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A physical model of a tensegrity columns is additively manufactured in a titanium

alloy. After removing sacrificial supports, such a model is post-tensioned through

suitable insertion of Spectra® cables. The wave dynamics of the examined system is

first experimentally investigated by recording the motion through high-speed cameras

assisted by a digital image correlation algorithm, which returns time-histories of the

axial displacements of the bases of each prism of the column. Next, the experimental

response is mechanically simulated by means of two different models: a stick-and-spring

model accounting for the presence of bending-stiff connections between the 3D-printed

elements (mixed bending-stretching response), and a tensegrity model accounting for a

purely stretching response. The comparison of theory and experiment reveals that the

presence of bending-stiff connections weakens the nonlinearity of the wave dynamics of

the system. A stretching-dominated response instead supports highly compact solitary

waves in the presence of small prestress and negligible bending stiffness of connections.

Keywords: tensegrity columns, wave dynamics, additive manufacturing, experimental testing, stick-and-spring

structure, solitary waves

1. INTRODUCTION

The dynamics of acoustic metamaterials has been intensively investigated over recent years, with
the aim of designing unconventional mechanical devices like acoustic band gap materials, shock
protectors, acoustic lenses, and energy trapping containers, to name just a few examples (refer,
e.g., to Lu et al., 2009; Craster and Guenneau, 2013; Theocharis et al., 2013; Hussein et al., 2014;
Leonard et al., 2014; Chronopoulos et al., 2017; Claeys et al., 2017; Harne et al., 2017; Ponge
et al., 2017; Tallarico et al., 2017; Miniaci et al., 2018 and references therein). It has been shown
that engineered metamaterials may find application for protecting materials and structures against
impacts with external objects (Fraternali et al., 2010;Mitchell et al., 2014), as well as for the design of
sound-focusing devices (Spadoni and Daraio, 2010), the manufacturing of noninvasive sensors and
actuators for structural healthmonitoring (Ngo et al., 2012; Rizzo et al., 2014), and the fabrication of
novel seismic protection devices (Brûlé et al., 2014; Krö̈del et al., 2015; Miniaci et al., 2016; Colombi
et al., 2017; La Salandra et al., 2017).

Lattice structures obtained by assembling tensegrity units, such as T3 tensegrity prisms
(Skelton and de Oliveira, 2010), exhibit a mechanical response that can be continuously
varied from hardening to softening, by changing the geometrical, mechanical, and prestress
parameters (Fraternali et al., 2012, 2014a,b; Amendola et al., 2014, 2015; Rimoli, 2016;
Montuori and Skelton, 2017; Rimoli and Pal, 2017). The geometrically nonlinear response of

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2018.00022
http://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2018.00022&domain=pdf&date_stamp=2018-04-17
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles
https://creativecommons.org/licenses/by/4.0/
mailto:adaamendola1@unisa.it
https://doi.org/10.3389/fmats.2018.00022
https://www.frontiersin.org/articles/10.3389/fmats.2018.00022/full
http://loop.frontiersin.org/people/528072/overview
http://loop.frontiersin.org/people/197347/overview
http://loop.frontiersin.org/people/528769/overview


Amendola et al. Tensegrity Columns Subject to Impact Loading

a tensegrity system is caused by the presence of one or more
infinitesimal mechanisms, i.e., sets of nodal displacements causing
second-order member elongations, owing to the fact that the
equilibrium operator is singular in the considered configuration
(Calladine, 1978; Calladine and Pellegrino, 1991; Micheletti,
2012; Fraternali et al., 2015; Modano et al., 2018). Recent studies
(Fraternali et al., 2012, 2014b) have revealed that tensegrity
columns composed of T3 prisms are suitable for use as acoustic
lenses supporting extremely compact solitary waves.

In this work, we experimentally test the dynamic response
of a tensegrity column subjected to impact loading, and
correspondingly we perform numerical simulations of the
examined tests using two different elastic models, respectively
described in Favata et al. (2014) and Davini et al. (2016). An
additive manufacturing (AM) technique based on Electron Beam
Melting (EBM) is employed to build all the elements of the
tested structure, except for the cables, which are subsequently
added to the 3d-printed structure through a post-tensioning
technique (Amendola et al., 2015). The mechanical modeling of
such a structure is first analyzed through the stick-and-spring
model presented in Favata et al. (2014), which takes into account
that the nodes of the 3D-printed structure form bending-stiff
connections. It models the system by considering bars and bases
to be inflexible, by describing the cables as linear springs, and
attaching angular springs to the nodes (mixed bending-stretching
response). The second examined model (Davini et al., 2016) is
instead a pure tensegrity model that introduces frictionless pin-
connections between elements, describes the cables as linear
springs, and models the bars and the bases of the prisms as rigid
bodies (purely stretching response). Other than comparing for
the first time the experimental impact response of a tensegrity
column to the numerically predicted response of the above
models, this work highlights differences and similarities between
such models, providing useful directions for the design of
tensegrity metamaterials with sound-focusing abilities.

2. EXPERIMENTAL SETUP

We experimentally investigate the dynamic response of a 3D-
printed physical model of a tensegrity column (Amendola et al.,
2015) under impact loading. Such structure consists of ten
regular tensegrity prisms with triangular bases (T3 prisms)
(Skelton and de Oliveira, 2010) superposed to each other.
Figure 1A shows the tested column partly manufactured in
Ti6Al4V titanium alloy using the EBM technique (Amendola
et al., 2015) and the computer-aided design (CAD) model drawn
in Figure 1B. The Arcam S12 EBM facility at the Department of
Materials Science and Engineering, University of Sheffield was
employed to manufacture the examined structure, by depositing
layers of Ti6Al4V powder withminimum feature size down to 0.4
mm (Tammas-Williams et al., 2015).

Each T3 prism of the column is left-handed, i.e., the upper
base is rotated counter-clockwise with respect to the bottom
base by an angle of 5π/6 about the prism’s axis1 (cf. Davini
et al., 2016). Each T3 prism is made by three bi-conical bars

1When a T3 prism is right-handed the base is rotated clockwise by the same angle.

connected to the vertices of two triangular plates with thickness
t through spherical nodes with 3 mm diameter. These elements
are 3D-printed together with the aid of additional sacrificial
linear elements which are mechanically removed afterward.
Three strings elements (or cables) made of Spectra R© fibers are
then added to each prism on using the post-tension technique
illustrated in Amendola et al. (2015). The geometric properties of
a prism are given in Table 1. The symbols sN , bN , and hN denote
respectively the length of the edges of the base plates, the length
of the bars, and the height of the prism (measured as the distance
between the base centers) (Amendola et al., 2015) (cf. Figure 1B).
The maximum and minimum diameters of the bars are denoted
by D and d, respectively.

An in-house experimental setup is designed and assembled to
apply an impact load to the top base of the column, while keeping
the bottom base fixed to an aluminium plate. The strings of the
structure are pre-stretched by passing them through bridge pins
applied to the aluminum plate (Figure 1A). A vertical thin rod
passing through the units was inserted in order to stabilize the
column and prevent possible bending modes.

The top base of the columns is impacted by a spherical
striker with 5 g mass made of Polytetrafluoroethylene (PTFE)
(Figure 1A), which falls with null initial velocity for 0.5m in a
duct delimited by four Teflon tubes. The motion of the column
produced by the impact with the striker is recorder through
two high-speed cameras FASTCAM Mini UX100, and the axial
(vertical) displacements of the upper base of each unit are
measured using a Digital Image Correlation technique (Deng
et al., 2017; Schaeffer et al., 2017). Such a technique employs
image acquistion with a rate of 4,000 fps at 1,280 × 1,024 pixel
resolution, and the triggering of the striker downfall through a
precision screw, in order to obtain a repeatable perturbation of
the impacted base (Nadkarni et al., 2016).

3. STICK-AND-SPRING MODEL

The EBM technique described in section 2 does not allow for
the realization of spherical hinges between bars and base plates
of the tensegrity column; on the contrary, the nodes of the
3D-printed structure provide bending-stiff connections between
such elements. This observation leads us to employ a stick-and-
spring (S&S) model (Favata et al., 2014) to describe the dynamic
response of the physical model under examination.

A S&S structure is a collection of nodes, edges, and wedges:
edges are imagined as node-to-node inflexible but extensible
straight sticks, acting as axial springs when extended; wedges
are imagined as complexes of two sticks sharing one end node,
equipped by an angular spring reacting to relative rotations of the
two wedge sticks in their common plane. A S&S structure differs
from a tensegrity structure because, owing to the presence of
angular springs, edges are subjected to shear forces and bending
moments, in addition to axial forces (see Figure 1C).

3.1. Model Description
The combinatorial description of a S&S structure is given by
the triplet S = (N , E ,W) consisting of: (i) a collection N of
points, called nodes, of the three-dimensional Euclidean space;
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FIGURE 1 | The tensegrity column under test (A), CAD model of a single prism (B), and sketch of a portion of the model showing also the angular springs associated

to the wedges of the S&S structure (C).

TABLE 1 | Geometrical properties of a T3 prism.

t sN bN hN D d

(mm) (mm) (mm) (mm) (mm) (mm)

1.0 34.08 44.06 22.29 3.0 0.5

(ii) a collection E of edges, that is, two-elements subsets ofN ; (iii)
a collection W of wedges, that is, three-elements subsets of N .
We say that ij ∈ E is the edge connecting nodes i, j ∈ N , and that
ijk ∈ W , with i, j, k ∈ N , is the wedge with head node i and tail
nodes j and k. We denote by pi the referential position vector of
the typical node i with respect to a chosen origin point, by ui its
displacement, and by qi : = pi + ui its current position vector.

We denote the change in length of edge ij, with ℓij = ij, and

the change in angle of wedge ijk, with θijk = ĵik by δℓij and δθijk,
respectively. The corresponding linearized length variations are:

δℓij = bij · u , δθijk = bijk · u , (1)

where u is the string of nodal-displacement vectors, [u] =
[. . . , ui, . . .], while bij, bijk are vectors depending on referential
nodal positions pi, i ∈ N (see Favata et al., 2014 for
details). On denoting by η the string of strain components,
[η] =

[
. . . , δℓij, . . . | . . . , δθijk, . . .

]
, relations (1) can be given the

following compact form:

η = Bu, (2)

where the linear mapping B is the kinematic compatibility
operator. We denote by f and χ respectively the string of
nodal-force vectors and the string of stress measures conjugated

with η. With this notation, the balance equations can be
written as:

f = Aχ , (3)

where A = BT is the equilibrium operator.
Next, let the (positive) spring constants κij and λijk characterize

the linear elastic response of edge andwedge springs, respectively,
so that the elastic energy stored in a S&S structure can be written
as:

U =
1

2

(∑

ij∈E
κij(ℓij − ℓij)

2 +
∑

ijk∈W
λijk(θijk − θ ijk)

2
)
, (4)

with ℓij and ℓij the current length and the rest length of the axial

spring on edge ij, while θijk and θ ijk are the current angle and the
rest angle of the angular spring on wedge ijk. On introducing the
kinetic energy:

K(q, q̇) =
1

2
q̇ ·M(q)q̇, (5)

withM a diagonalmass operator corresponding to lumped nodal
masses, the nonlinear motion equations are given by:

Mq̈+ Ã(q)χ(q) = 0, (6)

where Ã(q) is the equilibrium operator in the current placement.
This equation can be linearized about an equilibrium placement
q0, obtaining:

M(q0)ü+ KT(q0)u = 0, (7)
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where KT : = ∂2q U is the tangent stiffness operator2.
The response of the tensegrity column under impact loading

is obtained through numerical integration of (6) and (7) subject
to assigned initial conditions.

3.2. Simulation of Impact Tests
The impact test was simulated by means of the S&S model under
the following assumptions.

• Cables are modeled as edges, with stiffness κc = Ecπd
2
c/(4lc),

where Ec is the Young modulus, dc the diameter, and lc =(
l2
b
− 2

√
3a2

)1/2
is the current length of the cables, with lb the

length of the bar and a the base radius;
• Cable prestress is considered to be negligible3;
• Bars are modeled as edges with stiffness κb = Ebπd

2
b
/(4lb),

where Eb is the Young modulus and db the diameter;
• Each triangular base is modeled as three pin-jointed bars of

stiffness κb forming the triangle;
• Wedges are considered between base triangles and bars (see

Figure 1B, right), their stiffness is λ = ακbl
2
c , with α a

dimensionless parameter measuring the relative importance of
edge-stretching andwedge-opening (Favata et al., 2014), which
in the present study is fitted with the experimental results;

• Nodal masses m are assigned by subdividing the total
measured mass of the structure, 53.0 g into 3 (vertices) × 10
(bases) = 30 equal parts.

• As initial value of the downward velocity we assumed v0 =
2m/s, by averaging measurements during a short time interval
after impact. We also assumed that the impact cause the top
base to have an initial angular velocity about the prism’s axis
given by ω0 = 2hNv0/a

2 ≃ 0.2304 rad/s, with a =
√
3 sN/3,

2See Favata et al. (2014) for a detailed expression of KT .
3We checked that, owing to the small axial stiffness of cables, a modest prestress

does not change results significantly.

so that the top base initially moves along the infinitesimal
mechanism of the top prism (Fraternali et al., 2014a).

Table 2 summarizes the adopted values of the S&S modeling
parameters.

The stiffness of wedge springs, controlled by the dimensionless
parameter α, is assigned by matching the time t at which the
top base returns to the initial position (subsequently continuing
its upward motion). In the experiment, t = 18.9892 ms; in the
simulation, the same value is found when α = 6.0655 · 10−4. We
observe a good agreement between oscillation amplitudes in the
two cases.

Figure 2 shows a comparison on the displacements of the
prisms #2, #4, #6, #8, #10 (top prism), between experimental
results (dotted line) and numerical results (solid line). Numerical
results are obtained by integrating the nonlinear equation of
motion (6). Figure 3A shows a comparison on the displacements
of the first and the last prism, between experimental results
(dotted line), results obtained by numerical integration of both
the nonlinear equation of motion (6) (solid line), and those
obtained from the linearized equation of motion (7) (dashed
line). Figure 3B shows numerical results for the axial strain of the
first and last prism, which is defined as the relative displacement
between the two bases of a prism, divided by hN . Experimental
results display larger oscillations, in particular for the top prism.

TABLE 2 | Model parameters.

Ec 5480 MPa

dc 0.1 mm

lb 44.06 mm

Eb 110 · 103 MPa

db 1.75 mm

hN 22.29 mm

FIGURE 2 | Base displacements obtained from experiments (dotted line) and numerical simulations with nonlinear theory (solid line) of the S&S model.
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FIGURE 3 | (A) Displacements of the top and bottom base, comparison between experiments (dotted line) and numerical simulations with nonlinear theory (solid line)

and linearized theory (dashed line) of the S&S model. (B) Axial strains in the top and bottom prism obtained with nonlinear theory (solid line) and linearized theory

(dashed line).

TABLE 3 | First maximum value of the displacement umax and correspondent

time tmax.

Top prism Exper. Nonlin. th. Lineariz. th.

umax (mm) −1.7812 −1.8004 −1.9344

tmax (ms) 1.75 1.70 1.70

Bottom prism Exper. Nonlin. th. Lineariz. th.

umax (mm) −0.7506 −1.2495 −1.4079

tmax (ms) 10.0 10.0 10.1

In this regard, we observed that in the experiment triangular
bases do not remain perfectly horizontal during the motion,
and this is likely to be the reason of the larger oscillations in
the measured displacement. The first maximum value of the
displacement umax and the correspondent time tmax is reported
in Table 3. It is worth noting that, by looking at Table 3 and
Figure 2, the response in the linearized case is close to that in
the nonlinear case.

4. PURE TENSEGRITY MODEL

Both simulations and experimental results presented in the
previous section show that the mixed bending-stretching regime
produces a not localized wave transmission response of the
tensegrity column under examination. In this section, we propose
some possible directions toward the design of a device with more
“focused” dynamic response under impact loading in the pure
stretching regime. In order to do this, we adopt the simpler,
pure tensegrity model presented in Davini et al. (2016), where
the Lagrange’s equation of motion of a tensegrity column are
solved numerically. The assumptions of this model are the
following ones: only cyclic-symmetric motions with respect to
the column’s axis are considered; nodes are frictionless hinges

between connected elements; all bars are rigid and massless;
cables are linearly elastic and massless. In our case, each
triangular base is a rigid body with a mass 3m and moment of
inertia 3ma2.
We investigated the following three cases.

CASE 1 — We considered cable stiffness to be the same as in
the present S&S model. Then we determined the cable
prestrain by matching the time t at which the top base
returns to the initial position with that measured during
the experiment. By doing so, the resulting prestrain takes
the unrealistic value of 85%. The results are shown in
Figure 4 (dashed line) , where it is possible to see a linear
behavior similar to that of the mixed bending-stretching
response.

CASE 2 — We assign the more realistic value of 5% to
the prestrain and determine the cable stiffness by
matching the time t with that of the experiment.

The resulting cable stiffness is 15.5 times higher

than that of the original structure. Results are shown

in Figure 4 (dash-dot line), where we still observe a
response similar to that of the mixed bending-stretching
regime.

CASE 3 — We assign a low prestrain to cables, equal to 1% and,
again by matching the time t with that of the experiment,
we determine the stiffness of cables to be 55.5 times higher
than that of the original structure. The results are shown in
Figure 4 (solid line), which displays a much more marked
nonlinear response4.

It is worth noting that the above cases refer to models of
tensegrity columns different from that experimentally tested

4This is highlighted for example by the different amplitudes in tension and

compression of the bottom prism (Figure 4B, solid line), owing to a stiffer response

in tension.
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FIGURE 4 | Displacements of top prism (A) and bottom prism (B): experiments (dotted line), Case 1 (dash-dot line), Case 2 (dashed line), and Case 3 (solid line) of the

pure tensegrity model.

FIGURE 5 | Snapshot at 65 ms of prism strains along a column composed by 100 prisms. Nonlinear Stick-and-Spring model (A). Pure tensegrity model: Case 1 (B);

Case 2 (C), and Case 3 (D).

in the present work (experimental model), and they are here
presented with the aim of exploring the nonlinear potential of the
wave dynamics of pure tensegrity lattices. The results in Figure 4

show that the tensegrity models of Cases 1 and 2 reproduce
fairly well the displacement vs. time response of the experimental
model, while there are larger differences with Case 3.

For a better visualization of nonlinear effects, we repeated
the simulations on a column composed of 100 units, and we
represented in Figure 5 the strain of each prism of the column
at a fixed time (t = 65 ms). In all the results shown in Figure 5

we observe the formation of a leading compression strain pulse
followed by an oscillatory tail. By comparing Cases 1–3 and the
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Stick-and-Spring model analyzed in Sect. 3 (nonlinear theory),
we observe that for Case 3 (when the cross-cable prestrain is
1%) the deformation of the column is more localized at the wave
front, since in this case the amplitude of the leading compression
strain pulse is much larger than that of the oscillatory tail, and is
more markedly separated from the tail (Figure 5D), as compared
to Cases 1–2 (Figures 5B,C) and the Stick-and-Spring model
(Figure 5A).

5. CONCLUSION AND FUTURE WORK

5.1. Concluding Remarks
We have performed an impulsive dynamic test on a physical
model of a tensegrity column, on comparing the measured
displacements to those computed numerically through two
different models: a stick-and spring model accounting for
bending deformation of the nodes (Favata et al., 2014), and a
pure tensegrity model accounting for a pure-stretching response
of all the members of the system (Davini et al., 2016). The
first model is intended to capture the experimental response
of the analyzed physical model, while the second one is aimed
at providing directions for the design of alternative systems
featuring highly nonlinear dynamic response. The given results
show a fairly good agreement between measurements and
simulations performed with the first model. The second model
is also able to reproduce the response observed during the
experiment when one prescribes a suitable prestrain to the cables,
since such a property significantly influences the axial stiffness
of the units (Fraternali et al., 2014a). We have observed that
bending-stiff nodal connections, a feature of the 3D-printed
structure due to the not-negligible size of the junctions, may
greatly reduce nonlinearities in the response of tensegrity lattices.
We found that a similar effect can also be obtained in the second
model by fictitiously raising the prestress level. This behavior
can be explained by considering that the tangent stiffness of the
tensegrity lattice is the sum of a material contribution (owing
mainly to the stiffness of angular springs) and a geometric
contribution (owing to prestress) (Favata et al., 2014). In relation
to this, we observed also that a more marked nonlinear behavior
occurs for smaller prestress levels and smaller values of the
stiffness of angular springs.

5.2. Future Work
The results of the present study highlight that a pure tensegrity
behavior with negligible bending deformation of the nodes
and low prestress may lead to design novel metamaterials that
enable unconventional wavefocusingmethodologies based on the

propagation of localized stress/strain waves, whose support is
concentrated in narrow regions of space. This obviously calls
for the adoption of manufacturing techniques that are able to
build perfect hinges at the nodes, such as e.g. the multiscale
AM techniques described in Meza et al. (2014); Zheng et al.
(2014). Arrays of tensegrity columns with stretching-dominated
response may be employed to fabricate tunable focus acoustic
lenses whose working principle is based on the propagation of
localized stress waves, whose support can be adjusted through
the control of the global precompression of the structure,
and/or the prestretch of the cables forming the units. On
applying different levels of prestress to such metamaterials, one
can be able to generate compact stress waves with different
phases within the system, which are expected to interact at a
focal point in an adjacent medium (i.e., a material defect to
be targeted) (Spadoni and Daraio, 2010). We address specific
studies on such engineering applications of tensegrity lattices
to future work, with the aim of designing and manufacturing
novel acoustic lenses, and innovative sensors/actuators for
monitoring structural health and damage detection in materials
and structures (Rizzo et al., 2014).
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