.5 and 1 kPa, and the shear stiffness of human brain
tissue in vivo, which has been measured between 2 and 3 kPa
(Lee et al., 2013; Bai et al., 2014; Hiscox et al., 2016). Such
measurements of human brain tissue are highly dependent on
frequency and region, and therefore variable. Additional studies
have demonstrated that timing and duration of exposure to
stiffness cues impacts stem cell differentiation to neural cell
types, and that while neuritogenesis may be enhanced on soft
substrates, network connectivity and signal transduction are
enhanced by stiffer substrates (Balgude et al., 2001; Jiang et al.,
2010; Keung et al., 2012; Zhang et al., 2014; Mosley et al., 2017).
These findings emphasize that stiffness cues should be adjusted
depending on the desired outcome, with close attention to the
region of interest in the human body.

Hydrogels are a compelling choice for neuronal scaffolds
because their elastic modulus is easily tuned during fabrication,
although dependent upon the monomer/material used.
Polyacrylamide can be used to create hydrogels with gradient
stiffness ranging from ∼1 to 240 kPa. Polyacrylamide can act
as a strong analog to the endogenous ECM when invested
with proteins and chemical signals specific to the cell of
interest (Sunyer et al., 2012; Lee et al., 2015b). Hydrogels can
be constructed in planar or 3D configurations maintaining
precise control over the elastic modulus (Chatterjee et al.,
2011; Wylie et al., 2011). They facilitate nutrient exchange and
diffusion of gasses through their natural pores. This exchange
contributes to healthier cells within the deepest parts of the
scaffold. In designing scaffolds for use in repair of nervous
tissue, manipulating the base material to more closely resemble

the endogenous elastic modulus can facilitate more natural
integration with the existing cellular structure.

INNOVATIVE SUBSTRATES FOR
EFFECTIVE REPAIR

An ideal substrate for effective repair should take into account
a combination of topographical, chemical, electrical, and
mechanical properties of the substrate. The parameters must
be carefully tailored to address the site of application, as
biocompatibility with surrounding tissue will differ, and the
time course for repair, which will influence the duration of the
implant. For an acute spinal cord injury, the ideal substrate
should facilitate the initial regrowth, and protect against glial
scarring while nurturing the damaged axons during the healing
process via embedded trophic factors. Once the lesion has healed
and the scaffold has served its purpose, the scaffold can either
be resorbed or fully integrated into the recovered tissue. Such a
substrate must be flexible with an elastic modulus matching the
native spinal column for an environment that closely resembles
the endogenous condition. The scaffold can be enriched with
microchannels, which attract the regenerating neurites given
their affinity for edges and enclosed spaces (Millet et al., 2007;
Froeter et al., 2014; Li et al., 2015). To enhance regrowth and
influence its directionality, electronics that support electrical
stimuli can be embedded in the scaffold. These electronics can
also support recording capabilities to assess neuronal activity.
Impregnating the scaffold with stem cells could enhance this
therapy even more.

A recent study demonstrated how grafted human spinal cord-
derived neural progenitor cells (NPCs) restore functionality to
primates with lesioned spinal cords. The NPCs survived in
the graft 9 months following injury and enabled recovered
functionality in the primate forelimbs. Two notable challenges
were encountered before a successful grafting method was
developed: (1) in initial grafts, the NPCs were washed away by
the native cerebral spinal fluid (CSF) that refilled the lesion site,
and (2) the initial immunosuppressive regimen was not robust
enough to enable the graft to survive the host immune response,
leading to poor filling of the lesion with the NPCs. These two
challenges were resolved by draining the CSF in the region of the
lesion prior to grafting, increasing the grafting mixture to hasten
the rate of gelling, subjecting the primates to higher initial doses
of the immunosuppressants, and monitoring the subjects more
frequently (Rosenzweig et al., 2018). The success of this study
could be improved by loading the NPCs on an idealized scaffold
as described above, which would protect the NPCs and allow for
active monitoring of the regeneration.

With advancements in materials engineering, a new wave
of flexible and biodegradable electronics has been introduced
(Figure 1G). Applications for their use in the nervous system
are especially promising. Flexible, transient, silicon-based,
biocompatible, implantable biosensors are being developed
that allow for wireless monitoring capability. They have been
used successfully on skin, cardiac tissue, muscle, and the brain
(Viventi et al., 2010, 2011; Hwang et al., 2012; Kang et al., 2016).
A wireless communication device composed of bioresorbable
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materials has been successfully implanted and used in rats
for monitoring intracranial pressure and temperature (Kang
et al., 2016). Another flexible, non-penetrating multi-electrode
array with embedded ultrathin silicon transistors was used for
in vivo neural recording and monitoring of electrical brain
activity in feline models. The electrode array was applied to the
visual cortex, or folded and inserted into the interhemispheric
fissure, and electrical signals corresponding to visual stimuli
were recorded (Viventi et al., 2011). The connection between
these technologies and solutions for neuronal repair lies in three
major advantages of these devices: (1) the flexible nature of the
material allows for intimate contact between the biosensor and
the neural tissue, minimizing current-loss (Viventi et al., 2010,
2011), (2) the materials are biocompatible and do not trigger an
inflammatory response (Kang et al., 2016), and (3) the devices
are bioresorbable. Each of these elements addresses requirements
of an ideal substrate for neural repair. While long-term clinical
translation of these devices must ensure longevity of thematerials
and sustained biocompatibility, progress in flexible electronics
development is promising.

CONCLUSION

Recovering function following damage to neuronal systems
is challenging due to loss of native cues, inflammation, and
scarring. Solutions to this problem lie in clever development
and functionalization of new scaffolds on which neurons can
regenerate complex, 3D circuits. Important advances are being
made in development of biomaterials for neuronal repair,
including: (1) the development of new polymer/co-polymer
substrates to enhance scaffolds for better integration with neural
tissue, (2) new topographical structures to heighten neurite
capture, support, and growth, and (3) novel manipulations
of silicon-based electronics to design and implement flexible
substrates for stimulation and recording. New materials enabling
manipulation of substrate topography, such as hydrogels, mimic
similar in vivo structures and enhance control over directionality

in regenerating neurites. Introduction of electrical stimulation
will amplify growth rate and length of regeneration, and
influence orientation. Embedded wireless sensors will enable
real-time monitoring of regenerating nerves in situ. Substrates
can be manipulated to further emulate the endogenous neural
environment by tuning the elastic modulus to better match the
range of local stiffnesses in vivo and provide transitions between
native tissue and supportive scaffold. By developing scaffolds
and devices that dissolve away after fulfilling their purpose,
the need for an additional surgery for removal is eliminated,
thereby reducing the risks of added surgical complications,
such as infection, as well as additional medical costs. For
the brain and the nervous system, the future is pliable and
electronic.
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